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Algorithm

Benders decomposition

Benders decomposition can be used to solve:

linear programming

mixed-integer (non)linear programming

two-stage stochastic programming (L-shaped algorithm)

multistage stochastic programming (Nested Benders decomposition)
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Algorithm

Benders decomposition for two-stage linear programming
problems

min cT x + qT y

s.t. Ax = b,

Tx + Wy = h,

x ≥ 0,

y ≥ 0.

(1)

ASS. B1 := {x : Ax = b, x ≥ 0} is bounded and the problem has an
optimal solution.
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Algorithm

Benders decomposition

We define the recourse function (second-stage value function, slave
problem)

f (x) = min{qT y : Wy = h − Tx , y ≥ 0} (2)

If for some x is {y : Wy = h − Tx , y ≥ 0} = ∅, then we set f (x) =∞.
The recourse function is piecewise linear, convex, and bounded below ...
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Algorithm

Benders decomposition

Proof (outline):

bounded below and piecewise linear (affine): There are finitely
many optimal basis B chosen from W such that

f (x) = qTBB
−1(h − Tx),

where feasibility B−1(h − Tx) ≥ 0 is fulfilled for x ∈ B1. Optimality
condition qTBB

−1W − q ≤ 0 does not depend on x .
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Algorithm

Benders decomposition

Proof (outline):

convex: let x1, x2 ∈ B1 and y1, y2 be such that f (x1) = qT y1 and
f (x2) = qT y2. For arbitrary λ ∈ (0, 1) and x = λx1 + (1− λ)x2 we
have

λy1 + (1− λ)y2 ∈ {y : Wy = h − Tx , y ≥ 0},

i.e. the convex combination of y ’s is feasible. Thus we have

f (x) = min{qT y : Wy = h − Tx , y ≥ 0} (3)

≤ qT (λy1 + (1− λ)y2) = λf (x1) + (1− λ)f (x2). (4)
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Algorithm

Benders decomposition

We have an equivalent NLP problem

min cT x + f (x)

s.t. Ax = b,

x ≥ 0.

(5)

We solve the master problem (first-stage problem)

min cT x + θ

s.t. Ax = b,

f (x) ≤ θ,
x ≥ 0.

(6)

We would like to approximate f (x) (from below) ...
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Algorithm

Algorithm – the feasibility cut

Solve

f (x̂) = min{qT y : Wy = h − Tx̂ , y ≥ 0} (7)

= max{(h − Tx̂)Tu : W Tu ≤ q}. (8)

If the dual problem is unbounded (primal is infeasible), then there
exists a growth direction ũ such that W T ũ ≤ 0 and (h − Tx̂)T ũ > 0. For
any feasible x there exists some y ≥ 0 such that Wy = h − Tx . If we
multiply it by ũ

ũT (h − Tx̂) = ũTWy ≤ 0,

which has to hold for any feasible x , but is violated by x̂ . Thus by

ũT (h − Tx) ≤ 0

the infeasible x̂ is cut off.
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Algorithm

Algorithm – the optimality cut

There is an optimal solution û of the dual problem such that

f (x̂) = (h − Tx̂)T û.

For arbitrary x we have

f (x) = sup
u
{(h − Tx)Tu : W Tu ≤ q}, (9)

≥ (h − Tx)T û, (10)

because û is feasible for arbitrary x . From inequality f (x) ≤ θ we have the
optimality cut

ûT (h − Tx) ≤ θ.

If this cut is fulfilled for actual (x̂ , θ̂), then STOP, x̂ is an optimal solution.
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Algorithm

Algorithm – master problem

We solve the master problem with cuts

min cT x + θ

s.t. Ax = b,

ũTl (h − Tx) ≤ 0, l = 1, . . . , L,

ũTk (h − Tx) ≤ θ, k = 1, . . . ,K ,

x ≥ 0.

(11)
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Algorithm

Algorithm

0. INIC: Set θ = −∞, L = 0, K = 0.

1. Solve the master problem to obtain (x̂ , θ̂).

2. For x̂ , solve the dual of the second-stage (recourse) problem to
obtain

a direction of unbounded decrease (feasibility cut), L = L + 1,
or an optimal solution (optimality cut), K = K + 1.

