An introduction to Benders decomposition

Martin Branda

Charles University Faculty of Mathematics and Physics Department of Probability and Mathematical Statistics

Computational Aspects of Optimization

(日)

Content

1 Algorithm

Example

Extensions and applications

- L-shaped algorithm
- Minimization of Conditional Value at Risk
- Nested Benders decomposition

(日)

Benders decomposition

Benders decomposition can be used to solve:

- Iinear programming
- mixed-integer (non)linear programming
- two-stage stochastic programming (L-shaped algorithm)
- multistage stochastic programming (Nested Benders decomposition)

Algorithm

Benders decomposition for two-stage linear programming problems

min
$$c^T x + q^T y$$

s.t. $Ax = b$,
 $Tx + Wy = h$, (1)
 $x \ge 0$,
 $y \ge 0$.

ASS. $\mathcal{B}_1 := \{x : Ax = b, x \ge 0\}$ is bounded and the problem has an optimal solution.

<ロ> < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We define the **recourse function** (second-stage value function, slave problem)

$$f(x) = \min\{q^T y: Wy = h - Tx, y \ge 0\}$$
(2)

If for some x is $\{y : Wy = h - Tx, y \ge 0\} = \emptyset$, then we set $f(x) = \infty$. The recourse function is piecewise linear, convex, and bounded below ...

イロト イポト イヨト イヨト 二日

Benders decomposition

Proof (outline):

• **bounded below and piecewise linear (affine)**: There are finitely many optimal basis *B* chosen from *W* such that

$$f(x) = q_B^T B^{-1}(h - Tx),$$

where feasibility $B^{-1}(h - Tx) \ge 0$ is fulfilled for $x \in \mathcal{B}_1$. Optimality condition $q_B^T B^{-1} W - q \le 0$ does not depend on x.

イロト イポト イヨト イヨト 二日

Benders decomposition

Proof (outline):

• **convex**: let $x_1, x_2 \in \mathcal{B}_1$ and y_1, y_2 be such that $f(x_1) = q^T y_1$ and $f(x_2) = q^T y_2$. For arbitrary $\lambda \in (0, 1)$ and $x = \lambda x_1 + (1 - \lambda) x_2$ we have

$$\lambda y_1 + (1 - \lambda)y_2 \in \{y : Wy = h - Tx, y \ge 0\},$$

i.e. the convex combination of y's is feasible. Thus we have

$$f(x) = \min\{q^T y: Wy = h - Tx, y \ge 0\}$$
 (3)

$$\leq q^{\mathsf{T}}(\lambda y_1 + (1-\lambda)y_2) = \lambda f(x_1) + (1-\lambda)f(x_2).$$
(4)

イロト イポト イヨト イヨト 二日

Algorithm

Benders decomposition

We have an equivalent NLP problem

min
$$c^T x + f(x)$$

s.t. $Ax = b$, (5
 $x \ge 0$.

We solve the master problem (first-stage problem)

min
$$c^T x + \theta$$

s.t. $Ax = b$,
 $f(x) \le \theta$,
 $x \ge 0$. (6)

< □ > < □ > < □ > < □ >

We would like to approximate f(x) (from below) ...

Algorithm – the feasibility cut

Solve

$$f(\hat{x}) = \min\{q^T y : Wy = h - T\hat{x}, y \ge 0\}$$
(7)
= $\max\{(h - T\hat{x})^T u : W^T u \le q\}.$ (8)

If the dual problem is unbounded (primal is infeasible), then there exists a growth direction \tilde{u} such that $W^T \tilde{u} \leq 0$ and $(h - T\hat{x})^T \tilde{u} > 0$. For any feasible x there exists some $y \geq 0$ such that Wy = h - Tx. If we multiply it by \tilde{u}

$$\tilde{u}^{T}(h-T\hat{x})=\tilde{u}^{T}Wy\leq 0,$$

which has to hold for any feasible x, but is violated by \hat{x} . Thus by

$$\tilde{u}^T(h-Tx)\leq 0$$

the infeasible \hat{x} is cut off.

Martin Branda (KPMS MFF UK)

イロト 不得 トイヨト イヨト 三日

Algorithm – the optimality cut

There is an optimal solution \hat{u} of the dual problem such that

$$f(\hat{x}) = (h - T\hat{x})^T \hat{u}.$$

For arbitrary x we have

$$f(x) = \sup_{u} \{ (h - Tx)^{T} u : W^{T} u \le q \},$$
(9)

$$\ge (h - Tx)^{T} \hat{u},$$
(10)

because \hat{u} is feasible for arbitrary x. From inequality $f(x) \leq \theta$ we have the optimality cut

$$\hat{u}^{T}(h-Tx) \leq \theta.$$

If this cut is fulfilled for actual $(\hat{x}, \hat{\theta})$, then STOP, \hat{x} is an optimal solution.

