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Martin Branda, 20 February 2023

2 Nonlinear programming problems: Karush–Kuhn–Tucker
optimality conditions

2.1 A few pieces of the theory

We emphasize that this section contains just a basic summary and we refer the readers to
the lecture notes for formal definitions and propositions.

Consider a nonlinear programming problem with inequality and equality con-
straints:

min f(x)

s.t. gi(x) ≤ 0, i = 1, . . . ,m,

hj(x) = 0, j = 1, . . . , l,

(1)

where f, gi, hj : Rn → R are differentiable functions. We denote by M the set of feasible
solutions.

We say that the problem is convex if functions f , gi,∀i are convex and hj , ∀j are
affine.

Define the Lagrange function by

L(x, u, v) = f(x) +

m∑
i=1

uigi(x) +

l∑
j=1

vjhj(x), ui ≥ 0. (2)

The Karush–Kuhn–Tucker optimality conditions are then (feasibility, complemen-
tarity and optimality):

i) gi(x) ≤ 0, i = 1, . . . ,m, hj(x) = 0, j = 1, . . . , l,

ii) uigi(x) = 0, ui ≥ 0, i = 1, . . . ,m,

iii) ∇xL(x, u, v) = 0,

(3)

Any point (x, u, v) which fulfills the above conditions is called a KKT point.

If a Constraint Qualification (CQ) condition is fulfilled, then the KKT conditions are
necessary for local optimality of a point. Basic CQ conditions are:

• Slater CQ: ∃x̃ ∈ M such that gi(x̃) < 0 for all i and the gradients ∇xhj(x̃),
j = 1, . . . , l are linearly independent.
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• Linear independence CQ at x̂ ∈M : all gradients

∇xgi(x̂), i ∈ Ig(x̂), ∇xhj(x̂), j = 1, . . . , l

are linearly independent.

These conditions are quite strong and are sufficient for weaker CQ conditions, e.g. the
Kuhn–Tucker condition (Mangasarian–Fromovitz CQ, Abadie CQ, ...).

To summarize, we are going to practice the following relations:

1. KKT point and convex problem → global optimality at x.

2. Local optimality at x and a constraint qualification (CQ) condition → ∃(u, v) such
that (x, u, v) is a KKT point.

2.2 Karush–Kuhn–Tucker optimality conditions

Example 2.1 Verify that the point (x1, x2) = (45 ,
8
5) is a local/global solution of the prob-

lem
min x21 + x22,

s.t. x21 + x22 ≤ 5,

x1 + 2x2 = 4,

x1, x2 ≥ 0.

Solution: Write the Lagrange function

L(x1, x2, u1, u2) = x21 +x22 +u1(x
2
1 +x22−5)−u2x1−u3x2 +v(x1 +2x2−4), u1, u2, u3 ≥ 0.

Derive the KKT conditions

i) feasibility,

ii) u1(x
2
1 + x22 − 5) = 0, u1 ≥ 0,

u2x1 = 0, u2 ≥ 0,

u3x2 = 0, u3 ≥ 0,

iii)
∂L

∂x1
= 2x1 + 2u1x2 − u2 + v = 0,

∂L

∂x2
= 2x2 + 2u1x2 − u3 + 2v = 0.

(4)

For point (x1, x2) = (45 ,
8
5), we have that u1,2,3 = 0 (from complementarity conditions,

i.e. none of the inequality constraints is active) and v = −8
5 which is feasible value for

Lagrange multiplier corresponding to equality constraint. So we have obtained KKT point
(45 ,

8
5 , 0, 0, 0,−

8
5).

Since the objective function and inequality constraints are convex, and the equality
constraint is linear (affine), (x1, x2) = (45 ,

8
5) is a global solution.

2



Example 2.2 Using the KKT conditions find the closest point to (0,0) in the set defined
by

M = {x ∈ R2 : x1 + x2 ≥ 4, 2x1 + x2 ≥ 5}.
Can several points (solutions) exist?

Solution: We formulate a nonlinear programming problem using the Euclidean distance
in the objective1:

min x21 + x22

s.t. − x1 − x2 + 4 ≤ 0,

− 2x1 − x2 + 5 ≤ 0.

The problem is obviously convex (sum of one-dimensional quadratic functions in the ob-
jective, linear constraints). We can write the Lagrange function

L(x1, x2, u1, u2) = x21 + x22 + u1(−x1 − x2 + 4) + u2(−2x1 − x2 + 5), u1, u2 ≥ 0.

Derive the KKT conditions

i) feasibility,

ii) u1(−x1 − x2 + 4) = 0, u1 ≥ 0,

u2(−2x1 − x2 + 5) = 0, u2 ≥ 0,

iii)
∂L

∂x1
= 2x1 − u1 − 2u2 = 0,

∂L

∂x2
= 2x2 − u1 − u2 = 0.

