Optimization with application in finance - exercises

Martin Branda, 21 February 2023

1 Parametric linear optimization

1.1 Simplex algorithm

Example 1.1 Consider linear programming problem

min
$$2x_1 - x_2$$

s.t. $-x_1 + x_2 \le 1$,
 $x_2 \le 3$,
 $x_1, x_2 \ge 0$.

Solve the problem using the simplex algorithm.

Solution:

			2	-1	0	0
			x_1	x_2	x_3	x_4
0	x_3	1	-1	1	1	0
0	x_4	3	0	1	0	1
		0	-2	1	0	0
-1	x_2	1	-1	1	1	0
0	x_4	2	1	0	-1	1
		-1	-1	0	-1	0

The optimal solution is (0, 1, 0, 2) with optimal value -1.

1.2 Postoptimization

Example 1.2 Consider linear programming problem

min
$$2x_1 - x_2$$

s.t. $-x_1 + x_2 \le 1$,
 $x_2 \le 3$,
 $x_1, x_2 \ge 0$.

Solve the problem using the simplex algorithm. Then investigate the stability with respect to

1. objective function: c = (-1, -1),

- 2. new decision variable $x_5: c_5 = -2, a_{\bullet 5} = (1, \frac{3}{2}),$
- 3.* right hand side vector: b = (1, 0.5),
- 4.* new constraint: $x_2 \leq \frac{1}{2}$.

1.3 Parametric linear programming

Example 1.3 Consider the linear programming problem with real parameter λ

min
$$3x_1 + 5x_2$$

s.t. $2x_1 + x_2 \ge 10$,
 $x_1 + 2x_2 \ge 12 + \lambda$,
 $x_1 + x_2 \ge 8$,
 $x_{1,2} \ge 0$.

Using the graphical method, find the optimal solution and optimal values in dependence on the values of λ .

Example 1.4 Consider the linear programming problem with real parameter λ

min
$$2x_1 - x_2$$

s.t. $-x_1 + \lambda x_2 + x_3 = 1$,
 $x_2 + x_4 = 3$,
 $x_{1,2,3,4} \ge 0$.

Discuss an iteration of suitable simplex algorithm in dependence on the values of λ .

Solution: We can start with the simplex table

			2	-1	0	0	
			x_1	x_2	x_3	x_4	
0	x_3	1	-1	λ	1	0	
0	x_4	3	0	1	0	1	
		0	-2	1	0	0	

If $\lambda \geq \frac{1}{3}$, x_2 replaces x_3 in the basis, whereas if $\lambda < \frac{1}{3}$, x_2 replaces x_4 in the basis. In the first case, we get

			2	-1	0	0
			x_1	x_2	x_3	x_4
-1	x_2	$\frac{1}{\lambda}$	$\frac{-1}{\lambda}$	1	$\frac{1}{\lambda}$	0
0	x_4	$3-\frac{1}{\lambda}$	$\frac{1}{\lambda}$	0	$\frac{-1}{\lambda}$	1
		$\frac{-1}{\lambda}$	$\frac{1}{\lambda} - 2$	1	$\frac{-1}{\lambda}$	0

If $\lambda \geq \frac{1}{2}$, then the optimality condition is fulfilled and we have got an optimal solution. When $\lambda \in [\frac{1}{3}, \frac{1}{2})$, then we continue with iterations and x_1 replaces x_4 in the basis.

Dual simplex algorithm*

Primal problem (standard form)

$$\min c^T x \\ \text{s.t. } Ax = b, \\ x > 0.$$

Basis B = regular square submatrix of A, i.e. A can be divided into the basis and nonbasis part

$$A = (B|N).$$

We also consider $B = \{i_1, \ldots, i_m\}$ as the set of column indices which correspond to the basis. We split also the objective coefficients and the decision vector accordingly:

$$c^T = (c_B^T, c_N^T),$$

$$x^T(B) = (x_B^T(B), x_N^T(B)),$$

where

$$x_B(B) = B^{-1}b, \ x_N(B) \equiv 0$$

We consider

- feasible basis for which $x_B(B) \ge 0$ (and $x_N(B) = 0$),
- optimal basis corresponding to an optimal solution,
- basic solution(s).

