An introduction to Benders decomposition

Martin Branda

Charles University
Faculty of Mathematics and Physics Department of Probability and Mathematical Statistics

Computational Aspects of Optimization

Content

(1) Algorithm
(2) Example
(3) Extensions and applications

- L-shaped algorithm
- Minimization of Conditional Value at Risk
- Nested Benders decomposition

Benders decomposition

Benders decomposition can be used to solve:

- linear programming
- mixed-integer (non)linear programming
- two-stage stochastic programming (L-shaped algorithm)
- multistage stochastic programming (Nested Benders decomposition)

Benders decomposition for two-stage linear programming problems

$$
\begin{array}{cl}
\min & c^{T} x+q^{T} y \\
\text { s.t. } & A x=b \\
& T x+W y=h, \tag{1}\\
& x \geq 0 \\
y \geq 0
\end{array}
$$

ASS. $\mathcal{B}_{1}:=\{x: A x=b, x \geq 0\}$ is bounded and the problem has an optimal solution.

Benders decomposition

We define the recourse function (second-stage value function, slave problem)

$$
\begin{equation*}
f(x)=\min \left\{q^{T} y: W y=h-T x, y \geq 0\right\} \tag{2}
\end{equation*}
$$

If for some x is $\{y: W y=h-T x, y \geq 0\}=\emptyset$, then we set $f(x)=\infty$. The recourse function is piecewise linear, convex, and bounded below ...

Benders decomposition

Proof (outline):

- bounded below and piecewise linear (affine): There are finitely many optimal basis B chosen from W such that

$$
f(x)=q_{B}^{T} B^{-1}(h-T x)
$$

where feasibility $B^{-1}(h-T x) \geq 0$ is fulfilled for $x \in \mathcal{B}_{1}$. Optimality condition $q_{B}^{T} B^{-1} W-q \leq 0$ does not depend on x.

Benders decomposition

Proof (outline):

- convex: let $x_{1}, x_{2} \in \mathcal{B}_{1}$ and y_{1}, y_{2} be such that $f\left(x_{1}\right)=q^{T} y_{1}$ and $f\left(x_{2}\right)=q^{T} y_{2}$. For arbitrary $\lambda \in(0,1)$ and $x=\lambda x_{1}+(1-\lambda) x_{2}$ we have

$$
\lambda y_{1}+(1-\lambda) y_{2} \in\{y: W y=h-T x, y \geq 0\}
$$

i.e. the convex combination of y 's is feasible. Thus we have

$$
\begin{align*}
f(x) & =\min \left\{q^{T} y: W y=h-T x, y \geq 0\right\} \tag{3}\\
& \leq q^{T}\left(\lambda y_{1}+(1-\lambda) y_{2}\right)=\lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right) \tag{4}
\end{align*}
$$

Benders decomposition

We have an equivalent NLP problem

$$
\begin{gather*}
\min c^{T} x+f(x) \\
\text { s.t. } A x=b, \tag{5}\\
x \geq 0 .
\end{gather*}
$$

We solve the master problem (first-stage problem)

$$
\begin{gather*}
\min c^{T} x+\theta \\
\text { s.t. } A x=b \\
 \tag{6}\\
f(x) \leq \theta \\
x \geq 0
\end{gather*}
$$

We would like to approximate $f(x)$ (from below) ...

Algorithm - the feasibility cut

Solve

$$
\begin{align*}
f(\hat{x}) & =\min \left\{q^{T} y: W y=h-T \hat{x}, y \geq 0\right\} \tag{7}\\
& =\max \left\{(h-T \hat{x})^{T} u: W^{T} u \leq q\right\} \tag{8}
\end{align*}
$$

If the dual problem is unbounded (primal is infeasible), then there exists a growth direction \tilde{u} such that $W^{\top} \tilde{u} \leq 0$ and $(h-T \hat{x})^{T} \tilde{u}>0$. For any feasible x there exists some $y \geq 0$ such that $W y=h-T x$. If we multiply it by \tilde{u}

$$
\tilde{u}^{T}(h-T \hat{x})=\tilde{u}^{T} W y \leq 0,
$$

which has to hold for any feasible x, but is violated by \hat{x}. Thus by

$$
\tilde{u}^{T}(h-T x) \leq 0
$$

the infeasible \hat{x} is cut off.

