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Algorithm

Benders decomposition

Benders decomposition can be used to solve:

linear programming

mixed-integer (non)linear programming

two-stage stochastic programming (L-shaped algorithm)

multistage stochastic programming (Nested Benders decomposition)
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Algorithm

Benders decomposition for two-stage linear programming
problems

min cT x + qT y

s.t. Ax = b,

Tx + Wy = h,

x ≥ 0,

y ≥ 0.

(1)

ASS. B1 := {x : Ax = b, x ≥ 0} is bounded and the problem has an
optimal solution.
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Algorithm

Benders decomposition

We define the recourse function (second-stage value function, slave
problem)

f (x) = min{qT y : Wy = h − Tx , y ≥ 0} (2)

If for some x is {y : Wy = h − Tx , y ≥ 0} = ∅, then we set f (x) =∞.
The recourse function is piecewise linear, convex, and bounded below ...
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Algorithm

Benders decomposition

Proof (outline):

bounded below and piecewise linear (affine): There are finitely
many optimal basis B chosen from W such that

f (x) = qTBB
−1(h − Tx),

where feasibility B−1(h − Tx) ≥ 0 is fulfilled for x ∈ B1. Optimality
condition qTBB

−1W − q ≤ 0 does not depend on x .
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Algorithm

Benders decomposition

Proof (outline):

convex: let x1, x2 ∈ B1 and y1, y2 be such that f (x1) = qT y1 and
f (x2) = qT y2. For arbitrary λ ∈ (0, 1) and x = λx1 + (1− λ)x2 we
have

λy1 + (1− λ)y2 ∈ {y : Wy = h − Tx , y ≥ 0},

i.e. the convex combination of y ’s is feasible. Thus we have

f (x) = min{qT y : Wy = h − Tx , y ≥ 0} (3)

≤ qT (λy1 + (1− λ)y2) = λf (x1) + (1− λ)f (x2). (4)
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Algorithm

Benders decomposition

We have an equivalent NLP problem

min cT x + f (x)

s.t. Ax = b,

x ≥ 0.

(5)

We solve the master problem (first-stage problem)

min cT x + θ

s.t. Ax = b,

f (x) ≤ θ,
x ≥ 0.

(6)

We would like to approximate f (x) (from below) ...
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Algorithm

Algorithm – the feasibility cut

Solve

f (x̂) = min{qT y : Wy = h − Tx̂ , y ≥ 0} (7)

= max{(h − Tx̂)Tu : W Tu ≤ q}. (8)

If the dual problem is unbounded (primal is infeasible), then there
exists a growth direction ũ such that W T ũ ≤ 0 and (h − Tx̂)T ũ > 0. For
any feasible x there exists some y ≥ 0 such that Wy = h − Tx . If we
multiply it by ũ

ũT (h − Tx̂) = ũTWy ≤ 0,

which has to hold for any feasible x , but is violated by x̂ . Thus by

ũT (h − Tx) ≤ 0

the infeasible x̂ is cut off.
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Algorithm

Algorithm – the optimality cut

There is an optimal solution û of the dual problem such that

f (x̂) = (h − Tx̂)T û.

For arbitrary x we have

f (x) = sup
u
{(h − Tx)Tu : W Tu ≤ q}, (9)

≥ (h − Tx)T û, (10)

because û is feasible for arbitrary x . From inequality f (x) ≤ θ we have the
optimality cut

ûT (h − Tx) ≤ θ.

If this cut is fulfilled for actual (x̂ , θ̂), then STOP, x̂ is an optimal solution.
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Algorithm

Algorithm – master problem

We solve the master problem with cuts

min cT x + θ

s.t. Ax = b,

ũTl (h − Tx) ≤ 0, l = 1, . . . , L,

ũTk (h − Tx) ≤ θ, k = 1, . . . ,K ,

x ≥ 0.

(11)
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Algorithm

Algorithm

0. INIC: Set θ = −∞, L = 0, K = 0.

1. Solve the master problem to obtain (x̂ , θ̂).

2. For x̂ , solve the dual of the second-stage (recourse) problem to
obtain

a direction of unbounded decrease (feasibility cut), L = L + 1,
or an optimal solution (optimality cut), K = K + 1.

