Optimization with application in finance - exercises

Martin Branda, 21 February 2023

1 Parametric linear optimization

1.1 Simplex algorithm

Example 1.1 Consider linear programming problem

$$
\begin{array}{cl}
\min & 2 x_{1}-x_{2} \\
\text { s.t. } & -x_{1}+x_{2} \leq 1, \\
& x_{2} \leq 3, \\
& x_{1}, x_{2} \geq 0 .
\end{array}
$$

Solve the problem using the simplex algorithm.

Solution:

			2	-1	0	0
			x_{1}	x_{2}	x_{3}	x_{4}
0	x_{3}	1	-1	1	1	0
0	x_{4}	3	0	1	0	1
		0	-2	1	0	0
-1	x_{2}	1	-1	1	1	0
0	x_{4}	2	1	0	-1	1
		-1	-1	0	-1	0

The optimal solution is $(0,1,0,2)$ with optimal value -1 .

1.2 Postoptimization

Example 1.2 Consider linear programming problem

$$
\begin{array}{cl}
\min & 2 x_{1}-x_{2} \\
\text { s.t. } & -x_{1}+x_{2} \leq 1, \\
& x_{2} \leq 3, \\
& x_{1}, x_{2} \geq 0 .
\end{array}
$$

Solve the problem using the simplex algorithm. Then investigate the stability with respect to

1. objective function: $c=(-1,-1)$,
2. new decision variable $x_{5}: c_{5}=-2, a_{\bullet 5}=\left(1, \frac{3}{2}\right)$,
3.* right hand side vector: $b=(1,0.5)$,
4.* new constraint: $x_{2} \leq \frac{1}{2}$.

1.3 Parametric linear programming

Example 1.3 Consider the linear programming problem with real parameter λ

$$
\begin{array}{ll}
\min & 3 x_{1}+5 x_{2} \\
\text { s.t. } & 2 x_{1}+x_{2} \geq 10, \\
& x_{1}+2 x_{2} \geq 12+\lambda, \\
& x_{1}+x_{2} \geq 8, \\
& x_{1,2} \geq 0 .
\end{array}
$$

Using the graphical method, find the optimal solution and optimal values in dependence on the values of λ.

Example 1.4 Consider the linear programming problem with real parameter λ

$$
\begin{array}{cl}
\min & 2 x_{1}-x_{2} \\
\text { s.t. } & -x_{1}+\lambda x_{2}+x_{3}=1, \\
& x_{2}+x_{4}=3, \\
& x_{1,2,3,4} \geq 0 .
\end{array}
$$

Discuss an iteration of suitable simplex algorithm in dependence on the values of λ.
Solution: We can start with the simplex table

			2	-1	0	0
			x_{1}	x_{2}	x_{3}	x_{4}
0	x_{3}	1	-1	λ	1	0
0	x_{4}	3	0	1	0	1
		0	-2	1	0	0

If $\lambda \geq \frac{1}{3}, x_{2}$ replaces x_{3} in the basis, whereas if $\lambda<\frac{1}{3}, x_{2}$ replaces x_{4} in the basis. In the first case, we get

			2	-1	0	0
			x_{1}	x_{2}	x_{3}	x_{4}
-1	x_{2}	$\frac{1}{\lambda}$	$\frac{-1}{\lambda}$	1	$\frac{1}{\lambda}$	0
0	x_{4}	$3-\frac{1}{\lambda}$	$\frac{1}{\lambda}$	0	$\frac{-1}{\lambda}$	1
		$\frac{-1}{\lambda}$	$\frac{1}{\lambda}-2$	1	$\frac{-1}{\lambda}$	0

If $\lambda \geq \frac{1}{2}$, then the optimality condition is fulfilled and we have got an optimal solution. When $\lambda \in\left[\frac{1}{3}, \frac{1}{2}\right)$, then we continue with iterations and x_{1} replaces x_{4} in the basis.

Dual simplex algorithm*

Primal problem (standard form)

$$
\begin{aligned}
\min & c^{T} x \\
\text { s.t. } & A x=b, \\
& x \geq 0
\end{aligned}
$$

Basis $B=$ regular square submatrix of A, i.e. A can be divided into the basis and nonbasis part

$$
A=(B \mid N) .
$$

We also consider $B=\left\{i_{1}, \ldots, i_{m}\right\}$ as the set of column indices which correspond to the basis. We split also the objective coefficients and the decision vector accordingly:

$$
\begin{aligned}
c^{T} & =\left(c_{B}^{T}, c_{N}^{T}\right), \\
x^{T}(B) & =\left(x_{B}^{T}(B), x_{N}^{T}(B)\right),
\end{aligned}
$$

where

$$
x_{B}(B)=B^{-1} b, x_{N}(B) \equiv 0 .
$$

We consider

- feasible basis for which $x_{B}(B) \geq 0\left(\right.$ and $\left.x_{N}(B)=0\right)$,
- optimal basis corresponding to an optimal solution,
- basic solution(s).

