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1 Parametric linear optimization

1.1 Simplex algorithm

Example 1.1 Consider linear programming problem

min 2x1 − x2
s.t. − x1 + x2 ≤ 1,

x2 ≤ 3,

x1, x2 ≥ 0.

Solve the problem using the simplex algorithm.

Solution:

2 −1 0 0

x1 x2 x3 x4
0 x3 1 −1 1 1 0
0 x4 3 0 1 0 1

0 −2 1 0 0

−1 x2 1 −1 1 1 0
0 x4 2 1 0 −1 1

−1 −1 0 −1 0

The optimal solution is (0, 1, 0, 2) with optimal value −1.

1.2 Postoptimization

Example 1.2 Consider linear programming problem

min 2x1 − x2
s.t. − x1 + x2 ≤ 1,

x2 ≤ 3,

x1, x2 ≥ 0.

Solve the problem using the simplex algorithm. Then investigate the stability with respect
to

1. objective function: c = (−1,−1),

2. new decision variable x5: c5 = −2, a•5 = (1, 32),

3.* right hand side vector: b = (1, 0.5),

4.* new constraint: x2 ≤ 1
2 .
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1.3 Parametric linear programming

Example 1.3 Consider the linear programming problem with real parameter λ

min 3x1 + 5x2

s.t. 2x1 + x2 ≥ 10,

x1 + 2x2 ≥ 12 + λ,

x1 + x2 ≥ 8,

x1,2 ≥ 0.

Using the graphical method, find the optimal solution and optimal values in dependence on
the values of λ.

Example 1.4 Consider the linear programming problem with real parameter λ

min 2x1 − x2
s.t. − x1 + λx2 + x3 = 1,

x2 + x4 = 3,

x1,2,3,4 ≥ 0.

Discuss an iteration of suitable simplex algorithm in dependence on the values of λ.

Solution: We can start with the simplex table

2 −1 0 0

x1 x2 x3 x4
0 x3 1 −1 λ 1 0
0 x4 3 0 1 0 1

0 −2 1 0 0

If λ ≥ 1
3 , x2 replaces x3 in the basis, whereas if λ < 1

3 , x2 replaces x4 in the basis. In the
first case, we get

2 −1 0 0

x1 x2 x3 x4
-1 x2

1
λ

−1
λ 1 1

λ 0
0 x4 3− 1

λ
1
λ 0 −1

λ 1
−1
λ

1
λ − 2 1 −1

λ 0

If λ ≥ 1
2 , then the optimality condition is fulfilled and we have got an optimal solution.

When λ ∈ [13 ,
1
2), then we continue with iterations and x1 replaces x4 in the basis.
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Dual simplex algorithm*

Primal problem (standard form)

min cTx

s.t. Ax = b,

x ≥ 0.

Basis B = regular square submatrix of A, i.e. A can be divided into the basis and
nonbasis part

A = (B|N).

We also consider B = {i1, . . . , im} as the set of column indices which correspond to the
basis. We split also the objective coefficients and the decision vector accordingly:

cT = (cTB, c
T
N ),

xT (B) = (xTB(B), xTN (B)),

where
xB(B) = B−1b, xN (B) ≡ 0.

We consider

• feasible basis for which xB(B) ≥ 0 (and xN (B) = 0),

• optimal basis corresponding to an optimal solution,

• basic solution(s).

The simplex algorithm can be represented by the simplex table:

xT

cT

cB xB(B) B−1b B−1A

cTBB
−1b cTBB

−1A− cT

In the table, we can identify

• feasibility condition:
B−1b ≥ 0,

• optimality condition:
cTBB

−1A− cT ≤ 0.
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Dual problem

max bT y

s.t. AT y ≤ c,
y ∈ Rm.

Dual simplex algorithm works with dual feasible basis B and basic dual solution
y(B), forwhich it holds

BT y(B) = cB,

NT y(B) ≤ cN .

Primal feasibility B−1b ≥ 0 is violated until reaching the optimal solution. Primal
optimality condition = dual feasibility is always fulfilled:

cTBB
−1A− cT ≤ 0.

Using notation A = (B|N), cT = (cTB, c
T
N ), we have

cTBB
−1B − cTB = 0,

cTBB
−1N − cTN ≤ 0,

Setting ŷ = (B−1)T cB

BT ŷ = cTB,

NT ŷ ≤ cTN .

Thus, ŷ is a basic dual solution.
Dual simplex algorithm – a step:

• Find index u ∈ B such that xu(B) < 0 and denote the corresponding row by

τT = (B−1A)u,•.

• Denote the criterion row by

δT = cTBB
−1A− cT ≤ 0.

• Minimize the ratios

î = arg min

{
δi
τi

: τi < 0

}
.

