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2 Parametric nonlinear optimization

We start with a simple example where we apply the Robinson–Fiacco Theorem.

Example 2.1 Let p be a real parameter and b be a fixed positive constant. Consider

min p x

s.t. 0 ≤ x ≤ b.

Elaborate the stability of the problem with respect to p.

Solution: Formulate the Lagrange function

L(x, u, v) = p x− ux + v(x− b), u, v ≥ 0,

and the Karush–Kuhn–Tucker conditions:

i. feasibility: 0 ≤ x ≤ b,

ii. complementarity: ux = 0, v(x− b) = 0, u, v ≥ 0,

iii. optimality:
dL(x, u, v)

dx
= p− u + v = 0.

Now, we will verify the assumptions of the Robinson–Fiacco theorem for KKT point, which
we obtain for particular value of parameter p, namely Strong Complementarity (SC), Lin-
ear Independence Constraint Qualification (LI) and Second Order Sufficient Condition
(SOSC).

1. p > 0: The optimal solution is x = 0. From complementarity ii) we immediately get
v = 0 and from optimality iii) we have u = p > 0. Thus we have KKT point (0, p, 0). Now
we can discuss the assumption of R–F theorem:

RF1. SC is fulfilled because the first constraint is active and the corresponding multiplier
is positive, and the second one is inactive and corresponding multiplier is equal to
zero.

RF2. LI is fulfilled, the gradient of the active constraint is equal to −1.

RF3. SOSC: We have that Ig(0) = I+g (0) = {1} and

Z(0) = {z 6= 0 : −z = 0} = ∅.

Since the set of (adjusted) feasible directions is empty, SOSC is fulfilled.
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We have verified the assumption of R–F theorem, therefore the local optimal solution is
”‘stable”’, i.e it is continuous and differentiable on some neighborhood of each p > 0.
Using the theorem, we can obtain the derivative of the reduced KKT point with respect
to the parameter

w(p) :=
(
x(p), ui(p), i ∈ Ig(x(p))

)
.

Set

D(p) =

(
∇2

xxL ∇xg1
∇xg1 0

)
=

(
0 −1
−1 0

)
, B(p) =

(
∇2

pxL

∇pg1

)
=

(
1
0

)
, (1)

then the derivative is
dw(p)

dp
= −D−1(p)B(p) = (0, 1)T .

2. p = 0: Since all feasible solutions are optimal, we must split this case to three sub-cases.
First, x = 0 leads again to u = p = 0 and v = 0, i.e. KKT point (0, 0, 0). Then

RF1. SC is NOT fulfilled because the first constraint is active and the corresponding
multiplier is equal to zero. (The second one is inactive and corresponding multiplier
is equal to zero.)

RF2. LI is fulfilled, the gradient of the active constraint is equal to −1.

RF3. SOSC: We have that Ig(0) = I0g (0) = {1},

Z(0) = {z 6= 0 : −z ≤ 0} = {z > 0} 6= ∅,

and
∇2

xxL(x, u, v) = 0,

thus it cannot hold that
z∇2

xxL(0, 0, 0) z > 0.

Therefore also SOSC is not fulfilled.

Now, x = b leads to KKT point (b,0,0), where v = −p = 0. Then

RF1. SC is NOT fulfilled because the second constraint is active and the corresponding
multiplier is equal to zero. (The first one is inactive and corresponding multiplier is
equal to zero.)

RF2. LI is fulfilled, the gradient of the active constraint is equal to 1.

RF3. SOSC: We have that Ig(0) = I0g (0) = {2},

Z(b) = {z 6= 0 : z ≤ 0} = {z < 0} 6= ∅,

and
∇2

xxL(x, u, v) = 0,

thus it cannot hold that
z∇2

xxL(b, 0, 0) z > 0.

Therefore also SOSC is not fulfilled.
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Finally, x ∈ (0, b) leads to KKT point (x, 0, 0), realize that Ig(x) = ∅. Then

RF1. SC is fulfilled because both constraints are inactive and the corresponding multipliers
are equal to zero.

RF2. LI is fulfilled, there is no active constraint.

RF3. SOSC: We have that Ig(0) = ∅,

Z(x) = {z 6= 0} 6= ∅,

and
∇2

xxL(x, u, v) = 0,

thus it cannot hold that
z∇2

xxL(b, 0, 0) z > 0.

Therefore SOSC is not fulfilled.

We can conclude that for p = 0 we cannot verify the stability of the problem.

3. p < 0: Left to the readers.
. �

Example 2.2 Let t be a real parameter. Consider

min x y − x2

s.t. x ≥ t,

y ≤ 1.

Elaborate the stability of the problem with respect to t.

Solution: First, realize that the problem is nonconvex and globally unbounded. So we
will investigate stability of local optima. Formulate the Lagrange function

L(x, y, u, v) = x y − x2 + u(t− x) + v(y − 1), u, v ≥ 0,

and the Karush–Kuhn–Tucker conditions:

i. feasibility: x ≥ t, y ≤ 1,

ii. complementarity: u(t− x) = 0 v(y − 1) = 0, u, v ≥ 0,

iii. optimality:
∂ L(x, y, u, v)

∂x
= y − 2x− u = 0,

∂ L(x, y, u, v)

∂y
= x + v = 0,
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Now, we will verify the assumptions of the Robinson–Fiacco theorem for KKT point(s),
which we obtain for particular value of parameter t, namely (SC), (LI) and (SOSC).