The simplex algorithm can be represented by the simplex table:

			x^{T}
			c^{T}
c_{B}	$x_{B}(B)$	$B^{-1} b$	$B^{-1} A$
		$c_{B}^{T} B^{-1} b$	$c_{B}^{T} B^{-1} A-c^{T}$

In the table, we can identify

- feasibility condition:

$$
B^{-1} b \geq 0
$$

- optimality condition:

$$
c_{B}^{T} B^{-1} A-c^{T} \leq 0 .
$$

Dual problem

$$
\begin{aligned}
& \max b^{T} y \\
& \text { s.t. } A^{T} y \leq c, \\
& \quad y \in \mathbb{R}^{m} .
\end{aligned}
$$

Dual simplex algorithm works with dual feasible basis B and basic dual solution $y(B)$, forwhich it holds

$$
\begin{aligned}
B^{T} y(B) & =c_{B}, \\
N^{T} y(B) & \leq c_{N} .
\end{aligned}
$$

Primal feasibility $B^{-1} b \geq 0$ is violated until reaching the optimal solution. Primal optimality condition $=$ dual feasibility is always fulfilled:

$$
c_{B}^{T} B^{-1} A-c^{T} \leq 0 .
$$

Using notation $A=(B \mid N), c^{T}=\left(c_{B}^{T}, c_{N}^{T}\right)$, we have

$$
\begin{array}{r}
c_{B}^{T} B^{-1} B-c_{B}^{T}=0, \\
c_{B}^{T} B^{-1} N-c_{N}^{T} \leq 0,
\end{array}
$$

Setting $\hat{y}=\left(B^{-1}\right)^{T} c_{B}$

$$
\begin{aligned}
B^{T} \hat{y} & c_{B}^{T}, \\
N^{T} \hat{y} & \leq c_{N}^{T} .
\end{aligned}
$$

Thus, \hat{y} is a basic dual solution.
Dual simplex algorithm - a step:

- Find index $u \in B$ such that $x_{u}(B)<0$ and denote the corresponding row by

$$
\tau^{T}=\left(B^{-1} A\right)_{u, \bullet}
$$

- Denote the criterion row by

$$
\delta^{T}=c_{B}^{T} B^{-1} A-c^{T} \leq 0 .
$$

- Minimize the ratios

$$
\hat{i}=\arg \min \left\{\frac{\delta_{i}}{\tau_{i}}: \tau_{i}<0\right\} .
$$

- Substitute x_{u} by $x_{\hat{i}}$ in the basic variables, i.e. $\hat{B}=B \backslash\{u\} \cup\{\hat{i}\}$. We move to another basic dual solution.

We say that the problem is dual nondegenerate if for all dual feasible basis B it holds

$$
\begin{aligned}
& \left(A^{T} y(B)-c\right)_{j}=0, j \in B, \\
& \left(A^{T} y(B)-c\right)_{j}<0, j \notin B .
\end{aligned}
$$

If the problem is dual nondegenerate, then the dual simplex algorithm ends after finitely many steps.

Example 1.5 Using the dual simplex algorithm solve the following linear programming problem

$$
\begin{aligned}
\min x_{1}+x_{2} & \\
2 x_{1}+x_{2} & \geq \frac{3}{2} \\
x_{1}+x_{2} & \geq 1 \\
x_{1}, x_{2} & \geq 0 .
\end{aligned}
$$

Solution: We will solve the problem in the following standard form

$$
\begin{aligned}
& \min \quad x_{1}+x_{2} \\
& \quad-2 x_{1}-x_{2}+x_{3}=-\frac{3}{2}, \\
& \quad-x_{1}-x_{2}+x_{4}=-1, \\
& \quad x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{aligned}
$$

We can derive the dual problem

$$
\begin{aligned}
\max & -\frac{3}{2} y_{1}-y_{2} \\
\text { s.t. } & -2 y_{1}-y_{2} \leq 1 \\
& -y_{1}-y_{2} \leq 1 \\
& y_{1} \leq 0 \\
& y_{2} \leq 0 .
\end{aligned}
$$

			1	1	0	0
			x_{1}	x_{2}	x_{3}	x_{4}
0	x_{3}	$-\frac{3}{2}$	-2	-1	1	0
0	x_{4}	-1	-1	-1	0	1
		0	-1	-1	0	0
1	x_{1}	$\frac{3}{4}$	1	$\frac{1}{2}$	$-\frac{1}{2}$	0
0	x_{4}	$-\frac{1}{4}$	0	$-\frac{1}{2}$	$-\frac{1}{2}$	1
		$\frac{3}{4}$	0	$-\frac{1}{2}$	$-\frac{1}{2}$	0
1	x_{1}	$\frac{1}{2}$	1	0	-1	1
1	x_{2}	$\frac{1}{2}$	0	1	1	-2
		1	0	0	0	-1

In the final table, we can identify the optimal solutions of

- primal problem: $\left(\frac{1}{2}, \frac{1}{2}, 0,0\right)$,
- dual problem: $(0,-1)$.

