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Linear programming

Linear programming

Standard form LP

min cT x

s.t. Ax = b,

x ≥ 0.

A ∈ Rm×n, h(A) = h(A|b) = m.

M = {x ∈ Rn : Ax = b, x ≥ 0}.

2023-02-19 3 / 50



Linear programming

Linear programming

Decomposition of M:

Convex polyhedron P – uniquely determined by its vertices (convex
hull)

Convex polyhedral cone K – generated by extreme directions
(positive hull)

Direct method (evaluate all vertices and extreme directions, compute the
values of the objective function ...)

2023-02-19 4 / 50



Linear programming

Linear programming trichotomy

One of these cases is valid:

1. M = ∅
2. M 6= ∅: the problem is unbounded

3. M 6= ∅: the problem has an optimal solution (at least one of the
solutions is vertex)
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Primal simplex algorithm

1914–2005
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Primal simplex algorithm

Simplex algorithm – basis

Basis B = regular square submatrix of A, i.e.

A = (B|N).

We also consider B = {i1, . . . , im}.
We split the objective coefficients and the decision vector accordingly:

cT = (cTB , c
T
N ),

xT (B) = (xTB (B), xTN (B)),

where
B · xB(B) = b, xN(B) ≡ 0.

Feasible basis, optimal basis.

Basic solution(s).
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Primal simplex algorithm

Simplex algorithm – simplex table

cT

xT

cB xB(B) B−1b B−1A

cTB B−1b cTB B−1A− cT
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Primal simplex algorithm

Simplex algorithm – simplex table

Feasibility condition:
B−1b ≥ 0.

Optimality condition:

cTB B−1A− cT ≤ 0.
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Primal simplex algorithm

Simplex algorithm – a step

If the optimality condition is not fulfilled:

Denote the criterion row by

δT = cTB B−1A− cT .

Find δi > 0 and denote the corresponding column by

ρ = B−1A•,i ,

where A•,i is the i−th column of A.

Minimize the ratios

û = arg min

{
xu(B)

ρu
: ρu > 0, u ∈ B

}
.

Substitute xû by xi in the basic variables, i.e. B̂ = B \ {û} ∪ {i}.
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Primal simplex algorithm

Simplex algorithm – a step

Denote by B̂ the new basis. Define a direction

∆u = −ρu, u ∈ B,

∆i = 1,

∆j = 0, j /∈ B ∪ {i}.

If ρ ≤ 0 (û = ∅), then the problem is unbounded (cT x → −∞).
Otherwise, we can move from the current basic solution to another
one

x(B̂) = x(B) + t∆,

where 0 ≤ t ≤ xû(B)
ρû

. We should prove that the new solution is a feasible
basic solution and that the objective value decreases ...
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Primal simplex algorithm

Simplex algorithm – a step

New solution is feasible:

x(B̂) ≥ 0,

Ax(B̂) = Ax(B) + tA∆

= Ax(B)− tBρ+ tA•,i

= b − tBB−1A•,i + tA•,i = b.

Objective value decreases

cT x(B̂) = cT x(B) + tcT∆

= cT x(B)− tcTB ρ+ tci

= cT x(B)− t(cTB B−1A•,i − ci )

= cT x(B)− tδi ,

where δi > 0 is the element of the criterion row.
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Primal simplex algorithm

Simplex algorithm – a step

If ρ ≤ 0, then x(B̂) is feasible for all t ≥ 0 and the objective value
decreases in the direction ∆.

Otherwise the step length t is bounded by xû(B)
ρû

. In this case, the new

basis B̂ is regular, because we interchange one unit vector by another
one using the column i with ρû > 0 element (on the right position).
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Primal simplex algorithm

Simplex algorithm – pivot rules

Rules for selecting the entering variable if there are several possibilities:

Largest coefficient in the objective function

Largest decrease of the objective function

Steepest edge – choose an improving variable whose entering into
the basis moves the current basic feasible solution in a direction
closest to the direction of the vector c

max
cT (xnew − xold)

‖xnew − xold‖
.

Computationally the most successful.