◆□▶ ◆問▶ ◆臣▶ ◆臣▶ ─ 臣

Algorithm – master problem

We solve the master problem with cuts

min
$$c^T x + \theta$$

s.t. $Ax = b$,
 $\tilde{u}_l^T (h - Tx) \le 0, \ l = 1, \dots, L$, (11)
 $\tilde{u}_k^T (h - Tx) \le \theta, \ k = 1, \dots, K$,
 $x \ge 0$.

< □ > < □ > < □ > < □ > < □ >

э

11/39

2021-03-15

Martin Branda (KPMS MFF UK)

- 0. INIC: Set $\theta = -\infty$, L = 0, K = 0.
- 1. Solve the **master problem** to obtain $(\hat{x}, \hat{\theta})$.
- 2. For \hat{x} , solve the **dual of the second-stage** (recourse) problem to obtain
 - a direction of unbounded decrease (feasibility cut), L = L + 1,
 - or an optimal solution (optimality cut), K = K + 1.
- 3. STOP, if the current solution $(\hat{x}, \hat{\theta})$ fulfills the optimality cuts. Otherwise GO TO Step 1.

< ロ > < 同 > < 三 > < 三 >

Convergence of the algorithm

There are finitely many extreme directions that can generate the feasibility cuts and finitely many (dual) feasible basis which can produce the optimality cuts.

Let (x^*, θ^*) be an optimal solution of the reformulated original problem.

- 1. The feasibility set of the master problem (6) is always contained in the feasibility set of the master problem with cuts (11) (no feasible solutions are cut).
- 2. The optimal solution $(\hat{x}, \hat{\theta})$ obtained by the algorithm is feasible for the master problem (6), because

$$\hat{\theta} \ge (h - T\hat{x})^T \hat{u} = f(\hat{x}).$$

Thus, from 1. and 2. we obtain

$$c^{\mathsf{T}}x^* + \theta^* \ge c^{\mathsf{T}}\hat{x} + \hat{\theta} \ge c^{\mathsf{T}}x^* + \theta^*.$$

Kall and Mayer (2005), Proposition 2.19

イロト 不得 トイヨト イヨト 三日

Algorithm

Benders optimality cuts

Kall and Mayer (2005)

Martin Branda (KPMS MFF UK)

Image: A mathematical states and a mathem

Content

Extensions and applications

- L-shaped algorithm
- Minimization of Conditional Value at Risk
- Nested Benders decomposition

(日)

Example

Example

min
$$2x + 2y_1 + 3y_2$$

s.t. $x + y_1 + 2y_2 = 3$,
 $3x + 2y_1 - y_2 = 4$,
 $x, y_1, y_2 \ge 0$.
(12)

Martin Branda (KPMS MFF UK)

▶ ◀ Ē ▶ Ē ∽ ९ ୯ 2021-03-15 16 / 39

・ロト ・四ト ・ヨト ・ヨト

Example

Recourse function

$$f(x) = \min 2y_1 + 3y_2$$

s.t. $y_1 + 2y_2 = 3 - x$,
 $2y_1 - y_2 = 4 - 3x$,
 $y_1, y_2 \ge 0$.
(13)

Martin Branda (KPMS MFF UK)

▶ ◀ Ē ▶ Ē ∽ ९ ୯ 2021-03-15 17/39

< □ > < □ > < □ > < □ > < □ >

Iteration 1

Set $\theta=-\infty$ and solve master problem

$$\min_{x} 2x \text{ s.t. } x \ge 0. \tag{14}$$

Optimal solution $\hat{x} = 0$.

< □ > < □ > < □ > < □ > < □ >

Example

Iteration 1

Solve the dual problem for $\hat{x} = 0$:

$$\max_{u} (3-x)u_1 + (4-3x)u_2$$

s.t. $u_1 + 2u_2 \le 2$, (15)
 $2u_1 - u_2 \le 3$.

Optimal solution is $\hat{u} = (8/5, 1/5)$ with optimal value 28/5, thus no feasibility cut is necessary. We can construct an optimality cut

$$(3-x)8/5 + (4-3x)1/5 = 28/5 - 11/5x \le \theta.$$

(日)

Add the optimality cut and solve

$$\begin{array}{l} \min_{x,\theta} 2x + \theta \\ \mathrm{s.t.} \ 28/5 - 11/5x \leq \theta, \\ x \geq 0. \end{array} \tag{16}$$

Optimal solution $(\hat{x}, \hat{\theta}) = (2.5455, 0)$ with optimal value 5.0909.