The simplex algorithm can be represented by the simplex table:

			x^T
			c^T
c_B	$x_B(B)$	$B^{-1}b$	$B^{-1}A$
		$c_B^T B^{-1} b$	$c_B^T B^{-1} A - c^T$

In the table, we can identify

• feasibility condition:

 $B^{-1}b \ge 0,$

• optimality condition:

$$c_B^T B^{-1} A - c^T \le 0.$$

Dual problem

$$\max b^T y$$

s.t. $A^T y \le c$,
 $y \in \mathbb{R}^m$.

Dual simplex algorithm works with dual feasible basis B and basic dual solution y(B), forwhich it holds

$$B^T y(B) = c_B,$$

$$N^T y(B) \le c_N.$$

Primal feasibility $B^{-1}b \ge 0$ is violated until reaching the optimal solution. Primal optimality condition = dual feasibility is always fulfilled:

$$c_B^T B^{-1} A - c^T \le 0.$$

Using notation $A = (B|N), c^T = (c_B^T, c_N^T)$, we have

$$c_B^T B^{-1} B - c_B^T = 0,$$

 $c_B^T B^{-1} N - c_N^T \le 0,$

Setting $\hat{y} = (B^{-1})^T c_B$

$$B^T \hat{y} = c_B^T,$$

$$N^T \hat{y} \leq c_N^T.$$

Thus, \hat{y} is a basic dual solution.

Dual simplex algorithm – a step:

• Find index $u \in B$ such that $x_u(B) < 0$ and denote the corresponding row by

$$\tau^T = (B^{-1}A)_{u,\bullet}$$

• Denote the criterion row by

$$\delta^T = c_B^T B^{-1} A - c^T \le 0.$$

• Minimize the ratios

$$\hat{i} = \arg\min\left\{\frac{\delta_i}{\tau_i}: \ \tau_i < 0\right\}.$$

• Substitute x_u by x_i in the basic variables, i.e. $\hat{B} = B \setminus \{u\} \cup \{\hat{i}\}$. We move to another **basic dual solution**.

We say that the problem is **dual nondegenerate** if for all dual feasible basis B it holds

$$(A^T y(B) - c)_j = 0, \ j \in B,$$

 $(A^T y(B) - c)_j < 0, \ j \notin B.$

If the problem is dual nondegenerate, then the dual simplex algorithm ends after finitely many steps.

Example 1.5 Using the dual simplex algorithm solve the following linear programming problem

$$\min x_1 + x_2 \\ 2x_1 + x_2 \ge \frac{3}{2}, \\ x_1 + x_2 \ge 1, \\ x_1, x_2 \ge 0.$$

Solution: We will solve the problem in the following standard form

$$\min x_1 + x_2 - 2x_1 - x_2 + x_3 = -\frac{3}{2}, - x_1 - x_2 + x_4 = -1, x_1, x_2, x_3, x_4 \ge 0.$$

We can derive the dual problem

$$\max -\frac{3}{2}y_1 - y_2$$

s.t. $-2y_1 - y_2 \le 1$
 $-y_1 - y_2 \le 1$
 $y_1 \le 0$
 $y_2 \le 0.$

			1	1	0	0
			x_1	x_2	x_3	x_4
0	x_3	$-\frac{3}{2}$	-2	-1	1	0
0	x_4	$-\overline{1}$	-1	-1	0	1
		0	-1	-1	0	0
1	x_1	$\frac{3}{4}$	1	$\frac{1}{2}$	$-\frac{1}{2}$	0
0	x_4	$-\frac{1}{4}$	0	$-\frac{1}{2}$	$-\frac{\overline{1}}{2}$	1
		$\frac{3}{4}$	0	$-\frac{1}{2}$	$-\frac{1}{2}$	0
1	x_1	$\frac{1}{2}$	1	0	-1	1
1	x_2	$\frac{\overline{1}}{2}$	0	1	1	-2
		1	0	0	0	-1

In the final table, we can identify the optimal solutions of

- primal problem: $(\frac{1}{2}, \frac{1}{2}, 0, 0)$,
- dual problem: (0, -1).