1. t = 0: First, let u > 0. Then from ii) x = 0 and from iii) v = 0 and y = u. From
feasibility and assumptions we have 0 < y = u ≤ 1. So we have KKT points (0, y, y, 0) for
arbitrary y ∈ (0, 1]. Then

RF1. SC: If y ∈ (0, 1), then (SC) is fulfilled. However, if y = 1 then the second constraint
is active and the corresponding multiplier is equal to zero v = 0, i.e. (SC) does not
hold.

RF2. LI: If y ∈ (0, 1), then Ig(0, y) = {1} and ∇g1 = (−1, 0)T , i.e. (LI) is fulfilled. If
y = 1, then Ig(0, 1) = {1, 2}, ∇g2 = (0, 1)T and (LI) is also fulfilled.

RF3. SOSC: If y ∈ (0, 1), then Ig(0, y) = I+g (0, y) = {1} and

Z(0, y) = {z 6= 0 : −z1 = 0} = {(0, z2) : z2 6= 0} 6= ∅,

and

∇2
xxL(x, y, u, v) =

(
−2 1
1 0

)
,

i.e.
zT ∇2

xxL(0, y, y, 0) z = 0, z ∈ Z(0, y).

Therefore (SOSC) is not fulfilled.
If y = 1, then I+g (0, 1) = {1} and I0g (0, 1) = {2} and

Z(0, 1) = {z 6= 0 : −z1 = 0, z2 ≤ 0} = {(0, z2) : z2 < 0} 6= ∅,

and again it holds
zT ∇2

xxL(0, 1, 1, 0) z = 0, z ∈ Z(0, 1),

i.e. (SOSC) is not fulfilled.

Now, still we consider t = 0 and let u = 0. Then, v > 0 leads to a contradiction,
because from ii) we have x = −v < 0 and at the same time from i) x ≥ 0. So we can only
consider u = v = 0. Then, from iii) we have x = y = 0, i.e. we have obtained the KKT
point (0, 0, 0, 0).

RF1. SC: The first constraint is active and the corresponding multiplier is equal to zero
u = 0, i.e. (SC) does not hold.

RF2. LI: Ig(0, 0) = {1} and ∇g1 = (−1, 0)T , i.e. (LI) is fulfilled.

RF3. SOSC: Ig(0, 0) = I0g (0, 0) = {1} and

Z(0, 0) = {z 6= 0 : −z1 ≤ 0} 6= ∅,

and if we take z1 > 0 and z2 < 0, then it holds

zT ∇2
xxL(0, 0, 0, 0) z = −2z21 + 2z1z2 < 0,

i.e. (SOSC) is not fulfilled.
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2. t > 0: Left to the readers (there is no KKT point).
3. t < 0: We elaborate the complementarity conditions:
3a. u = 0, v = 0: from iii) we get x = y = 0, which is feasible, thus we have KKT point
(0, 0, 0, 0). Then

RF1. SC: Both constraints are inactive and the corresponding multipliers are equal to
zero, i.e. (SC) holds.

RF2. LI: Ig(0, 0) = ∅, therefore (LI) is fulfilled.

RF3. SOSC: Ig(0, 0) = ∅ implies

Z(0, 0) = {z 6= 0} 6= ∅,

and if we take z1 > 0 and z2 < 0, then it holds

zT ∇2
xxL(0, 0, 0, 0) z = −2z21 + 2z1z2 < 0,

i.e. (SOSC) is not fulfilled.

3b. u = 0, y = 1: Left to the readers.
3c. x = t, v = 0: Left to the readers.
3d. x = t, y = 1: Using iii), we get u = 1− 2t and v = −t. Since t < 0, both multipliers
are nonnegative, thus we have obtained KKT points

(t, 1, 1− 2t,−t).

Then

RF1. SC: Both constraints are active and the corresponding multipliers are positive, i.e.
(SC) holds.

RF2. LI: Ig(t, 1) = {1, 2}, and ∇g1 = (−1, 0)T , ∇g2 = (0, 1)T therefore (LI) is fulfilled.

RF3. SOSC: I+g (0, 0) = {1, 2} and

Z(0, 0) = {z 6= 0 : −z1 = 0, z2 = 0} = ∅,

i.e. (SOSC) is fulfilled.

We can conclude that the problem is stable on a neighborhood of the point (t, 1) for arbi-
trary t < 0.

Example 2.3 Let t be a real parameter. Consider

min (x1 − t)2 + (x2 + 1)2

s.t. − x1 + x2 ≥ 0,

x1 + x2 ≥ 0.

Elaborate the stability of the problem on the neighborhood of t = 1.
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Example 2.4 Consider problem from Example 1.1. Apply the postoptimization approach
to add the constraint

x1 ≥
1

2
.
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