Algorithm - the optimality cut

There is an optimal solution \hat{u} of the dual problem such that

$$
f(\hat{x})=(h-T \hat{x})^{T} \hat{u} .
$$

For arbitrary x we have

$$
\begin{align*}
f(x) & =\sup _{u}\left\{(h-T x)^{T} u: W^{T} u \leq q\right\} \tag{9}\\
& \geq(h-T x)^{T} \hat{u} \tag{10}
\end{align*}
$$

because \hat{u} is feasible for arbitrary x. From inequality $f(x) \leq \theta$ we have the optimality cut

$$
\hat{u}^{T}(h-T x) \leq \theta .
$$

If this cut is fulfilled for actual $(\hat{x}, \hat{\theta})$, then STOP, \hat{x} is an optimal solution.

Algorithm - master problem

We solve the master problem with cuts

$$
\begin{align*}
\min & c^{T} x+\theta \\
\text { s.t. } & A x=b, \\
& \tilde{u}_{l}^{T}(h-T x) \leq 0, \quad I=1, \ldots, L, \tag{11}\\
& \tilde{u}_{k}^{T}(h-T x) \leq \theta, \quad k=1, \ldots, K, \\
& x \geq 0 .
\end{align*}
$$

Algorithm

0 . INIC: Set $\theta=-\infty, L=0, K=0$.

1. Solve the master problem to obtain $(\hat{x}, \hat{\theta})$.
2. For \hat{x}, solve the dual of the second-stage (recourse) problem to obtain

- a direction of unbounded decrease (feasibility cut), $L=L+1$,
- or an optimal solution (optimality cut), $K=K+1$.

3. STOP, if the current solution $(\hat{x}, \hat{\theta})$ fulfills the optimality cuts. Otherwise GO TO Step 1.

Convergence of the algorithm

There are finitely many extreme directions that can generate the feasibility cuts and finitely many (dual) feasible basis which can produce the optimality cuts.

Let $\left(x^{*}, \theta^{*}\right)$ be an optimal solution of the reformulated original problem.

1. The feasibility set of the master problem (6) is always contained in the feasibility set of the master problem with cuts (11) (no feasible solutions are cut).
2. The optimal solution $(\hat{x}, \hat{\theta})$ obtained by the algorithm is feasible for the master problem (6), because

$$
\hat{\theta} \geq(h-T \hat{x})^{T} \hat{u}=f(\hat{x}) .
$$

Thus, from 1. and 2. we obtain

$$
c^{T} x^{*}+\theta^{*} \geq c^{T} \hat{x}+\hat{\theta} \geq c^{T} x^{*}+\theta^{*} .
$$

Kall and Mayer (2005), Proposition 2.19

Benders optimality cuts

Kall and Mayer (2005)

Content

(1) Algorithm
(2) Example
(3) Extensions and applications

- L-shaped algorithm
- Minimization of Conditional Value at Risk
- Nested Benders decomposition

Example

$$
\begin{aligned}
\min & 2 x+2 y_{1}+3 y_{2} \\
\text { s.t. } & x+y_{1}+2 y_{2}=3, \\
& 3 x+2 y_{1}-y_{2}=4, \\
& x, y_{1}, y_{2} \geq 0
\end{aligned}
$$

Example

Recourse function

$$
\begin{aligned}
f(x)=\min & 2 y_{1}+3 y_{2} \\
\text { s.t. } & y_{1}+2 y_{2}=3-x, \\
& 2 y_{1}-y_{2}=4-3 x, \\
& y_{1}, y_{2} \geq 0 .
\end{aligned}
$$

Iteration 1

Set $\theta=-\infty$ and solve master problem

$$
\begin{equation*}
\min _{x} 2 x \text { s.t. } x \geq 0 \tag{14}
\end{equation*}
$$

Optimal solution $\hat{x}=0$.