(5)

Now, we will try to find the KKT point by analyzing the optimality conditions, where we
proceed according to the complementarity conditions:
1. Set u1 = 0, u2 = 0: We have from iii) that x1 = 0, x2 = 0 which is not feasible point.
2. Set x1 + x2 = 4, u2 = 0: Together with iii) we solve

2x1 − u1 = 0,

2x2 − u1 = 0,

x1 + x2 = 4.

(6)

We obtain x1 = 2, x2 = 2, u1 = 4 > 0, i.e. we have KKT point (2, 2, 4, 0).
3. Set u1 = 0, 2x1 + x2 = 5: Solve

2x1 − 2u2 = 0,

2x2 − u2 = 0,

2x1 + x2 = 5.

(7)

We get x1 = 2, x2 = 1, u2 = 2, which is not feasible point.
4. Set x1 + x2 = 4, 2x1 + x2 = 5: We get x1 = 1, x2 = 3 and compute the Lagrange
multipliers by solving

u1 + 2u2 = 2,

u1 + u2 = 6.
(8)

1The square root can be omitted.
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We obtain u1 = 10, u2 = −4 < 0, i.e. the Lagrange multipliers are not nonnegative and
(1,3,10,-4) is not KKT point.

Since the set M is convex, the closest point corresponding to the projection (2, 2) must
be unique.

Example 2.3 Let n ≥ 2. Consider the problem

min x1

s.t.

n∑
i=1

(
xi −

1

n

)2

≤ 1

n(n− 1)
,

n∑
i=1

xi = 1.

Show that (
0,

1

n− 1
, . . . ,

1

n− 1

)
is an optimal solution.

Solution: First, realize that the considered point is feasible. Write the Lagrange function

L(x1, . . . , xn, u, v) = x1 + u

( n∑
i=1

(
xi −

1

n

)2

− 1

n(n− 1)

)
+ v

(
n∑

i=1

xi − 1

)
,

where u ≥ 0 and v ∈ R. The KKT conditions (feasibility, complementarity and optimality)
are

i)
n∑

i=1

(
xi −

1

n

)2

≤ 1

n(n− 1)
,

n∑
i=1

xi = 1,

ii) u

(
n∑

i=1

(
xi −

1

n

)2

− 1

n(n− 1)

)
= 0, u ≥ 0,

iii)
∂L

∂x1
= 1 + 2u

(
x1 −

1

n

)
+ v = 0,

∂L

∂xi
= 2u

(
x1 −

1

n

)
+ v = 0, i 6= 1.

(9)

Realize that the inequality constraint is active at the considered point, i.e.(
0− 1

n

)2

+
n∑

i=2

(
1

n− 1
− 1

n

)2

=
1

n(n− 1)
.

To obtain the values of Lagrange multipliers, we solve the optimality conditions

1− 2u

n
+ v = 0,

2u

(
1

n− 1
− 1

n

)
+ v = 0, (∀i 6= 1).

(10)
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By solving this linear system for u and v, we obtain the values

u =
n− 1

2
≥ 0,

v =
−1

n
∈ R.

(11)

Thus, we have obtained a KKT point

(x, u, v) =

(
0,

1

n− 1
, . . . ,

1

n− 1
,
n− 1

2
,
−1

n

)
,

Since the objective function is convex (linear), the inequality constraint is convex and the
equality constraint is linear, the considered point is a global solution (minimum) of the
problem.

Example 2.4 Consider the (water-filling2) problem

min −
n∑

i=1

log(αi + xi)

s.t.

n∑
i=1

xi = 1

xi ≥ 0,

where αi > 0 are parameters. Using the KKT conditions find the solutions.

Solution: First realize that the problem is convex, i.e. the objective is convex and the
constraints are linear. Consider the Lagrange function

L(x, u, v) = −
n∑

i=1

log(αi + xi)−
n∑

i=1

uixi + v

(
n∑

i=1

xi − 1

)
, ui ≥ 0, v ∈ R.

The KKT conditions are:

i)

n∑
i=1

xi = 1, xi ≥ 0, i = 1, . . . , n

ii) uixi = 0, ui ≥ 0, i = 1, . . . , n,

iii) − 1

αi + xi
− ui + v = 0, i = 1, . . . , n.

We will proceed in several steps:

1. Since it holds

v =
1

αi + xi
+ ui, ∀i,

and αi > 0 and ui ≥ 0, multiplier v must be positive.

2See Boyd and Vandenberghe (2004).
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2. Now we can elaborate the complementarity conditions ii) for arbitrary i ∈ {1, . . . , n},
i.e. ui = 0 or xi = 0:

2.a. Let ui = 0, then using iii) and 1. we obtain

xi =
1

v
− αi,

which is nonnegative if and only if v ≤ 1/αi.