イロト 不得 トイヨト イヨト 二日

Iteration 2

Solve the dual problem for $\hat{x} = 2.5455$:

$$\max_{u} (3-x)u_{1} + (4-3x)u_{2}$$

s.t. $u_{1} + 2u_{2} \le 2$, (17)
 $2u_{1} - u_{2} \le 3$.

Optimal solution is $\hat{u} = (1.5, 0)$ with optimal value 0.6818, thus no feasibility cut is necessary. We can construct an optimality cut

$$(3-x)1.5 + (4-3x)0 = 4.5 - 1.5x \le \theta.$$

< ロ > < 同 > < 三 > <

Add the optimality cut and solve

$$\begin{array}{l} \min_{x,\theta} 2x + \theta \\ \mathrm{s.t.} \ 28/5 - 11/5x \leq \theta, \\ 4.5 - 1.5x \leq \theta, \\ x \geq 0. \end{array}$$

$$(18)$$

・ロト ・ 同ト ・ ヨト ・

э

22 / 39

2021-03-15

...

Martin Branda (KPMS MFF UK)

Content

3 Extensions and applications

- L-shaped algorithm
- Minimization of Conditional Value at Risk
- Nested Benders decomposition

• 同 • • 三 • •

Two-stage stochastic programming problem

Probabilities
$$0 < p_s < 1$$
, $\sum_s p_s = 1$,

min
$$c^{T}x + \sum_{s=1}^{S} p_{s}q_{s}^{T}y_{s}$$

s.t. $Ax = b$,
 $Wy_{1} + T_{1}x = h_{1},$ (19)
 $Wy_{2} + T_{2}x = h_{2},$
 $\vdots \vdots \vdots$
 $Wy_{5} + T_{5}x = h_{5},$
 $x \ge 0, y_{5} \ge 0, s = 1, -S$

One master and S "second-stage" problems – apply the dual approach to each of them.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Minimization of Conditional Value at Risk

If the distribution of R_i is discrete with realizations r_{is} and probabilities $p_s = 1/S$, then we can use **linear programming** formulation

$$\begin{split} \min_{\xi, x_i} \xi &+ \frac{1}{(1-\alpha)S} \sum_{s=1}^{S} [-\sum_{i=1}^{n} x_i r_{is} - \xi]_+, \\ \text{s.t.} \quad \sum_{i=1}^{n} x_i \overline{R}_i \geq r_0, \\ &\sum_{i=1}^{n} x_i = 1, \ x_i \geq 0, \end{split}$$

where $\overline{R}_i = 1/S \sum_{s=1}^{S} r_{is}$, $[\cdot]_+ = \max\{\cdot, 0\}$.

Conditional Value at Risk

Master problem

$$\begin{split} \min_{\xi, x_i} \xi &+ \frac{1}{(1-\alpha)S} \sum_{s=1}^{S} f_s(x, \xi), \\ \text{s.t.} \ \sum_{i=1}^n x_i \overline{R}_i \geq r_0, \ \sum_{i=1}^n x_i = 1, \ x_i \geq 0, \end{split}$$

Second-stage problems

$$f_{s}(x,\xi) = \min_{y} y,$$

s.t. $y \ge -\sum_{i=1}^{n} x_{i}r_{is} - \xi,$
 $y \ge 0.$

Solve the dual problems quickly ..

Martin Branda (KPMS MFF UK)

▶ ৰ ≣ ▶ ≣ ৩৭৫ 2021-03-15 26/39

<ロト < 同ト < ヨト < ヨト

Multistage Stochastic Linear Programming

MSLiP=Multistage Stochastic Linear Programming - "nested Benders decomposition with added algorithmic features".

• Support of an arbitrary number of time periods and finite discrete distributions with Markovian structure.

Scenario TREE = a set of nodes $\mathcal{K} = \{1, \dots, K_T\}$ with stages $\mathcal{K}_t = \{K_{t-1} + 1, \dots, K_t\}$ and probabilities $p_1, \dots, p_T > 0$, $\sum_{n \in \mathcal{K}_*} p_n = 1$,

- a_n the ancestor of the node n,
- $\mathcal{D}(n)$ the set of descentants of the node n,
- t(n) the time stage of the node n.