Iteration 1

Solve the dual problem for $\hat{x}=0$:

$$
\begin{gather*}
\max _{u}(3-x) u_{1}+(4-3 x) u_{2} \\
\text { s.t. } u_{1}+2 u_{2} \leq 2, \tag{15}\\
2 u_{1}-u_{2} \leq 3 .
\end{gather*}
$$

Optimal solution is $\hat{u}=(8 / 5,1 / 5)$ with optimal value $28 / 5$, thus no feasibility cut is necessary. We can construct an optimality cut

$$
(3-x) 8 / 5+(4-3 x) 1 / 5=28 / 5-11 / 5 x \leq \theta
$$

Iteration 2

Add the optimality cut and solve

$$
\begin{align*}
& \min _{x, \theta} 2 x+\theta \\
& \text { s.t. } 28 / 5-11 / 5 x \leq \theta, \\
& \quad x \geq 0 \tag{16}
\end{align*}
$$

Optimal solution $(\hat{x}, \hat{\theta})=(2.5455,0)$ with optimal value 5.0909.

Iteration 2

Solve the dual problem for $\hat{x}=2.5455$:

$$
\begin{gather*}
\max _{u}(3-x) u_{1}+(4-3 x) u_{2} \\
\text { s.t. } u_{1}+2 u_{2} \leq 2, \tag{17}\\
2 u_{1}-u_{2} \leq 3 .
\end{gather*}
$$

Optimal solution is $\hat{u}=(1.5,0)$ with optimal value 0.6818 , thus no feasibility cut is necessary. We can construct an optimality cut

$$
(3-x) 1.5+(4-3 x) 0=4.5-1.5 x \leq \theta .
$$

Iteration 3

Add the optimality cut and solve

$$
\begin{aligned}
\min _{x, \theta} & 2 x+\theta \\
\text { s.t. } & 28 / 5-11 / 5 x \leq \theta, \\
& 4.5-1.5 x \leq \theta, \\
& x \geq 0
\end{aligned}
$$

Content

(2) Example
(3) Extensions and applications

- L-shaped algorithm
- Minimization of Conditional Value at Risk
- Nested Benders decomposition

Two-stage stochastic programming problem

Probabilities $0<p_{s}<1, \sum_{s} p_{s}=1$,

$$
\begin{aligned}
& \min c^{T} x+\sum_{s=1}^{S} p_{s} q_{s}^{T} y_{s} \\
& \text { s.t. } A x=b \text {, } \\
& \begin{array}{lll}
W_{y_{1}} & +T_{1 x}=h_{1}, \\
W_{y_{2}} & +T_{2} x=h_{2},
\end{array} \\
& W_{S S}+T_{S} x=h_{S}, \\
& x \geq 0, y_{s} \geq 0, s=1, \ldots, S .
\end{aligned}
$$

One master and S "second-stage" problems - apply the dual approach to each of them.

Minimization of Conditional Value at Risk

If the distribution of R_{i} is discrete with realizations $r_{i s}$ and probabilities $p_{s}=1 / S$, then we can use linear programming formulation

$$
\begin{aligned}
\min _{\xi, x_{i}} & \xi+\frac{1}{(1-\alpha) S} \sum_{s=1}^{S}\left[-\sum_{i=1}^{n} x_{i} r_{i s}-\xi\right]_{+} \\
\text {s.t. } & \sum_{i=1}^{n} x_{i} \bar{R}_{i} \geq r_{0} \\
& \sum_{i=1}^{n} x_{i}=1, \quad x_{i} \geq 0
\end{aligned}
$$

where $\bar{R}_{i}=1 / S \sum_{s=1}^{S} r_{i s},[\cdot]_{+}=\max \{\cdot, 0\}$.