Optimal value is equal to 1 .

Example 1.6 Using the dual simplex algorithm solve the following linear programming problem

$$
\begin{aligned}
\min 4 x_{1}+5 x_{2} & \\
x_{1}+4 x_{2} & \geq 5, \\
3 x_{1}+2 x_{2} & \geq 7, \\
x_{1}, x_{2} & \geq 0 .
\end{aligned}
$$

Solution: We can formulate the dual problem

$$
\begin{aligned}
\max & -5 y_{1}-7 y_{2} \\
\text { s.t. } & -y_{1}-3 y_{2} \leq 4 \\
& -4 y_{1}-2 y_{2} \leq 5 \\
& y_{1} \leq 0 \\
& y_{2} \leq 0 .
\end{aligned}
$$

			4	5	0	0
			x_{1}	x_{2}	x_{3}	x_{4}
0	x_{3}	-5	-1	-4	1	0
0	x_{4}	-7	-3	-2	0	1
		0	-4	-5	0	0
0	x_{3}	$-8 / 3$	0	$-10 / 3$	1	$-1 / 3$
4	x_{1}	$7 / 3$	1	$2 / 3$	0	$-1 / 3$
		$28 / 3$	0	$-7 / 3$	0	$-4 / 3$
5	x_{2}	$8 / 10$	0	1	$-3 / 10$	$1 / 10$
4	x_{1}	$18 / 10$	1	0	$2 / 10$	$-4 / 10$
		$112 / 10$	0	0	$-7 / 10$	$-11 / 10$

The last solution is primal and dual feasible, thus optimal, i.e. $(18 / 10,8 / 10)$ is the optimal solution of (P).

Example 1.7 (*) Consider the linear programming problem with real parameter λ

$$
\begin{array}{cl}
\min & 2 x_{1}-x_{2}+x_{3} \\
\text { s.t. } & x_{1}+\lambda x_{2}+x_{3}=2, \\
& x_{1}-(2+\lambda) x_{2}+x_{4}=-1, \\
& x_{1,2,3,4} \geq 0 .
\end{array}
$$

Discuss an iteration of suitable simplex algorithm in dependence on the values of λ.

Solution: We can start with the simplex table

			2	-1	1	0
			x_{1}	x_{2}	x_{3}	x_{4}
1	x_{3}	2	1	λ	1	0
0	x_{4}	-1	1	$-2-\lambda$	0	1
		2	-1	$\lambda+1$	0	0

We can observe that if $\lambda \leq-1$ then the optimality (=dual feasibility) is fulfilled, however the primal feasibility do not hold. There is only one possible pivot element $-2-\lambda$ which is negative only if $\lambda>-2$. So, if $\lambda \in(-2,-1]$, we can continue with iterations using the dual simplex algorithm. Basic variable x_{4} is removed from the basis and x_{2} enters

			2	-1	1	0
			x_{1}	x_{2}	x_{3}	x_{4}
1	x_{3}	2	1	λ	1	0
0	x_{4}	-1	1	$-2-\lambda$	0	1
		2	-1	$\lambda+1$	0	0
1	x_{3}	$\frac{\lambda+4}{\lambda+2}$	$\frac{2 \lambda+2}{\lambda+2}$	0	1	$\frac{\lambda}{\lambda+2}$
-1	x_{2}	$\frac{1+2}{\lambda+2}$	$\frac{-1}{\lambda+2}$	1	0	$-\frac{1}{\lambda+2}$
		$\frac{\lambda+3}{\lambda+2}$	$-\frac{1}{\lambda+2}$	0	0	$\frac{\lambda+1}{\lambda+2}$

Remind that $\lambda \in(-2,-1]$. Since the criterion row is nonpositive, the primal optimality (= dual feasibility) is preserved. Moreover, the primal feasibility (= dual optimality) is fulfilled.

Example 1.8 Consider the simplex table with real parameter λ

			3	-1	0	0
			x_{1}	x_{2}	x_{3}	x_{4}
-1	x_{2}	$2-\lambda$	-1	1	1	0
0	x_{4}	3	1	0	-1	1
		$\lambda-2$	-2	0	-1	0

Discuss optimality in dependence on the values of λ and perform one additional iteration of suitable simplex algorithm.

