Department of Probability and Mathematical Statistics

FACULTY
of mathematics
AND PHYSICS
Charles University

Dominik Beck
Fourth moment of random determinants
RICCOTA 2023, Rijeka

1 Introduction

2 General fourth moment

3 Gram fourth moment

4 Sixth moment (current work)

Definitions I:

$$
\begin{array}{cl}
X_{i j} \text { i.i.d., } & m_{q}=\mathbb{E} X_{i j}^{q}, \\
A=\left(X_{i j}\right)_{n \times n} & U=\left(X_{i j}\right)_{n \times p}, \\
f_{k}(n)=\mathbb{E}(\operatorname{det} A)^{k} & f(n, p)=\mathbb{E}\left(\operatorname{det} U^{\top} U\right)^{k / 2}, \\
F_{k}(t)=\sum_{n=0}^{\infty} \frac{t^{n}}{n!^{2}} f_{k}(n), & F(t, \omega)=\sum_{n=0}^{\infty} \sum_{p=0}^{n} \frac{t^{p} \omega^{n-p}(n-p)!}{n!p!} f_{k}(n, p) .
\end{array}
$$

Definitions I:

$$
\begin{array}{cl}
X_{i j} \text { i.i.d., } & m_{q}=\mathbb{E} X_{i j}^{q}, \\
A=\left(X_{i j}\right)_{n \times n} & U=\left(X_{i j}\right)_{n \times p}, \\
f_{k}(n)=\mathbb{E}(\operatorname{det} A)^{k} & f(n, p)=\mathbb{E}\left(\operatorname{det} U^{\top} U\right)^{k / 2}, \\
F_{k}(t)=\sum_{n=0}^{\infty} \frac{t^{n}}{n!^{2}} f_{k}(n), & F(t, \omega)=\sum_{n=0}^{\infty} \sum_{p=0}^{n} \frac{t^{p} \omega^{n-p}(n-p)!}{n!p!} f_{k}(n, p) .
\end{array}
$$

- WLOG $m_{2}=1$.

Previously known results

NRR's formula on fourth determinant moment

Theorem. (1954 | Nyquist H., Rice S. O., Riordan J. ${ }^{1}$)

For any distribution of $X_{i j}$ with $m_{1}=0$ and $m_{2}=1$,

$$
F_{4}(t)=\frac{e^{t\left(m_{4}-3\right)}}{(1-t)^{3}}
$$

${ }^{1}$ Harry Nyquist, SO Rice, and J Riordan. "The distribution of random determinants". In: Quarterly of Applied mathematics 12.2 (1954), pp. 97-104

Previously known results

Dembo's formula on fourth Gram moment

Theorem. (1989 | Dembo A. ${ }^{2}$)

For any distribution of $X_{i j}$ with $m_{1}=0$ and $m_{2}=1$,

$$
F_{4}(t, \omega)=\frac{e^{t\left(m_{4}-3\right)}}{(1-t)^{2}(1-\omega-t)} .
$$

${ }^{2}$ Amir Dembo. "On random determinants". In: Quarterly of applied mathematics 47.2 (1989), pp. 185-195

Our results

General fourth determinant moment

Theorem. (5/2022 | B. D.. ${ }^{3}$)
For any distribution of $X_{i j}$ with $m_{1}=0$ and $\mu_{2}=1, F_{4}(t)$ equals

$$
\frac{e^{t\left(\mu_{4}-3\right)}}{(1-t)^{3}}\left[\left(1+m_{1} \mu_{3} t\right)^{4}+6 m_{1}^{2} t \frac{\left(1+m_{1} \mu_{3} t\right)^{2}}{1-t}+m_{1}^{4} t \frac{1+7 t+4 t^{2}}{(1-t)^{2}}\right],
$$

where $\mu_{2}=m_{2}-m_{1}^{2}, \mu_{3}=m_{3}-3 m_{1} m_{2}+2 m_{1}^{3}$ and $\mu_{4}=m_{4}-$ $4 m_{1} m_{3}+6 m_{1}^{2} m_{2}-3 m_{1}^{4}$.
${ }^{3}$ Dominik Beck. "On the fourth moment of a random determinant". In: arXiv preprint arXiv:2207.09311 (2022)