3. STOP, if the current solution (x̂ , θ̂) fulfills the optimality cuts.
Otherwise GO TO Step 1.
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Algorithm

Convergence of the algorithm

There are finitely many extreme directions that can generate the feasibility
cuts and finitely many (dual) feasible basis which can produce the
optimality cuts.

Let (x∗, θ∗) be an optimal solution of the reformulated original problem.

1. The feasibility set of the master problem (6) is always contained in
the feasibility set of the master problem with cuts (11) (no feasible
solutions are cut).

2. The optimal solution (x̂ , θ̂) obtained by the algorithm is feasible for
the master problem (6), because

θ̂ ≥ (h − Tx̂)T û = f (x̂).

Thus, from 1. and 2. we obtain

cT x∗ + θ∗ ≥ cT x̂ + θ̂ ≥ cT x∗ + θ∗.

Kall and Mayer (2005), Proposition 2.19
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Algorithm

Benders optimality cuts

Kall and Mayer (2005)
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Example

Example

min 2x + 2y1 + 3y2

s.t. x + y1 + 2y2 = 3,

3x + 2y1 − y2 = 4,

x , y1, y2 ≥ 0.

(12)
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Example

Example

Recourse function

f (x) = min 2y1 + 3y2

s.t. y1 + 2y2 = 3− x ,

2y1 − y2 = 4− 3x ,

y1, y2 ≥ 0.

(13)
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Example

Iteration 1

Set θ = −∞ and solve master problem

min
x

2x s.t. x ≥ 0. (14)

Optimal solution x̂ = 0.
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Example

Iteration 1

Solve the dual problem for x̂ = 0:

max
u

(3− x)u1 + (4− 3x)u2

s.t. u1 + 2u2 ≤ 2,

2u1 − u2 ≤ 3.

(15)

Optimal solution is û = (8/5, 1/5) with optimal value 28/5, thus no
feasibility cut is necessary. We can construct an optimality cut

(3− x)8/5 + (4− 3x)1/5 = 28/5− 11/5x ≤ θ.
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Example

Iteration 2

Add the optimality cut and solve

min
x ,θ

2x

s.t. 28/5− 11/5x ≤ θ,
x ≥ 0.

(16)

Optimal solution (x̂ , θ̂) = (2.5455, 0) with optimal value 5.0909.
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Example

Iteration 2

Solve the dual problem for x̂ = 2.5455:

max
u

(3− x)u1 + (4− 3x)u2

s.t. u1 + 2u2 ≤ 2,

2u1 − u2 ≤ 3.

(17)

Optimal solution is û = (1.5, 0) with optimal value 0.6818, thus no
feasibility cut is necessary. We can construct an optimality cut

(3− x)1.5 + (4− 3x)0 = 4.5− 1.5x ≤ θ.
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Example

Iteration 3

Add the optimality cut and solve

min
x ,θ

2x

s.t. 28/5− 11/5x ≤ θ,
4.5− 1.5x ≤ θ,
x ≥ 0.

(18)

...
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Applications

Two-stage stochastic programming problem

Probabilities 0 < ps < 1,
∑

s ps = 1,

min cT x +
S∑

s=1

psq
T
s ys

s.t. Ax = b,

Wy1 +T1x = h1,
Wy2 +T2x = h2,

. . .
...

...
...

WyS +TSx = hS ,

x ≥ 0, ys ≥ 0, s = 1, . . . ,S .

(19)

One master and S “second-stage” problems – apply the dual approach to
each of them.
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Applications

Minimization of Conditional Value at Risk

If the distribution of Ri is discrete with realizations ris and probabilities
ps = 1/S , then we can use linear programming formulation

min
ξ,xi

ξ +
1

(1− α)S

S∑
s=1

[−
n∑

i=1

xi ris − ξ]+,

s.t.

n∑
i=1

xiR i ≥ r0,

n∑
i=1

xi = 1, xi ≥ 0,

where R i = 1/S
∑S

s=1 ris , [·]+ = max{·, 0}.
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Applications

Conditional Value at Risk

Master problem

min
ξ,xi

ξ +
1

(1− α)S

S∑
s=1

fs(x , ξ),

s.t.

n∑
i=1

xiR i ≥ r0,
n∑

i=1

xi = 1, xi ≥ 0,

Second-stage problems

fs(x , ξ) = min
y

y ,

s.t. y ≥ −
n∑

i=1

xi ris − ξ,

y ≥ 0.

Solve the dual problems quickly ..
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