Linear programming - simplex algorithm, duality and dual simplex algorithm

Martin Branda
Charles University
Charles University
Faculty of Mathematics and Physics Department of Probability and Mathematical Statistics

Computational Aspects of Optimization

Linear programming

Decomposition of M :

- Convex polyhedron P - uniquely determined by its vertices (convex hull)
- Convex polyhedral cone K - generated by extreme directions (positive hull)
Direct method (evaluate all vertices and extreme directions, compute the values of the objective function ...)

Standard form LP

$$
\begin{aligned}
& \quad \min c^{T} x \\
& \text { s.t. } A x=b, \\
& x \geq 0 . \\
& A \in \mathbb{R}^{m \times n}, h(A)=h(A \mid b)=m \\
& M=\left\{x \in \mathbb{R}^{n}: A x=b, x \geq 0\right\} .
\end{aligned}
$$

One of these cases is valid:

1. $M=\emptyset$
2. $M \neq \emptyset$: the problem is unbounded
3. $M \neq \emptyset$: the problem has an optimal solution (at least one of the solutions is vertex)

1914-2005

If the optimality condition is not fulfilled

- Denote the criterion row by

$$
\delta^{T}=c_{B}^{T} B^{-1} A-c^{T} .
$$

- Find $\delta_{i}>0$ and denote the corresponding column by

$$
\rho=B^{-1} A_{\bullet, i}
$$

where A_{\bullet}, i is the i-th column of A.

- Minimize the ratios

$$
\hat{u}=\arg \min \left\{\frac{x_{u}(B)}{\rho_{u}}: \rho_{u}>0, u \in B\right\} .
$$

- Substitute $x_{\hat{u}}$ by x_{i} in the basic variables, i.e. $\hat{B}=B \backslash\{\hat{u}\} \cup\{i\}$

Primal simplex algorithn

Simplex algorithm - a step

New solution is feasible

$$
\begin{aligned}
x(\hat{B}) & \geq 0 \\
A x(\hat{B}) & =A x(B)+t A \Delta \\
& =A x(B)-t B \rho+t A_{\bullet, i} \\
& =b-t B B^{-1} A_{\bullet, i}+t A_{\bullet, i}=b
\end{aligned}
$$

Objective value decreases

$$
\begin{aligned}
c^{T} \times(\hat{B}) & =c^{T} \times(B)+t c^{T} \Delta \\
& =c^{T} \times(B)-t c_{B}^{T} \rho+t c_{i} \\
& =c^{T} \times(B)-t\left(c_{B}^{T} B^{-1} A_{\bullet}, i-c_{i}\right) \\
& =c^{T} \times(B)-t \delta_{i},
\end{aligned}
$$

where $\delta_{i}>0$ is the element of the criterion row.

Primal simplex algorithm

Simplex algorithm - a step

- If $\rho \leq 0$, then $x(\hat{B})$ is feasible for all $t \geq 0$ and the objective value decreases in the direction Δ.
- Otherwise the step length t is bounded by $\frac{\chi_{\hat{\hat{\imath}}}(B)}{\rho_{\hat{u}}}$. In this case, the new basis \hat{B} is regular, because we interchange one unit vector by another one using the column i with $\rho_{\hat{u}}>0$ element (on the right position).

Rules for selecting the entering variable if there are several possibilities:

- Largest coefficient in the objective function
- Largest decrease of the objective function
- Steepest edge - choose an improving variable whose entering into the basis moves the current basic feasible solution in a direction closest to the direction of the vector c

$$
\max \frac{c^{T}\left(x_{\text {new }}-x_{\text {old }}\right)}{\left\|x_{\text {new }}-x_{\text {old }}\right\|} .
$$

Computationally the most successful.

- Blands's rule - choose the improving variable with the smallest index, and if there are several possibilities for the leaving variable, also take the one with the smallest index (prevents cycling)
Matoušek and Gärtner (2007).

rimal simplex algorithm

Simplex algorithm - unbounded problem

			-2	-1	0	0
			x_{1}	x_{2}	x_{3}	x_{4}
0	x_{3}	2	-2	1	1	0
0	x_{4}	1	1	-2	0	1
		0	2	1	0	0
-1	x_{2}	2	-2	1	1	0
0	x_{4}	5	-3	0	2	1
		-2	4	0	-1	0

Unbounded in direction $\Delta^{T}=(1,2,0,3)$.