Our results

General fourth Gram moment

Theorem. (7/2022 | B. D.. ${ }^{4}$)

For any distribution of $X_{i j}$ with $m_{1}=0$ and $\mu_{2}=1$ (μ_{q} as before),

$$
\begin{aligned}
F_{4}(t, \omega)= & \frac{e^{t\left(\mu_{4}-3\right)}}{(1-t)^{2}(1-\omega-t)}\left[\left(1+m_{1} \mu_{3} t\right)^{4}+\frac{6 m_{1}^{2} t\left(1+m_{1} \mu_{3} t\right)^{2}}{1-t}\right. \\
& +\frac{m_{1}^{4} t\left(1+7 t+4 t^{2}\right)}{(1-t)^{2}}+\frac{\omega m_{1}^{2} t}{1-\omega-t}\left(\frac{2\left(1+m_{1} \mu_{3} t\right)^{2}}{1-t}\right. \\
& \left.\left.+\frac{m_{1}^{2}\left(1+5 t+2 t^{2}\right)}{(1-t)^{2}}\right)+\frac{2 t^{2} \omega^{2} m_{1}^{4}}{(1-\omega-t)^{2}(1-t)^{2}}\right]
\end{aligned}
$$

${ }^{4}$ Dominik Beck. "On the fourth moment of a random determinant". In: arXiv preprint arXiv:2207.09311 (2022)

1 Introduction

2 General fourth moment

- Preliminaries
- Marked tables
- Structure of marked tables
- Decomposition over even marked tables
- Covering technique

3 Gram fourth moment

4 Sixth moment (current work)

2 General fourth moment
■ Preliminaries

- Marked tables
- Structure of marked tables

■ Decomposition over even marked tables

- Covering technique

3 Gram fourth moment

4 Sixth moment (current work)

Definitions II:

$$
\begin{array}{cl}
Y_{i j}=X_{i j}-m_{1}, & \mu_{q}=\mathbb{E} Y_{i j}^{q}, \\
B=\left(Y_{i j}\right)_{n \times n} & V=\left(Y_{i j}\right)_{n \times p} \\
g_{k}(n)=\mathbb{E}(\operatorname{det} B)^{k} & g(n, p)=\mathbb{E}\left(\operatorname{det} V^{\top} V\right)^{k / 2} \\
G_{k}(t)=\sum_{n=0}^{\infty} \frac{t^{n}}{n!^{2}} g_{k}(n), \quad G(t, \omega)=\sum_{n=0}^{\infty} \sum_{p=0}^{n} \frac{t^{p} \omega^{n-p}(n-p)!}{n!p!} g_{k}(n, p) .
\end{array}
$$

Definitions II:

$$
\begin{array}{cl}
Y_{i j}=X_{i j}-m_{1}, & \mu_{q}=\mathbb{E} Y_{i j}^{q}, \\
B=\left(Y_{i j}\right)_{n \times n} & V=\left(Y_{i j}\right)_{n \times p} \\
g_{k}(n)=\mathbb{E}(\operatorname{det} B)^{k} & g(n, p)=\mathbb{E}\left(\operatorname{det} V^{\top} V\right)^{k / 2} \\
G_{k}(t)=\sum_{n=0}^{\infty} \frac{t^{n}}{n!^{2}} g_{k}(n), \quad G(t, \omega)=\sum_{n=0}^{\infty} \sum_{p=0}^{n} \frac{t^{p} \omega^{n-p}(n-p)!}{n!p!} g_{k}(n, p) .
\end{array}
$$

Lemma.

For any distribution of $X_{i j}$ with $\mu_{2}=1$,

$$
G_{k}(t)=\left.F_{k}(t)\right|_{m_{q} \rightarrow \mu_{q}}, \quad G_{k}(t, \omega)=\left.F_{k}(t, \omega)\right|_{m_{q} \rightarrow \mu_{q}}, \quad q \geqslant 2 .
$$

Lemma.