3. STOP, if the current solution (x̂ , θ̂) fulfills the optimality cuts.
Otherwise GO TO Step 1.
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Algorithm

Convergence of the algorithm

There are finitely many extreme directions that can generate the feasibility
cuts and finitely many (dual) feasible basis which can produce the
optimality cuts.

Let (x∗, θ∗) be an optimal solution of the reformulated original problem.

1. The feasibility set of the master problem (6) is always contained in
the feasibility set of the master problem with cuts (11) (no feasible
solutions are cut).

2. The optimal solution (x̂ , θ̂) obtained by the algorithm is feasible for
the master problem (6), because

θ̂ ≥ (h − Tx̂)T û = f (x̂).

Thus, from 1. and 2. we obtain

cT x∗ + θ∗ ≥ cT x̂ + θ̂ ≥ cT x∗ + θ∗.

Kall and Mayer (2005), Proposition 2.19
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Algorithm

Benders optimality cuts

Kall and Mayer (2005)
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Example

Example

min 2x + 2y1 + 3y2

s.t. x + y1 + 2y2 = 3,

3x + 2y1 − y2 = 4,

x , y1, y2 ≥ 0.

(12)
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Example

Example

Recourse function

f (x) = min 2y1 + 3y2

s.t. y1 + 2y2 = 3− x ,

2y1 − y2 = 4− 3x ,

y1, y2 ≥ 0.

(13)
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Example

Iteration 1

Set θ = −∞ and solve master problem

min
x

2x s.t. x ≥ 0. (14)

Optimal solution x̂ = 0.
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Example

Iteration 1

Solve the dual problem for x̂ = 0:

max
u

(3− x)u1 + (4− 3x)u2

s.t. u1 + 2u2 ≤ 2,

2u1 − u2 ≤ 3.

(15)

Optimal solution is û = (8/5, 1/5) with optimal value 28/5, thus no
feasibility cut is necessary. We can construct an optimality cut

(3− x)8/5 + (4− 3x)1/5 = 28/5− 11/5x ≤ θ.
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Example

Iteration 2

Add the optimality cut and solve

min
x ,θ

2x + θ

s.t. 28/5− 11/5x ≤ θ,
x ≥ 0.

(16)

Optimal solution (x̂ , θ̂) = (2.5455, 0) with optimal value 5.0909.
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Example

Iteration 2

Solve the dual problem for x̂ = 2.5455:

max
u

(3− x)u1 + (4− 3x)u2

s.t. u1 + 2u2 ≤ 2,

2u1 − u2 ≤ 3.

(17)

Optimal solution is û = (1.5, 0) with optimal value 0.6818, thus no
feasibility cut is necessary. We can construct an optimality cut

(3− x)1.5 + (4− 3x)0 = 4.5− 1.5x ≤ θ.
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Example

Iteration 3

Add the optimality cut and solve

min
x ,θ

2x + θ

s.t. 28/5− 11/5x ≤ θ,
4.5− 1.5x ≤ θ,
x ≥ 0.

(18)

...
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Extensions and applications L-shaped algorithm

Two-stage stochastic programming problem

Probabilities 0 < ps < 1,
∑

s ps = 1,

min cT x +
S∑

s=1

psq
T
s ys

s.t. Ax = b,

Wy1 +T1x = h1,
Wy2 +T2x = h2,

. . .
...

...
...

WyS +TSx = hS ,

x ≥ 0, ys ≥ 0, s = 1, . . . ,S .