Blands’s rule – choose the improving variable with the smallest
index, and if there are several possibilities for the leaving variable, also
take the one with the smallest index (prevents cycling)

Matoušek and Gärtner (2007).
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Primal simplex algorithm

Simplex algorithm – example

3 -1 0 0

x1 x2 x3 x4
0 x3 2 -2 1 1 0
0 x4 1 1 -2 0 1

0 -3 1 0 0

-1 x2 2 -2 1 1 0
0 x4 5 -3 0 2 1

-2 -1 0 -1 0

Moving in direction ∆T = (0, 1,−1, 2), i.e.

(0, 2, 0, 5) = (0, 0, 2, 1) + t · (0, 1,−1, 2),

where t = 2.
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Primal simplex algorithm

Simplex algorithm – unbounded problem

-2 -1 0 0

x1 x2 x3 x4
0 x3 2 -2 1 1 0
0 x4 1 1 -2 0 1

0 2 1 0 0

-1 x2 2 -2 1 1 0
0 x4 5 -3 0 2 1

-2 4 0 -1 0

Unbounded in direction ∆T = (1, 2, 0, 3).
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Duality in linear programming

Linear programming duality

Primal problem

(P) min cT x

s.t. Ax ≥ b,

x ≥ 0.

and corresponding dual problem

(D) max bT y

s.t. AT y ≤ c ,

y ≥ 0.

2023-02-19 19 / 50



Duality in linear programming

Linear programming duality

Denote

M = {x ∈ Rn : Ax ≥ b, x ≥ 0},
N = {y ∈ Rm : AT y ≤ c , y ≥ 0},

Weak duality theorem:

bT y ≤ cT x , ∀x ∈ M, ∀y ∈ N.

Equality holds if and only if (iff) complementarity slackness conditions are
fulfilled:

yT (Ax − b) = 0,

xT (AT y − c) = 0.
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Duality in linear programming

Linear programming duality

Duality theorem: If M 6= ∅ and N 6= ∅, than the problems (P), (D)
have optimal solutions.

Strong duality theorem: The problem (P) has an optimal solution if
and only if the dual problem (D) has an optimal solution. If one
problem has an optimal solution, than the optimal values are equal.
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Duality in linear programming

Duality – production planning

Optimize the production of the following products V1, V2, V3 made from
materials M1, M2.

V1 V2 V3 Constraints

M1 1 0 2 54 kg
M2 2 3 1 30 kg

Gain ($/kg) 10 15 10
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Duality in linear programming

Duality

Primal problem

(P)

max 10x1 + 15x2 + 10x3
s.t. x1 + 2x3 ≤ 54,

2x1 + 3x2 + x3 ≤ 30,
x1 ≥ 0,

x2 ≥ 0,
x3 ≥ 0.

Dual problem

(D)

min 54y1 + 30y2
s.t. y1 + 2y2 ≥ 10,

3y2 ≥ 15,
2y1 + y2 ≥ 10,
y1 ≥ 0,

y2 ≥ 0.
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Duality in linear programming

Duality

Optimal solution of (D) ŷ =
(
5
2 , 5
)T

.

Using the complementarity slackness conditions x̂ = (0, 1, 27)T .
The optimal values (gains) of (P) and (D) are 285.

Both (P) constraints are fulfilled with equality, thus there in no
material left.

Dual variables are called shadow prices and represent the prices of
sources (materials).

Sensitivity: If we increase (P) r.h.s. by one, then the objective value
increases by the shadow price.

The first constraint of (D) is fulfilled with strict inequality with the
difference 2.5 $, called reduced prices, and the first product is not
produced. The producer should increase the gain from V1 by this
amount to become profitable.
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Duality in linear programming

Transportation problem

xij – decision variable: amount transported from i to j

cij – costs for transported unit

ai – capacity

bj – demand

ASS.
∑n

i=1 ai ≥
∑m

j=1 bj .
(Sometimes ai , bj ∈ N.)
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Duality in linear programming

Transportation problem

Primal problem

min
n∑

i=1

m∑
j=1

cijxij

s.t.

m∑
j=1

xij ≤ ai , i = 1, . . . , n,

n∑
i=1

xij ≥ bj , j = 1, . . . ,m,

xij ≥ 0.
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Duality in linear programming

Transportation problem

Dual problem

max
n∑

i=1

aiui +
m∑
j=1

bjvj

s.t. ui + vj ≤ cij ,

ui ≤ 0,

vj ≥ 0.