For any distribution of $X_{i j}$ with $\mu_{2}=1$,

$$
G_{k}(t)=\left.F_{k}(t)\right|_{m_{q} \rightarrow \mu_{q}}, \quad G_{k}(t, \omega)=\left.F_{k}(t, \omega)\right|_{m_{q} \rightarrow \mu_{q}}, \quad q \geqslant 2 .
$$

$$
\text { - } G_{4}(t)=\frac{e^{t\left(\mu_{4}-3\right)}}{(1-t)^{3}}
$$

Lemma.

For any distribution of $X_{i j}$ with $\mu_{2}=1$,

$$
G_{k}(t)=\left.F_{k}(t)\right|_{m_{q} \rightarrow \mu_{q}}, \quad G_{k}(t, \omega)=\left.F_{k}(t, \omega)\right|_{m_{q} \rightarrow \mu_{q}}, \quad q \geqslant 2 .
$$

- $G_{4}(t)=\frac{e^{t\left(\mu_{4}-3\right)}}{(1-t)^{3}}$
- $G_{4}(t, \omega)=\frac{e^{t\left(\mu_{4}-3\right)}}{(1-t)^{2}(1-\omega-t)}$

1 Introduction

2 General fourth moment

- Preliminaries

■ Marked tables

- Structure of marked tables
- Decomposition over even marked tables

■ Covering technique

3 Gram fourth moment

4 Sixth moment (current work)

Lemma (Matrix determinant lemma).

$$
\operatorname{det} A=\operatorname{det} B+m_{1} \sum_{i j}(-1)^{i+j} \operatorname{det} B_{i j} .
$$

Lemma (Matrix determinant lemma).

$$
\operatorname{det} A=\operatorname{det} B+m_{1} \sum_{i j}(-1)^{i+j} \operatorname{det} B_{i j}
$$

Corollary. Denote $\pi \in T_{n}$ a permutation of order n and $\sigma \in T_{n}^{\times}$a marked permutation formed from π by marking at most one of its numbers, then

$$
\operatorname{det} A=\sum_{\pi \in T_{n}} \operatorname{sgn} \pi \prod_{i=1}^{n} X_{i \pi(i)}=\sum_{\sigma \in T_{n}^{\times}} \operatorname{sgn} \sigma \prod_{i=1}^{n} Y_{i \sigma(i)},
$$

where sgn $\sigma=\operatorname{sgn} \pi$ and $Y_{i \sigma(i)}=m_{1}$ if i is marked and $Y_{i \sigma(i)}=Y_{i \pi(i)}$ otherwise.

Marked tables

Definition. We say t is a marked table k by n if its rows are marked permutations. $T_{k, n}^{\times}$is the set of all such tables. We define weight of its i-th column as $\mathbb{E} \prod_{j=0}^{k} Y_{i \sigma_{j}(i)}$ and the weight $w(t)$ of the whole table t as the product of weights of all of its columns. Also sgn t will be the product of signs of permutations of rows.

3	\times	1	4	5	2	7	8	9
3	2	1	9	4	6	\times	5	8
3	\times	1	9	4	2	7	5	8
3	2	1	4	5	6	7	8	9

Example: $t \in T_{4,9}^{\times}$with $w(t)=m_{1}^{3} \mu_{3} \mu_{4}^{2}$

Proposition.

$$
f_{k}(n)=\sum_{t \in T_{k, n}^{\times}} w(t) \operatorname{sgn} t
$$

Definition. Let $T_{k, n}^{r} \subseteq T_{k, n}^{\times}$be the subset of those tables which have exactly r marks.

Definition. $f_{k}^{[r]}(n)=\sum_{t \in T_{k, n}^{r}} w(t) \operatorname{sgn} t$
Corollary. $f_{k}(n)=\sum_{r=0}^{k} f_{k}^{[r]}(n)$

1 Introduction

2 General fourth moment

- Preliminaries
- Marked tables
- Structure of marked tables
- Decomposition over even marked tables

■ Covering technique

3 Gram fourth moment

4 Sixth moment (current work)

Column types

Let a, b denote different numbers selected from $\{1,2,3, \ldots, n\}$. Up to permutation of rows, the only ways how the columns of 4 by n tables with nonzero weight could look like are the following:

Type: 4-column 2-column $\times{ }^{1}$-column $\times{ }^{2}$-column $\times{ }^{4}$-column

a				
a				
a				
a	a a b b	\times a a a	\times \times a a	\times \times \times \times
μ_{4}	1	$m_{1} \mu_{3}$	m_{1}^{2}	m_{1}^{4}

1 Introduction

2 General fourth moment

- Preliminaries
- Marked tables
- Structure of marked tables
- Decomposition over even marked tables
- Covering technique

3 Gram fourth moment

4 Sixth moment (current work)

Definition. Let $S_{4, n}^{r} \subseteq T_{4, n}^{r}$ be the subset of those tables with nonzero weight which lack \times^{1} columns.