Conditional Value at Risk

Master problem

$$
\begin{aligned}
& \min _{\xi, x_{i}} \xi+\frac{1}{(1-\alpha) S} \sum_{s=1}^{S} f_{s}(x, \xi), \\
& \text { s.t. } \sum_{i=1}^{n} x_{i} \bar{R}_{i} \geq r_{0}, \sum_{i=1}^{n} x_{i}=1, x_{i} \geq 0,
\end{aligned}
$$

Second-stage problems

$$
\begin{aligned}
& f_{s}(x, \xi)=\min _{y} y \\
& \text { s.t. } y \geq-\sum_{i=1}^{n} x_{i} r_{i s}-\xi, \\
& y \geq 0
\end{aligned}
$$

Solve the dual problems quickly ..

Multistage Stochastic Linear Programming

MSLiP=Multistage Stochastic Linear Programming - "nested Benders decomposition with added algorithmic features".

- Support of an arbitrary number of time periods and finite discrete distributions with Markovian structure.
Scenario TREE $=$ a set of nodes $\mathcal{K}=\left\{1, \ldots, K_{T}\right\}$ with stages $\mathcal{K}_{t}=\left\{K_{t-1}+1, \ldots, K_{t}\right\}$ and probabilities $p_{1}, \ldots, p_{T}>0, \sum_{n \in \mathcal{K}_{t}} p_{n}=1$,
- a_{n} the ancestor of the node n,
- $\mathcal{D}(n)$ the set of descentants of the node n,
- $t(n)$ the time stage of the node n.

Scenario tree

For example $a(12)=5, \mathcal{D}(6)=\{14,15,16\}, t(4)=3$.

Nested formulation of the discrete MSLP

For starting node ($n=1$)

$$
\begin{aligned}
F_{1} & =\min _{x_{1}, \vartheta_{1}}\left\{c_{1}^{\top} x_{1}+\vartheta_{1} \text { s.t. } A x_{1}=b, \vartheta_{1} \geq Q_{1}\left(x_{1}\right)\right\}, \\
Q_{1}\left(x_{1}\right) & =\sum_{m \in \mathcal{D}(1)} \frac{p_{m}}{p_{n}} F_{m}\left(x_{1}\right) .
\end{aligned}
$$

For nested stages $n=2, \ldots, K_{T-1}$

$$
\begin{aligned}
F_{n}\left(x_{a_{n}}\right)= & \min _{x_{n}, \vartheta_{n}}\left\{c_{n}^{T} x_{n}+\vartheta_{n} \text { s.t. } W_{n} x_{n}=h_{n}-T_{n} x_{a_{n}},\right. \\
& \left.\vartheta_{n} \geq Q_{n}\left(x_{n}\right)\right\}, \\
Q_{n}\left(x_{n}\right)= & \sum_{m \in \mathcal{D}(n)} \frac{p_{m}}{p_{n}} F_{m}\left(x_{n}\right) .
\end{aligned}
$$

For final stage $n=K_{T-1}+1, \ldots, K_{T}$

$$
F_{n}\left(x_{a_{n}}\right)=\min _{x_{n}}\left\{c_{n}^{\top} x_{n} \text { s.t. } W x_{n}=h_{n}-T_{n} x_{a_{n}}\right\} .
$$

Nested two-stage problem

$(M)(n)$ Master program $=n$-th nested two-stage problem:

$$
\begin{aligned}
F_{n}\left(x_{a_{n}}\right)=\min _{x_{n}, \vartheta_{n}} c_{n}^{T} x_{n}+\vartheta_{n} & \\
\text { s.t. } & \\
W_{n} x_{n} & =h_{n}-T_{n} x_{a_{n}}, \\
\vartheta_{n} & \geq Q_{n}\left(x_{n}\right), \text { convex constraint }, \\
Q_{n}\left(x_{n}\right) & =\sum_{m \in \mathcal{D}(n) \frac{p_{m}}{p_{n}} F_{m}\left(x_{n}\right) .}
\end{aligned}
$$