Interpretation: −ui price for buying a unit of goods at i , vj price for selling
at j .
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Duality in linear programming

Transportation problem

Competition between the transportation company (which minimizes the
transportation costs) and an “agent” (who maximizes the earnings):

n∑
i=1

aiui +
m∑
j=1

bjvj ≤
n∑

i=1

m∑
j=1

cijxij
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Duality in linear programming

Linear programming duality

Apply KKT optimality conditions to primal LP ... we will see relations
with NLP duality.
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Dual simplex algorithm

Linear programming duality

Primal problem (standard form)

min cT x

s.t. Ax = b,

x ≥ 0.

and corresponding dual problem

max bT y

s.t. AT y ≤ c ,

y ∈ Rm.
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Dual simplex algorithm

Dual simplex algorithm

Dual simplex algorithm works with

dual feasible basis B and

basic dual solution y(B),

where

BT y(B) = cB ,

NT y(B) ≤ cN .

2023-02-19 32 / 50



Dual simplex algorithm

Dual simplex algorithm

Primal feasibility B−1b ≥ 0 is violated until reaching the optimal
solution.
Primal optimality condition is always fulfilled:

cTB B−1A− cT ≤ 0.

Using A = (B|N), cT = (cTB , c
T
N ), we have

cTB B−1B − cTB = 0,

cTB B−1N − cTN ≤ 0,

Setting ŷ = (B−1)T cB

BT ŷ = cB ,

NT ŷ ≤ cN .

Thus, ŷ is a basic dual solution.
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Dual simplex algorithm

Dual simplex algorithm – a step

... uses the same simplex table.

Find index u ∈ B such that xu(B) < 0 and denote the corresponding
row by

τT = (B−1A)u,•.

Denote the criterion row by

δT = cTB B−1A− cT ≤ 0.

Minimize the ratios

î = arg min

{
δi
τi

: τi < 0

}
.

If there is no i such that τi < 0, then STOP: the dual problem is
unbounded and primal is infeasible.

Substitute xu by xî in the basic variables, i.e. B̂ = B \ {u} ∪ {î}. We
move to another basic dual solution.
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Dual simplex algorithm

Dual simplex algorithm – an assumption

The problem is dual nondegenerate if for all dual feasible basis B it holds

(AT y(B)− c)j = 0, j ∈ B,

(AT y(B)− c)j < 0, j /∈ B.

If the problem is dual nondegenerate, then the dual simplex algorithm ends
after finitely many steps.
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Dual simplex algorithm

Dual simplex algorithm – a step

A general step in the dual simplex algorithm

y(B̂) = y(B)− t(B−1)T•,u

with

t :=
δî
τî
.

Then it can be shown that the dual feasibility is preserved, i.e.

AT y(B̂) = AT y(B)− tAT (B−1)T•,u ≤ c ,

e.g. (
AT y(B̂)

)
î

= δî + cî −
δî
τî
τî = cî ,

or (
AT y(B̂)

)
u

= δu + cu −
δî
τî
τu ≤ cu.
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Dual simplex algorithm

Dual simplex algorithm – a step

A general step in the dual simplex algorithm

y(B̂) = y(B)− t(B−1)T•,u

with

t :=
δî
τî
> 0.

Then it can be shown that the objective function increases if the
problem is dual nondegenerate, i.e.

bT y(B̂) = bT y(B)− tbT (B−1)T•,u,

= bT y(B)−
δî
τî
xu(B) > bT y(B),

because xu(B) < 0.
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Dual simplex algorithm

Example – dual simplex algorithm

min 4x1 + 5x2

x1 + 4x2 ≥ 5,

3x1 + 2x2 ≥ 7,

x1, x2 ≥ 0.
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Dual simplex algorithm