Definition. $s_{4}^{[r]}(n)=\sum_{t \in S_{4, n}^{r}} w(t) \operatorname{sgn} t, \quad S_{4}^{[r]}(t)=\sum_{n=0}^{\infty} \frac{t^{n}}{n!} s_{4}^{[r]}(n)$.

Proposition.

$$
\begin{aligned}
F_{4}(t) & =\sum_{r=0}^{4}\left(1+m_{1} \mu_{3} t\right)^{4-r} S_{4}^{[r]}(t) \\
& =\left(1+m_{1} \mu_{3} t\right)^{4} S_{4}^{[0]}(t)+\left(1+m_{1} \mu_{3} t\right)^{2} S_{4}^{[2]}(t)+S_{4}^{[4]}(t) .
\end{aligned}
$$

Proof. Creating $t \in T_{4, n}^{r}$ from $t^{\prime} \in S_{4, n-s}^{r-s}$ by adding $s \times^{1}$-columns,

$$
f_{4}^{[r]}(n)=\sum_{s=0}^{r}\binom{4-r+s}{s}\binom{n}{s}^{2} s!^{2} m_{1}^{s} \mu_{3}^{s} s_{4}^{[r-s]}(n-s)
$$

$\mathbf{3}$	\times	1	4	5	2	7	8	9								
$\mathbf{3}$	2	1	9	4	6	\times	5	8								
$\mathbf{3}$	\times	1	9	4	2	7	5	8								
\times	2	1	4	5	6	7	8	9								
\times									\leftarrow	\times	1	4	5	2	8	9
:---:	:---:	:---:	:---:	:---:	:---:	:---:										
2	1	9	4	6	5	8										
\times	1	9	4	2	5	8										
2	1	4	5	6	8	9										

Example: $n=9, r=4, s=2$

1 Introduction

2 General fourth moment

- Preliminaries
- Marked tables
- Structure of marked tables
- Decomposition over even marked tables

■ Covering technique

3 Gram fourth moment

4 Sixth moment (current work)

Table types

Definition. We define tables $S_{4, n}^{r / s} \subseteq S_{4, n}^{r}$ such that their r marks occupy s columns. Accordingly, we define

$$
s_{4}^{[r / s]}(n)=\sum_{t \in S_{4, n}^{r / s}} w(t) \operatorname{sgn}(t) \quad \text { and } \quad S_{4}^{[r / s]}(t)=\sum_{n=0}^{\infty} \frac{t^{n}}{n!^{2}} s_{4}^{[r / s]}(n)
$$

$S_{4, n}^{0}$

$S_{4, n}^{2}$

$S_{4, n}^{4 / 1}$

$S_{4, n}^{4 / 2}$

Proposition.

$$
S_{4}^{[2]}(t)=m_{1}^{2}\left(6-2 \mu_{4}\right) \frac{\partial S_{4}^{[0]}(t)}{\partial \mu_{4}}+2 m_{1}^{2} t \frac{\partial S_{4}^{[0]}(t)}{\partial t}
$$

Proposition.

$$
S_{4}^{[2]}(t)=m_{1}^{2}\left(6-2 \mu_{4}\right) \frac{\partial S_{4}^{[0]}(t)}{\partial \mu_{4}}+2 m_{1}^{2} t \frac{\partial S_{4}^{[0]}(t)}{\partial t}
$$

- $S_{4}^{[0]}(t)=G_{4}(t)=\frac{e^{t\left(\mu_{4}-3\right)}}{(1-t)^{3}}$

Proposition.