Duality in linear programmin

Linear programming duality

Primal problem

$$
\begin{aligned}
&(\mathrm{P}) \min c^{\top} x \\
& \text { s.t. } A x \geq b \\
& x \geq 0
\end{aligned}
$$

and corresponding dual problem
(D) $\max b^{T} y$

$$
\begin{aligned}
& \text { s.t. } A^{T} y \leq c, \\
& y \geq 0 .
\end{aligned}
$$

Denote

$$
\begin{aligned}
M & =\left\{x \in \mathbb{R}^{n}: A x \geq b, x \geq 0\right\} \\
N & =\left\{y \in \mathbb{R}^{m}: A^{T} y \leq c, y \geq 0\right\}
\end{aligned}
$$

Weak duality theorem:

$$
b^{T} y \leq c^{T} x, \forall x \in M, \forall y \in N
$$

Equality holds if and only if (iff) complementarity slackness conditions are fulfilled:

$$
\begin{array}{r}
y^{T}(A x-b)=0 \\
x^{T}\left(A^{T} y-c\right)=0
\end{array}
$$

Duality - production planning

Optimize the production of the following products V_{1}, V_{2}, V_{3} made from materials M_{1}, M_{2}.

Optimal solution of (D) $\hat{y}=\left(\frac{5}{2}, 5\right)^{T}$
Using the complementarity slackness conditions $\hat{x}=(0,1,27)^{T}$
The optimal values (gains) of (P) and (D) are 285.

- Both (P) constraints are fulfilled with equality, thus there in no material left.
- Dual variables are called shadow prices and represent the prices of sources (materials).
- Sensitivity: If we increase (P) r.h.s. by one, then the objective value increases by the shadow price.
- The first constraint of (D) is fulfilled with strict inequality with the difference $2.5 \$$, called reduced prices, and the first product is not produced. The producer should increase the gain from V_{1} by this amount to become profitable
- $x_{i j}$ - decision variable: amount transported from i to j
- $c_{i j}$ - costs for transported unit
- a_{i} - capacity
- b_{j} - demand

ASS. $\sum_{i=1}^{n} a_{i} \geq \sum_{j=1}^{m} b_{j}$
(Sometimes $a_{i}, b_{j} \in \mathbb{N}$.)

Primal problem

$$
\begin{array}{ll}
\min & \sum_{i=1}^{n} \sum_{j=1}^{m} c_{i j} x_{i j} \\
\text { s.t. } & \sum_{j=1}^{m} x_{i j} \leq a_{i}, \quad i=1, \ldots, n \\
& \sum_{i=1}^{n} x_{i j} \geq b_{j}, j=1, \ldots, m \\
& x_{i j} \geq 0
\end{array}
$$

Dual problem

$$
\begin{array}{ll}
\max & \sum_{i=1}^{n} a_{i} u_{i}+\sum_{j=1}^{m} b_{j} v_{j} \\
\text { s.t. } & u_{i}+v_{j} \leq c_{i j} \\
& u_{i} \leq 0 \\
& v_{j} \geq 0
\end{array}
$$

Interpretation: $-u_{i}$ price for buying a unit of goods at i, v_{j} price for selling at j.

Competition between the transportation company (which minimizes the transportation costs) and an "agent" (who maximizes the earnings):

$$
\sum_{i=1}^{n} a_{i} u_{i}+\sum_{j=1}^{m} b_{j} v_{j} \leq \sum_{i=1}^{n} \sum_{j=1}^{m} c_{i j} x_{i j}
$$

Linear programming duality

Primal problem (standard form)

$$
\begin{aligned}
& \min c^{\top} x \\
& \text { s.t. } A x=b, \\
& \quad x \geq 0 .
\end{aligned}
$$

and corresponding dual problem

$$
\begin{aligned}
\max & b^{T} y \\
\text { s.t. } & A^{T} y \leq c \\
& y \in \mathbb{R}^{m}
\end{aligned}
$$

Apply KKT optimality conditions to primal LP ... we will see relations with NLP duality.