2.b. Let xi = 0, then using iii) and 1. we obtain

ui = −1/αi + v,

which is nonnegative if and only if v ≥ 1/αi. Now realize that if v ≥ 1/αi, then
corresponding xi cannot be positive because from iii) it would hold

− 1

αi + xi
+ v = ui > 0,

which violates the complementarity condition (xi and ui cannot be both posi-
tive). In other words, xi is positive if and only if v ∈ (0, 1/αi).

We have obtained two cases which are distinguished by relation between v and 1/αi.
Then we can write

xi = max

{
1

v
− αi, 0

}
.

3. It remains to determine the value of Lagrange multiplier v using the equality con-
straint

n∑
i=1

max

{
1

v
− αi, 0

}
= 1,

which has a unique solution since the function of
∑n

i=1 max {· − αi, 0} is piecewise-
linear, continuous and increasing with breakpoints at points αi. Note that there is
no closed-form formula for v, we are satisfied with its existence.

2.3 Second Order Sufficient Condition (SOSC)

When the problem is not convex, then the solutions of the KKT conditions need not to
correspond to global optima. The Second Order Sufficient Condition (SOSC) can be used
to verify if the KKT point (its x part) is at least a local minimum.

Consider the set of active (inequality) constraints and its partitioning

Ig(x) = {i : gi(x) = 0},
I0g (x) = {i : gi(x) = 0, ui = 0},
I+g (x) = {i : gi(x) = 0, ui > 0},

(12)

i.e.
Ig(x) = I0g (x) ∪ I+g (x).

6



Let all functions be twice differentiable. We say that the second-order sufficient con-
dition (SOSC) is fulfilled at a KKT point (x, u, v) if for all 0 6= z ∈ Rn such that

zT∇xgi(x) = 0, i ∈ I+g (x),

zT∇xgi(x) ≤ 0, i ∈ I0g (x),

zT∇xhj(x) = 0, j = 1, . . . , l,

(13)

it holds

zT ∇2
xxL(x, u, v) z > 0. (14)

Then x is a strict local minimum of the nonlinear programming problem (1).

Example 2.5 Consider the problem

min x2 − y2

s.t. x− y = 1

x, y ≥ 0.

Using the KKT optimality conditions find all stationary points. Using the SOSC verify if
some of the points corresponds to a (strict) local minimum.

Solution: Write the Lagrange function

L(x, y, u1, u2, v) = x2 − y2 − u1x− u2y + v(x− y − 1), u1, u2 ≥ 0.

Derive the KKT conditions

i) feasibility,

ii) − u1x = 0, u1 ≥ 0,

− u2y = 0, u2 ≥ 0,

iii)
∂L

∂x
= 2x− u1 + v = 0,

∂L

∂y
= −2y − u2 − v = 0.

(15)

Solving this conditions together with feasibility leads to one feasible KKT point

(x, y, u1, u2, v) = (1, 0, 0, 2,−2).

Since the problem is non-convex, we can apply SOSC (13), (14). We have Ig(1, 0) =
I+g (1, 0) = {2} and I0g (1, 0) = ∅, so the conditions on 0 6= z ∈ R2 are:

z1 − z2 = 0,

−z2 = 0.

Since no z 6= 0 exists, the SOSC is fulfilled. (It is not necessary to compute ∇2
xxL.)
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Example 2.6 Consider the problem

min − x2 − 4xy − y2

s.t. x2 + y2 = 1.

Using the SOSC verify that point (
√

2/2,
√

2/2) corresponds to a (strict) local minimum.

Solution: Write the Lagrange function

L(x, y, v) = −x2 − 4xy − y2 + v
(
x2 + y2 − 1

)
.

Derive the KKT conditions

i) feasibility,

ii) −

iii)
∂L

∂x
= −2x− 4y + 2vx = 0,

∂L

∂y
= −2y − 4x+ 2vy = 0.

(16)

We can compute the Lagrange multiplier and obtain the KKT point

(x, y, v) =

(√
2

2
,

√
2

2
, 3

)
.

Since the problem is non-convex, we can apply SOSC (13), (14). We have

∇h(
√

2/2,
√

2/2) =

(
2x
2y

)
|(√2/2,

√
2/2) =

( √
2√
2

)
,

so we have

Z(
√

2/2,
√

2/2) =
{
z ∈ R2 : z1 + z2 = 0, z 6= 0

}
= {(z1,−z1) : z1 ∈ R \ {0}} .

We must compute the Hessian matrix

∇2
xxL

(√
2/2,
√

2/2, 3
)

=

(
−2 + 2v −4
−4 −2 + 2v

)
|(√2/2,

√
2/2,3) =

(
4 −4
−4 4

)
.

Thus we have that zT ∇2
xxL(
√

2/2,
√

2/2, 3) z = 16z21 > 0 for any z1 ∈ R \ {0}, which
implies that (

√
2/2,
√

2/2) is a strict local minimum of the problem.
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