$$
S_{4}^{[2]}(t)=m_{1}^{2}\left(6-2 \mu_{4}\right) \frac{\partial S_{4}^{[0]}(t)}{\partial \mu_{4}}+2 m_{1}^{2} t \frac{\partial S_{4}^{[0]}(t)}{\partial t}
$$

- $S_{4}^{[0]}(t)=G_{4}(t)=\frac{e^{t\left(\mu_{4}-3\right)}}{(1-t)^{3}}$

Corollary. $S_{4}^{[2]}(t)=\frac{6 m_{1}^{2} t e^{t\left(\mu_{4}-3\right)}}{(1-t)^{4}}$

Proof. Let $t^{\prime} \in S_{4, n}^{0}$ have c of 4-columns and thus $n-c$ of 2-columns. Its weight is μ_{4}^{c}. From this t^{\prime}, we create $t \in S_{4, n}^{2}$ by covering two pairs of numbers in either 4-column or 2-column.

$$
S_{4, n}^{2} \leftarrow S_{4, n}^{0}: \quad \begin{array}{|c}
\begin{array}{|c}
\times \\
\times \\
a \\
\hline
\end{array} \\
6 \text { ways } \\
a \begin{array}{|c}
a \\
a \\
a \\
a \\
b \\
\hline
\end{array} \\
\hline \begin{array}{|c}
\times \\
b \\
b \\
\hline
\end{array} \\
2 \text { ways }
\end{array}
$$

The contribution of t^{\prime} to $\sum_{t \in S_{4, n}^{[2]}} w(t) \operatorname{sgn} t$ is then

$$
6 c m_{1}^{2} \mu_{4}^{c-1}+2(n-c) m_{1}^{2} \mu_{4}^{c}=m_{1}^{2}\left(6-2 \mu_{4}\right) \frac{\partial \mu_{4}^{c}}{\partial \mu_{4}}+2 m_{1}^{2} n \mu_{4}^{c} .
$$

Proposition.

$$
S_{4}^{[4 / 1]}(t)=m_{1}^{4}\left(1-\mu_{4}\right) \frac{\partial S_{4}^{[0]}(t)}{\partial \mu_{4}}+m_{1}^{4} t \frac{\partial S_{4}^{[0]}(t)}{\partial t}
$$

Proposition.

$$
S_{4}^{[4 / 1]}(t)=m_{1}^{4}\left(1-\mu_{4}\right) \frac{\partial S_{4}^{[0]}(t)}{\partial \mu_{4}}+m_{1}^{4} t \frac{\partial S_{4}^{[0]}(t)}{\partial t}
$$

Corollary. $S_{4}^{[4 / 1]}(t)=\frac{m_{1}^{4} t(1+2 t)}{(1-t)^{4}} e^{t\left(\mu_{4}-3\right)}$

Proof. Let $t^{\prime} \in S_{4, n}^{0}$ have c of 4-columns and thus $n-c$ of 2-columns. Its weight is μ_{4}^{c}. From this t^{\prime}, we create $t \in S_{4, n}^{[4 / 1]}$ by covering all numbers in either 4 -column or 2-column.

The contribution of t^{\prime} to $\sum_{t \in S_{4, n}^{[4 / 1]}} w(t) \operatorname{sgn} t$ is then

$$
c m_{1}^{4} \mu_{4}^{c-1}+(n-c) m_{1}^{4} \mu_{4}^{c}=m_{1}^{4}\left(1-\mu_{4}\right) \frac{\partial \mu_{4}^{c}}{\partial \mu_{4}}+m_{1}^{4} n \mu_{4}^{c} .
$$

Proposition.

$$
S_{4}^{[4 / 2]}(t)=\left(3-\mu_{4}\right) \frac{\partial S_{4}^{[4 / 1]}(t)}{\partial \mu_{4}}+t \frac{\partial S_{4}^{[4 / 1]}(t)}{\partial t}-S_{4}^{[4 / 1]}(t)
$$

Proposition.

$$
S_{4}^{[4 / 2]}(t)=\left(3-\mu_{4}\right) \frac{\partial S_{4}^{[4 / 1]}(t)}{\partial \mu_{4}}+t \frac{\partial S_{4}^{[4 / 1]}(t)}{\partial t}-S_{4}^{[4 / 1]}(t)
$$