Optimal value is equal to 1.

Example 1.6 Using the dual simplex algorithm solve the following linear programming problem

$$\min 4x_1 + 5x_2 x_1 + 4x_2 \ge 5, 3x_1 + 2x_2 \ge 7, x_1, x_2 \ge 0.$$

Solution: We can formulate the dual problem

	$\max -5y_1 - 7y_2$									
	s.t. $-y_1 - 3y_2 \le 4$									
	$-4y_1 - 2y_2 \le 5$									
	$y_1 \leq 0$									
	$y_2 \leq 0.$									
			x_1 x_2 x_3 x_4							
0	x_3	-5	-1	-4	1	0				
0	x_4	-7	-7 -3 -2 0 1							
		0	0 -4 -5 0 0							
0	x_3	-8/3	0	-10/3	1	-1/3				
4	x_1	7/3	1	2/3	0	-1/3				
		28/3	0	-7/3	0	-4/3				
5	x_2	8/10	0	1	-3/10	1/10				
4	$ x_1 $	18/10	1	0	2/10	-4/10				
		112/10	0	0	-7/10	-11/10				

The last solution is primal and dual feasible, thus optimal, i.e. (18/10, 8/10) is the optimal solution of (P).

Example 1.7 (*) Consider the linear programming problem with real parameter λ

min
$$2x_1 - x_2 + x_3$$

s.t. $x_1 + \lambda x_2 + x_3 = 2$,
 $x_1 - (2 + \lambda)x_2 + x_4 = -1$,
 $x_{1,2,3,4} \ge 0$.

Discuss an iteration of suitable simplex algorithm in dependence on the values of λ .

Solution: We can start with the simplex table

			2	-1	1	0
			x_1	x_2	x_3	x_4
1	x_3	2	1	λ	1	0
0	x_4	-1	1	$-2-\lambda$	0	1
		2	-1	$\lambda + 1$	0	0

We can observe that if $\lambda \leq -1$ then the optimality (=dual feasibility) is fulfilled, however the primal feasibility do not hold. There is only one possible pivot element $-2 - \lambda$ which is negative only if $\lambda > -2$. So, if $\lambda \in (-2, -1]$, we can continue with iterations using the dual simplex algorithm. Basic variable x_4 is removed from the basis and x_2 enters

			2	-1	1	0
			x_1	x_2	x_3	x_4
1	x_3	2	1	λ	1	0
0	x_4	-1	1	$-2-\lambda$	0	1
		2	-1	$\lambda + 1$	0	0
1	x_3	$\frac{\lambda+4}{\lambda+2}$	$\frac{2\lambda+2}{\lambda+2}$	0	1	$\frac{\lambda}{\lambda+2}$
-1	x_2	$\frac{1}{\lambda+2}$	$\frac{-1}{\lambda+2}$	1	0	$-\frac{1}{\lambda+2}$
		$\frac{\lambda+3}{\lambda+2}$	$-\frac{1}{\lambda+2}$	0	0	$\frac{\lambda+1}{\lambda+2}$

Remind that $\lambda \in (-2, -1]$. Since the criterion row is nonpositive, the primal optimality (= dual feasibility) is preserved. Moreover, the primal feasibility (= dual optimality) is fulfilled.

Example 1.8 Consider the simplex table with real parameter λ

			3	-1	0	0
			x_1	x_2	x_3	x_4
-1	x_2	$2-\lambda$	-1	1	1	0
0	x_4	3	1	0	-1	1
		$\lambda - 2$	-2	0	-1	0

Discuss optimality in dependence on the values of λ and perform one additional iteration of suitable simplex algorithm.