Example – dual simplex algorithm

Dual problem

max − 5y1 − 7y2

s.t. − y1 − 3y2 ≤ 4

− 4y1 − 2y2 ≤ 5

y1 ≤ 0

y2 ≤ 0.
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Dual simplex algorithm

Example – dual simplex algorithm

4 5 0 0

x1 x2 x3 x4
0 x3 -5 -1 -4 1 0
0 x4 -7 -3 -2 0 1

0 -4 -5 0 0

0 x3 -8/3 0 -10/3 1 -1/3
4 x1 7/3 1 2/3 0 -1/3

28/3 0 -7/3 0 -4/3

5 x2 8/10 0 1 -3/10 1/10
4 x1 18/10 1 0 2/10 -4/10

112/10 0 0 -7/10 -11/10

The last solution is primal and dual feasible, thus optimal.
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Dual simplex algorithm

Example – dual simplex algorithm

A general step in the dual simplex algorithm

y(B̂) = y(B)− t(B−1)T•,u

i.e.
(0,−4/3) = (0, 0)− 4/3(0, 1),

which can be seen in the criterion row in the columns corresponding to the
initial basis. Dual constraints 1 and 3 are then active.
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Adding new constraint

Adding new constraint

We would like to add a new constraint to the problem and use previous
solution = post-optimization approach

αT x ≤ β,

where α 6= 0. We add new slack variable xn+1 ≥ 0 to get

αT x + xn+1 = β.

The problem and the simplex table is extended by one row and one column

Ã =

(
A 0
αT 1

)
, b̃ =

(
b
β

)
, c̃ =

(
c
0

)
The basis can be extended by the new variable B = B ∪ {n + 1}.
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Adding new constraint

Adding new constraint

We obtain the new basis, the matrix is obviously regular

B̃ =

(
B 0
αT
B 1

)
.

The inverse matrix can be derived

B̃−1 =

(
B−1 0

−αT
BB

−1 1

)
,

so we try to verify feasibility

B̃−1b̃ =

(
B−1 0

−αT
BB

−1 1

)(
b
β

)
=

(
B−1b

−αT
BB

−1b + β

)
,

where obviously B−1b ≥ 0, but the second row corresponds to
αT
BB

−1b ≤ β, which is fulfilled only if the current basic solution satisfies
the new constraint.
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Adding new constraint

Adding new constraint

New optimality condition (criterion row) is

c̃B̃ B̃
−1Ã− c̃T = (cTB , 0)

(
B−1 0

−αT
BB

−1 1

)(
A 0
αT 1

)
− (cT , 0)

= (cTB , 0)

(
B−1A 0

−αT
BB

−1A + αT 1

)
− (cT , 0)

= (cTB B−1A− cT , 0) ≤ 0,

which is obviously fulfilled no matter what constraints we have added.
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Adding new constraint

Adding new constraint

To summarize, if
αT
BB

−1b ≤ β,

is fulfilled, the previously obtained optimal solution remains optimal,

is not fulfilled, then the primal feasibility (dual optimality) condition is
violated and we continue by iteration(s) of the dual simplex algorithm
with initial table

cT 0

xT xn+1

cB xB B−1b B−1A 0
0 xn+1 −αT

BB
−1b + β −αT

BB
−1A + αT 1

cTB B−1b cTB B−1A− cT 0
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Adding new constraint

Adding new constraint

Consider final table after several iterations of the simplex algorithm:

2 -1 0 0

x1 x2 x3 x4
-1 x2 1 -1 1 1 0
0 x4 2 1 0 -1 1

-1 -1 0 -1 0

We would like to add constraint x2 ≤ 1
2 . Obviously the current optimal

solution is not feasible, so we add the constraint to the simplex table. We
have αT

B = (1, 0)

2 -1 0 0

x1 x2 x3 x4 x5
-1 x2 1 -1 1 1 0 0
0 x4 2 1 0 -1 1 0
0 x5

−1
2 1 0 -1 0 1

-1 -1 0 -1 0 0

We continue by iteration of the dual simplex algorithm. 2023-02-19 47 / 50
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Software tools for LP

Software tools for LP

Matlab

Mathematica

GAMS

Cplex studio

AIMMS

...

R

MS Excel

...
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Software tools for LP
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