Corollary. $S_{4}^{[4 / 2]}(t)=\frac{6 m_{1}^{4} t^{2}(1+t)}{(1-t)^{5}} e^{t\left(\mu_{4}-3\right)}$

Proposition.

$$
S_{4}^{[4 / 2]}(t)=\left(3-\mu_{4}\right) \frac{\partial S_{4}^{[4 / 1]}(t)}{\partial \mu_{4}}+t \frac{\partial S_{4}^{[4 / 1]}(t)}{\partial t}-S_{4}^{[4 / 1]}(t)
$$

Corollary. $S_{4}^{[4 / 2]}(t)=\frac{6 m_{1}^{4} t^{2}(1+t)}{(1-t)^{5}} e^{t\left(\mu_{4}-3\right)}$

Corollary.

$$
S_{4}^{[4]}(t)=S_{4}^{[4 / 1]}(t)+S_{4}^{[4 / 2]}(t)=\frac{m_{1}^{4} t\left(1+7 t+4 t^{2}\right)}{(1-t)^{5}} e^{t\left(\mu_{4}-3\right)}
$$

Proposition.

$$
S_{4}^{[4 / 2]}(t)=\left(3-\mu_{4}\right) \frac{\partial S_{4}^{[4 / 1]}(t)}{\partial \mu_{4}}+t \frac{\partial S_{4}^{[4 / 1]}(t)}{\partial t}-S_{4}^{[4 / 1]}(t)
$$

Corollary. $S_{4}^{[4 / 2]}(t)=\frac{6 m_{1}^{4} t^{2}(1+t)}{(1-t)^{5}} e^{t\left(\mu_{4}-3\right)}$

Corollary.

$$
S_{4}^{[4]}(t)=S_{4}^{[4 / 1]}(t)+S_{4}^{[4 / 2]}(t)=\frac{m_{1}^{4} t\left(1+7 t+4 t^{2}\right)}{(1-t)^{5}} e^{t\left(\mu_{4}-3\right)}
$$

Corollary. $F_{4}(t)$

Proof. Let $t^{\prime} \in S_{4, n}^{[4 / 1]}$ have c of 4 -columns and thus $n-c-1$ of 2-columns as now one column is a x^{4}-column. The weight of t^{\prime} is $m_{1}^{4} \mu_{4}^{c}$. From this t^{\prime}, we create $t \in S_{4, n}^{[4 / 2]}$ by swapping its two \times marks with pair of numbers in either 4-column or 2-column. By symmetry, each table in $S_{4, n}^{[4 / 2]}$ is counted twice.

$$
S_{4, n}^{4 / 2} \leftarrow S_{4, n}^{4 / 1}: \quad \begin{array}{c|c}
\times & a \\
\times & a \\
a & \times \\
a & \times \\
\hline
\end{array} \leftarrow \begin{array}{|c|c|}
\times & a \\
\times & a \\
\times & a \\
\times & \times \\
\times & a \\
b & \times \\
\hline
\end{array} \quad \leftarrow \begin{array}{|c|c|c|}
\hline \times & a \\
\times & a \\
\times & b \\
\hline
\end{array}
$$

The contribution of t^{\prime} to double of $\sum_{t \in S_{4, n}^{[4 / 2]}} w(t) \operatorname{sgn} t$ is then

$$
6 c m_{1}^{4} \mu_{4}^{c-1}+2(n-c-1) m_{1}^{4} \mu_{4}^{c}=\left(6-2 \mu_{4}\right) \frac{\partial\left(m_{1}^{4} \mu_{4}^{c}\right)}{\partial \mu_{4}}+2 n m_{1}^{4} \mu_{4}^{c}-2 m_{1}^{4} \mu_{4}^{c} .
$$

1 Introduction

2 General fourth moment

3 Gram fourth moment

4 Sixth moment (current work)

Paired marked tables

Definition. We say t is a paired marked table k by n (k even) if for $i=1, \ldots, k / 2$, its $(2 i-1)$-th and $2 i$-th row are marked permutations of selection $C_{i} \subseteq\{1,2,3, \ldots n\}$. Similarly, $T_{k, n, p}^{\times}$is the set of all such tables and $S_{k, n, p}^{\times}$the subset of those lacking \times^{1} columns and having nonzero weight. We define generating functions of those subsets accordingly.