Dual simplex algorithm works with

- dual feasible basis B and
- basic dual solution $y(B)$,
where

$$
\begin{aligned}
& B^{T} y(B)=c_{B}, \\
& N^{T} y(B) \leq c_{N} .
\end{aligned}
$$

Dual simplex algorithm

Primal feasibility $B^{-1} b \geq 0$ is violated until reaching the optima solution.
Primal optimality condition is always fulfilled:

$$
c_{B}^{T} B^{-1} A-c^{T} \leq 0
$$

Using $A=(B \mid N), c^{T}=\left(c_{B}^{T}, c_{N}^{T}\right)$, we have

$$
\begin{aligned}
& c_{B}^{T} B^{-1} B-c_{B}^{T}=0 \\
& c_{B}^{T} B^{-1} N-c_{N}^{T} \leq 0,
\end{aligned}
$$

Setting $\hat{y}=\left(B^{-1}\right)^{T} c_{B}$

$$
\begin{aligned}
& B^{T} \hat{y}=c_{B} \\
& N^{T} \hat{y} \leq c_{N} .
\end{aligned}
$$

Thus, \hat{y} is a basic dual solution

Dual simplex algorithm

Dual simplex algorithm - an assumption

The problem is dual nondegenerate if for all dual feasible basis B it holds

$$
\begin{aligned}
& \left(A^{T} y(B)-c\right)_{j}=0, j \in B \\
& \left(A^{T} y(B)-c\right)_{j}<0, j \notin B .
\end{aligned}
$$

If the problem is dual nondegenerate, then the dual simplex algorithm ends after finitely many steps.

Dual simplex algorithm - a step

.. uses the same simplex table.

- Find index $u \in B$ such that $x_{u}(B)<0$ and denote the corresponding row by

$$
\tau^{T}=\left(B^{-1} A\right)_{u, \bullet}
$$

- Denote the criterion row by

$$
\delta^{T}=c_{B}^{T} B^{-1} A-c^{T} \leq 0 .
$$

- Minimize the ratios

$$
\hat{i}=\arg \min \left\{\frac{\delta_{i}}{\tau_{i}}: \tau_{i}<0\right\} .
$$

If there is no i such that $\tau_{i}<0$, then STOP: the dual problem is unbounded and primal is infeasible.

- Substitute x_{u} by $x_{\hat{i}}$ in the basic variables, i.e. $\hat{B}=B \backslash\{u\} \cup\{\hat{i}\}$. We move to another basic dual solution.

Dual simplex algorithm

Dual simplex algorithm - a step
A general step in the dual simplex algorithm

$$
y(\hat{B})=y(B)-t\left(B^{-1}\right)_{\bullet, u}^{T}
$$

with

$$
t:=\frac{\delta_{\hat{i}}}{\tau_{\hat{i}}} .
$$

Then it can be shown that the dual feasibility is preserved, i.e.

$$
A^{T} y(\hat{B})=A^{T} y(B)-t A^{T}\left(B^{-1}\right)_{\bullet, u}^{T} \leq c,
$$

e.g.

$$
\left(A^{\top} y(\hat{B})\right)_{\hat{i}}=\delta_{\hat{i}}+c_{i}-\frac{\delta_{\hat{i}}}{\tau_{\hat{i}}} \hat{\hat{T}}_{\hat{i}}=c_{i},
$$

or

$$
\left(A^{T} y(\hat{B})\right)_{u}=\delta_{u}+c_{u}-\frac{\delta_{\hat{i}}}{\tau_{\hat{i}}} \tau_{u} \leq c_{u} .
$$

A general step in the dual simplex algorithm

$$
y(\hat{B})=y(B)-t\left(B^{-1}\right)_{0, u}^{T}
$$

with

$$
t:=\frac{\delta_{\hat{i}}}{\tau_{\hat{i}}}>0 .
$$

Then it can be shown that the objective function increases if the problem is dual nondegenerate, i.e.

$$
\begin{aligned}
b^{T} y(\hat{B}) & =b^{T} y(B)-t b^{T}\left(B^{-1}\right)_{\bullet, u}^{T}, \\
& =b^{T} y(B)-\frac{\delta_{\hat{i}}}{\tau_{\hat{i}}} x_{u}(B)>b^{T} y(B),
\end{aligned}
$$

because $x_{u}(B)<0$.