• Substitute xu by xî in the basic variables, i.e. B̂ = B \ {u} ∪ {̂i}. We move to
another basic dual solution.
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We say that the problem is dual nondegenerate if for all dual feasible basis B it holds

(AT y(B)− c)j = 0, j ∈ B,
(AT y(B)− c)j < 0, j /∈ B.

If the problem is dual nondegenerate, then the dual simplex algorithm ends after finitely
many steps.

Example 1.5 Using the dual simplex algorithm solve the following linear programming
problem

minx1 + x2

2x1 + x2 ≥ 3

2
,

x1 + x2 ≥ 1,

x1, x2 ≥ 0.

Solution: We will solve the problem in the following standard form

min x1 + x2

− 2x1 − x2 + x3 = −3

2
,

− x1 − x2 + x4 = −1,

x1, x2, x3, x4 ≥ 0.

We can derive the dual problem

max − 3

2
y1 − y2

s.t. − 2y1 − y2 ≤ 1

− y1 − y2 ≤ 1

y1 ≤ 0

y2 ≤ 0.

1 1 0 0

x1 x2 x3 x4
0 x3 −3

2 −2 −1 1 0
0 x4 −1 −1 −1 0 1

0 −1 −1 0 0

1 x1
3
4 1 1

2 −1
2 0

0 x4 −1
4 0 −1

2 −1
2 1

3
4 0 −1

2 −1
2 0

1 x1
1
2 1 0 −1 1

1 x2
1
2 0 1 1 −2

1 0 0 0 −1
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In the final table, we can identify the optimal solutions of

• primal problem: (12 ,
1
2 , 0, 0),

• dual problem: (0,−1).

Optimal value is equal to 1.

Example 1.6 Using the dual simplex algorithm solve the following linear programming
problem

min 4x1 + 5x2

x1 + 4x2 ≥ 5,

3x1 + 2x2 ≥ 7,

x1, x2 ≥ 0.

Solution: We can formulate the dual problem

max − 5y1 − 7y2

s.t. − y1 − 3y2 ≤ 4

− 4y1 − 2y2 ≤ 5

y1 ≤ 0

y2 ≤ 0.

4 5 0 0

x1 x2 x3 x4
0 x3 -5 -1 -4 1 0
0 x4 -7 -3 -2 0 1

0 -4 -5 0 0

0 x3 -8/3 0 -10/3 1 -1/3
4 x1 7/3 1 2/3 0 -1/3

28/3 0 -7/3 0 -4/3

5 x2 8/10 0 1 -3/10 1/10
4 x1 18/10 1 0 2/10 -4/10

112/10 0 0 -7/10 -11/10

The last solution is primal and dual feasible, thus optimal, i.e. (18/10, 8/10) is the optimal
solution of (P).

Example 1.7 (*) Consider the linear programming problem with real parameter λ

min 2x1 − x2 + x3

s.t. x1 + λx2 + x3 = 2,

x1 − (2 + λ)x2 + x4 = −1,

x1,2,3,4 ≥ 0.

Discuss an iteration of suitable simplex algorithm in dependence on the values of λ.
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Solution: We can start with the simplex table

2 −1 1 0

x1 x2 x3 x4
1 x3 2 1 λ 1 0
0 x4 −1 1 −2− λ 0 1

2 −1 λ+ 1 0 0

We can observe that if λ ≤ −1 then the optimality (=dual feasibility) is fulfilled, however
the primal feasibility do not hold. There is only one possible pivot element −2− λ which
is negative only if λ > −2. So, if λ ∈ (−2,−1], we can continue with iterations using the
dual simplex algorithm. Basic variable x4 is removed from the basis and x2 enters

2 −1 1 0

x1 x2 x3 x4
1 x3 2 1 λ 1 0
0 x4 −1 1 −2− λ 0 1

2 −1 λ+ 1 0 0

1 x3
λ+4
λ+2

2λ+2
λ+2 0 1 λ

λ+2

−1 x2
1

λ+2
−1
λ+2 1 0 − 1

λ+2
λ+3
λ+2 − 1

λ+2 0 0 λ+1
λ+2

Remind that λ ∈ (−2,−1]. Since the criterion row is nonpositive, the primal optimality
(= dual feasibility) is preserved. Moreover, the primal feasibility (= dual optimality) is
fulfilled.

Example 1.8 Consider the simplex table with real parameter λ

3 -1 0 0
x1 x2 x3 x4

−1 x2 2− λ −1 1 1 0
0 x4 3 1 0 −1 1

λ− 2 −2 0 −1 0

Discuss optimality in dependence on the values of λ and perform one additional iteration
of suitable simplex algorithm.
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