Proposition.

$$
\begin{aligned}
f_{k}(n, p) & =\sum_{t \in T_{k, n, p}^{\times}} w(t) \operatorname{sgn} t \\
F_{4}(t, \omega) & =\sum_{r=0}^{4} m_{1}^{r}\left(1+m_{1} \mu_{3} t\right)^{4-r} S_{4}^{[r]}(t, \omega)
\end{aligned}
$$

Proposition.

Per analogy, we must have for any distribution $X_{i j}$ with $\mu_{2}=1$,

$$
\begin{aligned}
S_{4}^{[2]}(t, \omega) & =m_{1}^{2}\left(6-2 \mu_{4}\right) \frac{\partial S_{4}^{[0]}(t, \omega)}{\partial \mu_{4}}+2 m_{1}^{2} t \frac{\partial S_{4}^{[0]}(t, \omega)}{\partial t}, \\
S_{4}^{[4 / 1]}(t, \omega) & =m_{1}^{4}\left(1-\mu_{4}\right) \frac{\partial S_{4}^{[0]}(t, \omega)}{\partial \mu_{4}}+m_{1}^{4} t \frac{\partial S_{4}^{[0]}(t, \omega)}{\partial t}, \\
S_{4}^{[4 / 2]}(t, \omega) & =\left(3-\mu_{4}\right) \frac{\partial S_{4}^{[4 / 1]}(t, \omega)}{\partial \mu_{4}}+t \frac{\partial S_{4}^{[4 / 1]}(t, \omega)}{\partial t}-S_{4}^{[4 / 1]}(t, \omega), \\
S_{4}^{[4]}(t, \omega) & =S_{4}^{[4 / 1]}(t, \omega)+S_{4}^{[4 / 2]}(t, \omega) .
\end{aligned}
$$

Proposition.

Per analogy, we must have for any distribution $X_{i j}$ with $\mu_{2}=1$,

$$
\begin{aligned}
S_{4}^{[2]}(t, \omega) & =m_{1}^{2}\left(6-2 \mu_{4}\right) \frac{\partial S_{4}^{[0]}(t, \omega)}{\partial \mu_{4}}+2 m_{1}^{2} t \frac{\partial S_{4}^{[0]}(t, \omega)}{\partial t}, \\
S_{4}^{[4 / 1]}(t, \omega) & =m_{1}^{4}\left(1-\mu_{4}\right) \frac{\partial S_{4}^{[0]}(t, \omega)}{\partial \mu_{4}}+m_{1}^{4} t \frac{\partial S_{4}^{[0]}(t, \omega)}{\partial t}, \\
S_{4}^{[4 / 2]}(t, \omega) & =\left(3-\mu_{4}\right) \frac{\partial S_{4}^{[4 / 1]}(t, \omega)}{\partial \mu_{4}}+t \frac{\partial S_{4}^{[4 / 1]}(t, \omega)}{\partial t}-S_{4}^{[4 / 1]}(t, \omega), \\
S_{4}^{[4]}(t, \omega) & =S_{4}^{[4 / 1]}(t, \omega)+S_{4}^{[4 / 2]}(t, \omega) .
\end{aligned}
$$

$$
S_{4}^{[0]}(t, \omega)=G_{4}(t, \omega)
$$

Corollary.

For any distribution of $X_{i j}$ with $m_{1}=0$ and $\mu_{2}=1$ (μ_{q} as before),

$$
\begin{aligned}
F_{4}(t, \omega)= & \frac{e^{t\left(\mu_{4}-3\right)}}{(1-t)^{2}(1-\omega-t)}\left[\left(1+m_{1} \mu_{3} t\right)^{4}+\frac{6 m_{1}^{2} t\left(1+m_{1} \mu_{3} t\right)^{2}}{1-t}\right. \\
& +\frac{m_{1}^{4} t\left(1+7 t+4 t^{2}\right)}{(1-t)^{2}}+\frac{\omega m_{1}^{2} t}{1-\omega-t}\left(\frac{2\left(1+m_{1} \mu_{3} t\right)^{2}}{1-t}\right. \\
& \left.\left.+\frac{m_{1}^{2}\left(1+5 t+2 t^{2}\right)}{(1-t)^{2}}\right)+\frac{2 t^{2} \omega^{2} m_{1}^{4}}{(1-\omega-t)^{2}(1-t)^{2}}\right] .
\end{aligned}
$$