Example - dual simplex algorithm

Example - dual simplex algorithm

			4	5	0	0
			x_{1}	x_{2}	x_{3}	x_{4}
0	x_{3}	-5	-1	-4	1	0
0	x_{4}	-7	-3	-2	0	1
		0	-4	-5	0	0
0	x_{3}	$-8 / 3$	0	$-10 / 3$	1	$-1 / 3$
4	x_{1}	$7 / 3$	1	$2 / 3$	0	$-1 / 3$
		$28 / 3$	0	$-7 / 3$	0	$-4 / 3$
5	x_{2}	$8 / 10$	0	1	$-3 / 10$	$1 / 10$
4	x_{1}	$18 / 10$	1	0	$2 / 10$	$-4 / 10$
		$112 / 10$	0	0	$-7 / 10$	$-11 / 10$

The last solution is primal and dual feasible, thus optimal.

A general step in the dual simplex algorithm

$$
y(\hat{B})=y(B)-t\left(B^{-1}\right)_{\bullet, u}^{T}
$$

i.e.

$$
(0,-4 / 3)=(0,0)-4 / 3(0,1)
$$

which can be seen in the criterion row in the columns corresponding to the initial basis. Dual constraints 1 and 3 are then active.

Adding new constraint

Adding new constraint

We obtain the new basis, the matrix is obviously regular

$$
\tilde{B}=\left(\begin{array}{cc}
B & 0 \\
\alpha_{B}^{T} & 1
\end{array}\right) .
$$

The inverse matrix can be derived

$$
\tilde{B}^{-1}=\left(\begin{array}{cc}
B^{-1} & 0 \\
-\alpha_{B}^{T} B^{-1} & 1
\end{array}\right)
$$

so we try to verify feasibility

$$
\tilde{B}^{-1} \tilde{b}=\left(\begin{array}{cc}
B^{-1} & 0 \\
-\alpha_{B}^{T} B^{-1} & 1
\end{array}\right)\binom{b}{\beta}=\binom{B^{-1} b}{-\alpha_{B}^{T} B^{-1} b+\beta}
$$

where obviously $B^{-1} b \geq 0$, but the second row corresponds to
$\alpha_{B}^{T} B^{-1} b \leq \beta$, which is fulfilled only if the current basic solution satisfies the new constraint

To summarize, if

$$
\alpha_{B}^{T} B^{-1} b \leq \beta
$$

- is fulfilled, the previously obtained optimal solution remains optimal,
- is not fulfilled, then the primal feasibility (dual optimality) condition is violated and we continue by iteration(s) of the dual simplex algorithm with initial table

				c^{T}		0
			x^{T}	x_{n+1}		
c_{B}	x_{B}	$B^{-1} b$	$B^{-1} A$	0		
0	x_{n+1}	$-\alpha_{B}^{T} B^{-1} b+\beta$	$-\alpha_{B}^{T} B^{-1} A+\alpha^{T}$	1		
		$c_{B}^{T} B^{-1} b$	$c_{B}^{T} B^{-1} A-c^{T}$	0		

- Matlab
- Mathematica
- GAMS
- Cplex studio
- AIMMS
- ...
- R
- MS Exce
- ...

Adding new constraint

Consider final table after several iterations of the simplex algorithm:

			2	-1	0	0
			x_{1}	x_{2}	x_{3}	x_{4}
-1	x_{2}	1	-1	1	1	0
0	x_{4}	2	1	0	-1	1
		-1	-1	0	-1	0

We would like to add constraint $x_{2} \leq \frac{1}{2}$. Obviously the current optimal solution is not feasible, so we add the constraint to the simplex table. We have $\alpha_{B}^{T}=(1,0)$

			2	-1	0	0	
			x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
-1	x_{2}	1	-1	1	1	0	0
0	x_{4}	2	1	0	-1	1	0
0	x_{5}	$\frac{-1}{2}$	1	0	-1	0	1
		-1	-1	0	-1	0	0

Literature

- Bazaraa, M.S., Sherali, H.D., and Shetty, C.M. (2006). Nonlinear programming theory and algorithms, Wiley, Singapore, 3rd edition
- Boyd, S., Vandenberghe, L. (2004). Convex Optimization, Cambridge University Press, Cambridge.
- P. Lachout (2011). Matematické programování. Skripta k (zaniklé) přednášce Optimalizace I (IN CZECH)
- Matoušek and Gärtner (2007). Understanding and using linear programming, Springer