(19)

One master and S “second-stage” problems – apply the dual approach to
each of them.
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Extensions and applications Minimization of Conditional Value at Risk

Minimization of Conditional Value at Risk

If the distribution of Ri is discrete with realizations ris and probabilities
ps = 1/S , then we can use linear programming formulation

min
ξ,xi

ξ +
1

(1− α)S

S∑
s=1

[−
n∑

i=1

xi ris − ξ]+,

s.t.

n∑
i=1

xiR i ≥ r0,

n∑
i=1

xi = 1, xi ≥ 0,

where R i = 1/S
∑S

s=1 ris , [·]+ = max{·, 0}.
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Extensions and applications Minimization of Conditional Value at Risk

Conditional Value at Risk

Master problem

min
ξ,xi

ξ +
1

(1− α)S

S∑
s=1

fs(x , ξ),

s.t.

n∑
i=1

xiR i ≥ r0,
n∑

i=1

xi = 1, xi ≥ 0,

Second-stage problems

fs(x , ξ) = min
y

y ,

s.t. y ≥ −
n∑

i=1

xi ris − ξ,

y ≥ 0.

Solve the dual problems quickly ..
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Extensions and applications Nested Benders decomposition

Multistage Stochastic Linear Programming

MSLiP=Multistage Stochastic Linear Programming - ”nested Benders
decomposition with added algorithmic features”.

Support of an arbitrary number of time periods and finite discrete
distributions with Markovian structure.

Scenario TREE = a set of nodes K = {1, . . . ,KT} with stages
Kt = {Kt−1 + 1, . . . ,Kt} and probabilities p1, . . . , pT > 0,

∑
n∈Kt

pn = 1,

an the ancestor of the node n,

D(n) the set of descentants of the node n,

t(n) the time stage of the node n.
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Extensions and applications Nested Benders decomposition

Scenario tree

ξ1

ξ2

ξ4

ξ8 ξ9 ξ10

ξ5

ξ11 ξ12 ξ13

ξ3

ξ6

ξ14 ξ15 ξ16

ξ7

ξ17 ξ18 ξ19

0.60

0.30

0.10 0.10 0.10

0.30

0.10 0.10 0.10

0.40

0.15

0.05 0.05 0.05

0.25

0.10 0.05 0.10

For example a(12) = 5, D(6) = {14, 15, 16}, t(4) = 3.
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Extensions and applications Nested Benders decomposition

Nested formulation of the discrete MSLP

For starting node (n = 1)

F1 = min
x1,ϑ1

{
cT1 x1 + ϑ1 s.t. Ax1 = b, ϑ1 ≥ Q1(x1)

}
,

Q1(x1) =
∑

m∈D(1)

pm
pn

Fm(x1).

For nested stages n = 2, . . . ,KT−1

Fn(xan) = min
xn,ϑn

{
cTn xn + ϑn s.t. Wnxn = hn − Tnxan ,

ϑn ≥ Qn(xn)
}
,

Qn(xn) =
∑

m∈D(n)

pm
pn

Fm(xn).

For final stage n = KT−1 + 1, . . . ,KT

Fn(xan) = min
xn

{
cTn xn s.t. Wxn = hn − Tnxan

}
.
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Extensions and applications Nested Benders decomposition

Nested two-stage problem

(M)(n) Master program = n-th nested two-stage problem:

Fn(xan) = minxn,ϑn c
T
n xn + ϑn

s.t.
Wnxn = hn − Tnxan ,
ϑn ≥ Qn(xn), convex constraint,

Qn(xn) =
∑

m∈D(n)
pm
pn
Fm(xn).

F1 = F1(xa1), where we set xa1 = 0, W1 = A and h1 = b.
We set ϑn = 0 for n = KT−1 + 1, . . . ,KT .

Martin Branda (KPMS MFF UK) 2021-03-15 30 / 39



Extensions and applications Nested Benders decomposition

Relaxed Master problem

(RM)(n) Relaxed Master program, n = 1, . . . ,KT :

F̃n(xan) = minxn,ϑn c
T
n xn + ϑn

s.t.
Wnxn = hn − Tnxan ,
Fnxn ≥ fn, feasibility cuts

Dnxn + 1ϑn ≥ dn, optimality cuts.