$F_{1}=F_{1}\left(x_{a_{1}}\right)$, where we set $x_{a_{1}}=0, W_{1}=A$ and $h_{1}=b$. We set $\vartheta_{n}=0$ for $n=K_{T-1}+1, \ldots, K_{T}$.

Relaxed Master problem

$(\mathrm{RM})(\mathrm{n})$ Relaxed Master program, $n=1, \ldots, K_{T}$:

$$
\begin{array}{rlrl}
\widetilde{F}_{n}\left(x_{a_{n}}\right)=\min _{x_{n}, \vartheta_{n}} c_{n}^{T} x_{n}+\vartheta_{n} & & & \\
\text { s.t. } & & \\
W_{n} x_{n} & =h_{n}-T_{n} x_{a_{n}}, & & \text { feasibility cuts } \\
F_{n} x_{n} & \geq f_{n}, & & \text { optimality cuts. }
\end{array}
$$

$\widetilde{F}_{1}=\widetilde{F}_{1}\left(x_{a_{1}}\right)$, where we set $x_{a_{1}}=0, W_{1}=A$ and $h_{1}=b$. $(\mathrm{RM})(\mathrm{n}), n=K_{T-1}+1, \ldots, K_{T}$, compensatory bounds ϑ_{n} and cuts are not involved.

Dual problem

$(R D)(n)$ Dual problem to the relaxed master problem (RM)(n), $n=2, \ldots, K_{T}$:

$$
\begin{aligned}
& \max _{\pi_{n}, \alpha_{n}, \beta_{n}, \lambda_{n}, \mu_{n}} \pi_{n}^{T}\left(h_{n}-T_{n} x_{a_{n}}\right)+\alpha_{n}^{T} f_{n}+\beta_{n}^{T} d_{n} \\
& \text { s.t. } \\
& \pi_{n}^{T} W_{n}+\alpha_{n}^{T} F_{n}+\beta_{n}^{T} D_{n}=c_{n}, \\
& 1^{T} \beta_{n}=1, \\
& \alpha_{n}, \beta_{n} \geq 0, \\
& \pi_{n} \text { unrestricted. }
\end{aligned}
$$

We set $\alpha_{n}, \beta_{n}=0$ for $n=K_{T-1}+1, \ldots, K_{T}$

Algorithm MSLiP

(0)

- Set $\vartheta_{n}^{(0)}=0$ for all $n=1, \ldots, K_{T-1}$,
- Solve

$$
x_{1}^{(0)}=\arg \min _{x_{1}}\left\{c_{1}^{T} x_{1} \quad \text { s.t. } A x_{1}=b\right\} .
$$

Algorithm MSLiP

(1)

- Solve the dual problem $(\mathrm{RD})(m)$ to the $(\mathrm{RM})(m), \forall m \in \mathcal{D}(n)$. We get
- dual optimal solution $\left(\pi_{m}^{*}, \alpha_{m}^{*}, \beta_{m}^{*}\right), \forall m \in \mathcal{D}(n)$,
- or feasible extreme direction $\left(\pi_{m(j)}^{j}, \alpha_{m(j)}^{j}, \beta_{m(j)}^{j}\right)$ in which the dual problem to the subproblem $m(j) \in \mathcal{D}(n)$ is unbounded, i.e.

$$
\pi_{m(j)}^{j}\left(b_{m(j)}-W_{m} x_{n}\right)+\alpha_{m(j)}^{j} f_{m}>0 .
$$