イロト 不得 トイヨト イヨト 二日

Scenario tree

For example a(12) = 5, $\mathcal{D}(6) = \{14, 15, 16\}$, t(4) = 3.

Martin Branda (KPMS MFF UK)

(日)

Nested formulation of the discrete MSLP

For starting node (n = 1)

$$\begin{aligned} F_1 &= \min_{x_1,\vartheta_1} \big\{ c_1^T x_1 + \vartheta_1 \ \text{s.t.} \ Ax_1 &= b, \ \vartheta_1 \geq Q_1(x_1) \big\}, \\ Q_1(x_1) &= \sum_{m \in \mathcal{D}(1)} \frac{p_m}{p_n} F_m(x_1). \end{aligned}$$

For nested stages $n = 2, \ldots, K_{T-1}$

$$F_n(x_{a_n}) = \min_{x_n,\vartheta_n} \{ c_n^T x_n + \vartheta_n \ s.t. \ W_n x_n = h_n - T_n x_{a_n}, \\ \vartheta_n \ge Q_n(x_n) \}, \\ Q_n(x_n) = \sum_{m \in \mathcal{D}(n)} \frac{p_m}{p_n} F_m(x_n).$$

For final stage $n = K_{T-1} + 1, \dots, K_T$

$$F_n(x_{a_n}) = \min_{x_n} \left\{ c_n^T x_n \ s.t. \ W x_n = h_n - T_n x_{a_n} \right\}.$$

イロト 不得 トイヨト イヨト 二日

Nested two-stage problem

(M)(n) Master program = *n*-th nested two-stage problem:

$$F_n(x_{a_n}) = \min_{x_n, \vartheta_n} c_n^T x_n + \vartheta_n$$

s.t.
$$W_n x_n = h_n - T_n x_{a_n},$$

$$\vartheta_n \ge Q_n(x_n), \text{ convex constraint},$$

$$Q_n(x_n) = \sum_{m \in \mathcal{D}(n)} \frac{p_m}{p_n} F_m(x_n).$$

イロト 不得 トイヨト イヨト 二日

2021-03-15

30 / 39

 $F_1 = F_1(x_{a_1})$, where we set $x_{a_1} = 0$, $W_1 = A$ and $h_1 = b$. We set $\vartheta_n = 0$ for $n = K_{T-1} + 1, \dots, K_T$.

Martin Branda (KPMS MFF UK)

Relaxed Master problem

(RM)(n) Relaxed Master program, $n = 1, \ldots, K_T$:

$$\widetilde{F}_n(x_{a_n}) = \min_{x_n,\vartheta_n} c_n^T x_n + \vartheta_n$$

$$s.t.$$

$$W_n x_n = h_n - T_n x_{a_n},$$

$$F_n x_n \ge f_n,$$

$$feasibility cuts$$

$$D_n x_n + 1\vartheta_n \ge d_n,$$
optimality cuts.

 $\widetilde{F}_1 = \widetilde{F}_1(x_{a_1})$, where we set $x_{a_1} = 0$, $W_1 = A$ and $h_1 = b$. (RM)(n), $n = K_{T-1} + 1, \dots, K_T$, compensatory bounds ϑ_n and cuts are not involved.

イロト 不得 トイヨト イヨト 二日

Dual problem

(RD)(n) Dual problem to the relaxed master problem (RM)(n), $n = 2, ..., K_T$:

$$\max_{\pi_n,\alpha_n,\beta_n,\lambda_n,\mu_n} \pi_n^T (h_n - T_n x_{a_n}) + \alpha_n^T f_n + \beta_n^T d_n$$

s.t.
$$\pi_n^T W_n + \alpha_n^T F_n + \beta_n^T D_n = c_n,$$

$$1^T \beta_n = 1,$$

$$\alpha_n, \beta_n \ge 0,$$

$$\pi_n \quad \text{unrestricted.}$$

We set $\alpha_n, \beta_n = 0$ for $n = K_{T-1} + 1, \dots, K_T$

Martin Branda (KPMS MFF UK)

<ロ> < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Algorithm MSLiP

(0)

• Set
$$\vartheta_n^{(0)} = 0$$
 for all $n = 1, ..., K_{T-1}$,

Solve

$$x_1^{(0)} = \arg\min_{x_1} \{ c_1^T x_1 \ s.t. \ A x_1 = b \}.$$

Martin Branda (KPMS MFF UK)

▶ ◀ 重 ▶ 重 ∽ ९ €
 2021-03-15 33 / 39

< □ > < □ > < □ > < □ > < □ >

Algorithm MSLiP

(1)