F̃1 = F̃1(xa1), where we set xa1 = 0, W1 = A and h1 = b.
(RM)(n), n = KT−1 + 1, . . . ,KT , compensatory bounds ϑn and cuts are
not involved.
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Extensions and applications Nested Benders decomposition

Dual problem

(RD)(n) Dual problem to the relaxed master problem (RM)(n),
n = 2, . . . ,KT :

max
πn,αn,βn,λn,µn

πTn (hn − Tnxan) + αT
n fn + βTn dn

s.t.
πTn Wn + αT

n Fn + βTn Dn = cn,
1Tβn = 1,
αn, βn ≥ 0,

πn unrestricted.

We set αn, βn = 0 for n = KT−1 + 1, . . . ,KT
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Extensions and applications Nested Benders decomposition

Algorithm MSLiP

(0)

Set ϑ
(0)
n = 0 for all n = 1, . . . ,KT−1,

Solve

x
(0)
1 = argmin

x1

{
cT1 x1 s.t. Ax1 = b

}
.
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Extensions and applications Nested Benders decomposition

Algorithm MSLiP

(1)

Solve the dual problem (RD)(m) to the (RM)(m), ∀m ∈ D(n).
We get

dual optimal solution (π∗
m, α

∗
m, β

∗
m),∀m ∈ D(n),

or feasible extreme direction (πj
m(j), α

j
m(j), β

j
m(j)) in which the dual

problem to the subproblem m(j) ∈ D(n) is unbounded, i.e.

πj
m(j)

(
bm(j) −Wmxn

)
+ αj

m(j)fm > 0.

→ feasibility cut of the feasible set of (MR)(n):

πj
m(j)Wm︸ ︷︷ ︸
(Fn)j·

xn ≥ πj
m(j)bm(j) + αj

m(j)fm︸ ︷︷ ︸
(fn)j

.
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Extensions and applications Nested Benders decomposition

Algorithm MSLiP

(2)

If ϑn < Qn(xn) → optimality cut of the feasible set of (MR)(n)

(Dn)i·︷ ︸︸ ︷∑
m∈D(n)

pmπ
i
mTm xn + ϑn ≥

≥
∑

m∈D(n)

pm
[
πimhm + αi

mfm + βimdm
]

︸ ︷︷ ︸
(dn)i

.

Else if ϑn ≥ Qn(xn) then we have optimal solution xn of (MR)(n).
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Extensions and applications Nested Benders decomposition

Fast-forward-fast-back (FFFB)

FORWARD pass (t = 1, . . . ,T , n = Kt − 1, . . . ,Kt) terminates by:

infeasibility of the relaxed master program (RM)(n) → add feasibility
cut to (RM)(an) & BACKTRACKING,
obtaining optimal solutions x̂n for all n = 1, . . . ,KT → BACKWARD
pass.

BACKTRACKING (n→ an) terminates by:

feasibility of the relaxed master program (RM)(an) → FORWARD pass,
reaching the root node with an infeasible (RM)(1) → MSLP is
infeasible.

BACKWARD pass always goes through all nodes (adding optimality
cuts if necessary).

No optimality cuts have been added → optimal solution,
else → FORWARD pass.
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Extensions and applications Nested Benders decomposition

MSLiP

The algorithm (FFFB) terminates in a finite number of iterations.

If termination occurs after BACKWARD pass then the current
solution is optimal.

Validity of
feasibility cuts ∼ feasible solutions of (M)(n) are not cut off.
optimality cuts ∼ objective function of (RM)(n) yields a lower bound
to the objective function (M)(n).

Cuts generated by the algorithm are valid.

”F̃
(BACKWARD)
1 ≤ F1 ≤ F̃

(FORWARD)
1 ”
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Extensions and applications Nested Benders decomposition

QDECOM

= Quadratic DECOMposizion, regularizing quadratic term in the objective
(two-stage).
(RMQ) Relaxed Master program

F̃ = minx ,ϑm cT xn +
∑

m∈D pmϑ
m + 1

2

∥∥x − x (i−1)
∥∥2

s.t.
Ax = b,
Fx ≥ f ,

Dmx + 1ϑm ≥ dm, ∀m ∈ D.
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Extensions and applications Nested Benders decomposition
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