\rightarrow feasibility cut of the feasible set of (MR)(n):

$$
\underbrace{\pi_{m(j)}^{j} W_{m}}_{\left(F_{n}\right)_{j} .} x_{n} \geq \underbrace{\pi_{m(j)}^{j} b_{m(j)}+\alpha_{m(j)}^{j} f_{m}}_{\left(f_{n}\right)_{j}}
$$

Algorithm MSLiP

(2)

- If $\vartheta_{n}<Q_{n}\left(x_{n}\right) \rightarrow$ optimality cut of the feasible set of $(M R)(n)$

$$
\begin{array}{r}
\overbrace{\sum_{m \in \mathcal{D}(n)} p_{m} \pi_{m}^{i} T_{m}}^{\left(D_{n}\right)_{i} \cdot} x_{n}+\vartheta_{n} \geq \\
\geq \underbrace{\sum_{m \in \mathcal{D}(n)} p_{m}\left[\pi_{m}^{i} h_{m}+\alpha_{m}^{i} f_{m}+\beta_{m}^{i} d_{m}\right]}_{\left(d_{n}\right)_{i}} .
\end{array}
$$

- Else if $\vartheta_{n} \geq Q_{n}\left(x_{n}\right)$ then we have optimal solution x_{n} of (MR)(n).

Fast-forward-fast-back (FFFB)

- FORWARD pass $\left(t=1, \ldots, T, n=K_{t}-1, \ldots, K_{t}\right)$ terminates by:
- infeasibility of the relaxed master program (RM)(n) \rightarrow add feasibility cut to $(\mathrm{RM})\left(a_{n}\right)$ \& BACKTRACKING,
- obtaining optimal solutions \hat{x}_{n} for all $n=1, \ldots, K_{T} \rightarrow$ BACKWARD pass.
- BACKTRACKING $\left(n \rightarrow a_{n}\right)$ terminates by:
- feasibility of the relaxed master program $(\mathrm{RM})\left(a_{n}\right) \rightarrow$ FORWARD pass,
- reaching the root node with an infeasible (RM)(1) \rightarrow MSLP is infeasible.
- BACKWARD pass always goes through all nodes (adding optimality cuts if necessary).
- No optimality cuts have been added \rightarrow optimal solution,
- else \rightarrow FORWARD pass.

MSLiP

- The algorithm (FFFB) terminates in a finite number of iterations.
- If termination occurs after BACKWARD pass then the current solution is optimal.
- Validity of
- feasibility cuts \sim feasible solutions of $(M)(n)$ are not cut off.
- optimality cuts \sim objective function of (RM)(n) yields a lower bound to the objective function $(M)(n)$.
- Cuts generated by the algorithm are valid.

$$
" \widetilde{F}_{1}^{(B A C K W A R D)} \leq F_{1} \leq \widetilde{F}_{1}^{(F O R W A R D)}
$$

QDECOM

$=$ Quadratic DECOMposizion, regularizing quadratic term in the objective (two-stage).
(RMQ) Relaxed Master program

$$
\begin{aligned}
\tilde{F}=\min _{x, \vartheta^{m}} c^{T} x_{n}+\sum_{m \in \mathcal{D}} p_{m} \vartheta^{m} & +\frac{1}{2}\left\|x-x^{(i-1)}\right\|^{2} \\
\text { s.t. } & \\
A x & =b, \\
F x & \geq f, \\
D^{m} x+1 \vartheta^{m} & \geq d^{m}, \forall m \in \mathcal{D} .
\end{aligned}
$$

Literature

- L. Adam: Nelinearity v úlohách stochastického programování: aplikace na řízení portfolia. Diplomová práce MFF UK, 2011. (IN CZECH)
- J.F. Benders (1962): Partitioning procedures for solving mixed-variables programming problems, Numerische Mathematik 4(3), 238-252.
- P. Kall, J. Mayer: Stochastic Linear Programming: Models, Theory, and Computation. Springer, 2005.