Sixth moment

Theorem (12/2022 | B. D., Lv Zelin, Potechin Aaron ${ }^{5}$)

For any disribution $X_{i j}$ with $m_{1}=0$ and $m_{2}=1$,

$$
F_{6}(t)=\frac{\left(1+m_{3}^{2} t\right)^{10} e^{t\left(m_{6}-15 m_{4}-10 m_{3}^{2}+30\right)}}{48\left(1+3 t-m_{4} t\right)^{15}} \sum_{n=0}^{\infty} \frac{(1+n)(2+n)(4+n)!t^{n}}{\left(1+3 t-m_{4} t\right)^{3 n}}
$$

${ }^{5}$ Dominik Beck, Zelin Lv, and Aaron Potechin. The Sixth Moment of Random Determinants. 2022. DOI: 10.48550/ARXIV.2206.11356. URL: https://arxiv.org/abs/2206.11356

Sixth moment

Theorem (12/2022 | B. D., Lv Zelin, Potechin Aaron ${ }^{5}$)

For any disribution $X_{i j}$ with $m_{1}=0$ and $m_{2}=1$,

$$
F_{6}(t)=\frac{\left(1+m_{3}^{2} t\right)^{10} e^{t\left(m_{6}-15 m_{4}-10 m_{3}^{2}+30\right)}}{48\left(1+3 t-m_{4} t\right)^{15}} \sum_{n=0}^{\infty} \frac{(1+n)(2+n)(4+n)!t^{n}}{\left(1+3 t-m_{4} t\right)^{3 n}}
$$

- Corollary: Explicit formula for $f_{6}(n)$ and its asymptotics.
${ }^{5}$ Dominik Beck, Zelin Lv, and Aaron Potechin. The Sixth Moment of Random Determinants. 2022. DOI: 10.48550/ARXIV.2206.11356. URL: https://arxiv.org/abs/2206.11356

Gram Sixth moment

Conjecture (6/2023 | B. D.)

For any disribution $X_{i j}$ with $m_{1}=0$ and $m_{2}=1$,

$$
\begin{aligned}
F_{6}(t, \omega)= & \frac{\left(1+m_{3}^{2} t\right)^{10} e^{t\left(m_{6}-15 m_{4}-10 m_{3}^{2}+30\right)}}{48\left(1+3 t-m_{4} t\right)^{15}} \\
& \sum_{n=0}^{\infty} \sum_{p=0}^{n} \frac{t^{p} \omega^{n-p}(n+2)!(n+4)!}{p!(n-p+2)!(n-p+4)!\left(1+3 t-m_{4} t\right)^{3 n}}
\end{aligned}
$$

Open questions

For general distribution $X_{i j}$ with $m_{1} \neq 0$, determine

- $F_{6}(t)$
- $F_{6}(t, \omega)$

Open questions

For general distribution $X_{i j}$ with $m_{1} \neq 0$, determine

- $F_{6}(t)$
- $F_{6}(t, \omega)$

As of 28 June, we know only the special case $m_{1} \neq 0, \mu_{3}=0$.

Thank you for your attention!

[NRR54] Harry Nyquist, SO Rice, and J Riordan. "The distribution of random determinants". In: Quarterly of Applied mathematics 12.2 (1954), pp. 97-104.
[Dem89] Amir Dembo. "On random determinants". In: Quarterly of applied mathematics 47.2 (1989), pp. 185-195.
[Bec22] Dominik Beck. "On the fourth moment of a random determinant". In: arXiv preprint arXiv:2207.09311 (2022).
[BLP22] Dominik Beck, Zelin Lv, and Aaron Potechin. The Sixth Moment of Random Determinants. 2022. DOI: 10.48550/ARXIV.2206.11356. URL:
https://arxiv.org/abs/2206.11356.