- Solve the dual problem (RD)(m) to the (RM)(m), $\forall m \in \mathcal{D}(n)$. We get
 - dual optimal solution $(\pi_m^*, \alpha_m^*, \beta_m^*), \forall m \in \mathcal{D}(n)$,
 - or feasible extreme direction $(\pi^{j}_{m(j)}, \alpha^{j}_{m(j)}, \beta^{j}_{m(j)})$ in which the dual problem to the subproblem $m(j) \in \mathcal{D}(n)$ is unbounded, i.e.

$$\pi_{m(j)}^{j} \left(b_{m(j)} - W_m x_n \right) + \alpha_{m(j)}^{j} f_m > 0.$$

 \rightarrow **feasibility cut** of the feasible set of (MR)(n):

$$\underbrace{\pi_{m(j)}^{j}W_{m}}_{(F_{n})_{j}}x_{n} \geq \underbrace{\pi_{m(j)}^{j}b_{m(j)} + \alpha_{m(j)}^{j}f_{m}}_{(f_{n})_{j}}$$

《曰》《卽》《臣》《臣》

Algorithm MSLiP

(2) If ϑ_n < Q_n(x_n) → optimality cut of the feasible set of (MR)(n)

 $\underbrace{\sum_{m\in\mathcal{D}(n)}^{(D_n)_{i\cdot}} p_m \pi_m^i T_m x_n + \vartheta_n \ge}_{\substack{m\in\mathcal{D}(n)}} \ge \underbrace{\sum_{m\in\mathcal{D}(n)} p_m [\pi_m^i h_m + \alpha_m^i f_m + \beta_m^i d_m]}_{(d_n)_i}.$

• Else if $\vartheta_n \ge Q_n(x_n)$ then we have optimal solution x_n of (MR)(n).

イロト イポト イヨト ・ヨ

Fast-forward-fast-back (FFFB)

- FORWARD pass $(t = 1, ..., T, n = K_t 1, ..., K_t)$ terminates by:
 - infeasibility of the relaxed master program $(RM)(n) \rightarrow add$ feasibility cut to $(RM)(a_n)$ & BACKTRACKING,
 - obtaining optimal solutions \hat{x}_n for all $n = 1, ..., K_T \rightarrow BACKWARD$ pass.
- BACKTRACKING $(n \rightarrow a_n)$ terminates by:
 - feasibility of the relaxed master program $(RM)(a_n) \rightarrow FORWARD$ pass,
 - reaching the root node with an infeasible $(RM)(1) \rightarrow MSLP$ is infeasible.
- BACKWARD pass always goes through all nodes (adding optimality cuts if necessary).
 - $\bullet\,$ No optimality cuts have been added \rightarrow optimal solution,
 - $\bullet \ \ \text{else} \rightarrow \text{FORWARD pass.}$

イロト 不得 トイヨト イヨト 二日

MSLiP

- The algorithm (FFFB) terminates in a finite number of iterations.
- If termination occurs after BACKWARD pass then the current solution is optimal.
- Validity of
 - feasibility cuts \sim feasible solutions of (M)(n) are not cut off.
 - optimality cuts \sim objective function of (RM)(n) yields a lower bound to the objective function (M)(n).
- Cuts generated by the algorithm are valid.

"
$$\widetilde{F}_1^{(BACKWARD)} \leq F_1 \leq \widetilde{F}_1^{(FORWARD)}$$
"

QDECOM

- = Quadratic DECOMposizion, regularizing quadratic term in the objective (two-stage).
 (RMQ) Relaxed Master program
 - $\widetilde{F} = \min_{x,\vartheta^m} c^T x_n + \sum_{m \in \mathcal{D}} p_m \vartheta^m + \frac{1}{2} \|x x^{(i-1)}\|^2$ s.t. Ax = b,

$$egin{array}{rcl} Ax&=&b,\ Fx&\geq&f,\ D^mx+1artheta^m&\geq&d^m, orall m\in\mathcal{D}. \end{array}$$

イロト イポト イヨト イヨト 三日

Literature

- L. Adam: Nelinearity v úlohách stochastického programování: aplikace na řízení portfolia. Diplomová práce MFF UK, 2011. (IN CZECH)
- J.F. Benders (1962): Partitioning procedures for solving mixed-variables programming problems, Numerische Mathematik 4(3), 238–252.
- P. Kall, J. Mayer: Stochastic Linear Programming: Models, Theory, and Computation. Springer, 2005.

(日)