An introduction to Benders decomposition

Martin Branda

Charles University
Faculty of Mathematics and Physics
Department of Probability and Mathematical Statistics

COMPUTATIONAL ASPECTS OF OPTIMIZATION

Martin Branda (KPMS MFF UK)

Algorithm

Benders decomposition for two-stage linear programming problems

min
$$c^T x + q^T y$$

s.t. $Ax = b$,
 $Tx + Wy = h$,
 $x \ge 0$,
 $y \ge 0$. (1)

2021-03-15 1 / 39

ASS. $\mathcal{B}_1 := \{x: \ Ax = b, x \geq 0\}$ is bounded and the problem has an optimal solution.

Benders decomposition

Benders decomposition can be used to solve:

- linear programming
- mixed-integer (non)linear programming
- two-stage stochastic programming (L-shaped algorithm)
- multistage stochastic programming (Nested Benders decomposition)

Martin Branda (KPMS MFF UK)

2021-03-15 3 / 39

Algorith

Benders decomposition

We define the **recourse function** (second-stage value function, slave problem)

$$f(x) = \min\{q^T y : Wy = h - Tx, y \ge 0\}$$
 (2)

If for some x is $\{y: Wy = h - Tx, y \ge 0\} = \emptyset$, then we set $f(x) = \infty$. The recourse function is piecewise linear, convex, and bounded below ...

Martin Branda (KPMS MFF UK) 2021-03-15 5/39

Algorithm

Benders decomposition

Proof (outline):

 bounded below and piecewise linear (affine): There are finitely many optimal basis B chosen from W such that

$$f(x) = q_B^T B^{-1}(h - Tx),$$

where feasibility $B^{-1}(h-Tx) \ge 0$ is fulfilled for $x \in \mathcal{B}_1$. Optimality condition $q_R^T B^{-1} W - q \le 0$ does not depend on x.

Martin Branda (KPMS MFF UK)

2021-03-15 6 / 39

Δlgorithm

Benders decomposition

We have an equivalent NLP problem

min
$$c^T x + f(x)$$

s.t. $Ax = b$, (5)
 $x \ge 0$.

We solve the master problem (first-stage problem)

min
$$c^T x + \theta$$

s.t. $Ax = b$,
 $f(x) \le \theta$,
 $x \ge 0$. (6)

We would like to approximate f(x) (from below) ...

Algorithn

Benders decomposition

Proof (outline):

• **convex**: let $x_1, x_2 \in \mathcal{B}_1$ and y_1, y_2 be such that $f(x_1) = q^T y_1$ and $f(x_2) = q^T y_2$. For arbitrary $\lambda \in (0,1)$ and $x = \lambda x_1 + (1-\lambda)x_2$ we have

$$\lambda y_1 + (1 - \lambda)y_2 \in \{y : Wy = h - Tx, y \ge 0\},$$

i.e. the convex combination of y's is feasible. Thus we have

$$f(x) = \min\{q^T y : Wy = h - Tx, y \ge 0\}$$
 (3)

$$\leq q^{T}(\lambda y_{1} + (1-\lambda)y_{2}) = \lambda f(x_{1}) + (1-\lambda)f(x_{2}).$$
 (4)

Martin Branda (KPMS MFF UK)

2021-03-15 7 / 39

Algorith

Algorithm – the feasibility cut

Solve

$$f(\hat{x}) = \min\{q^T y : Wy = h - T\hat{x}, y \ge 0\}$$
 (7)

$$= \max\{(h - T\hat{x})^T u : W^T u \le q\}.$$
 (8)

If the dual problem is unbounded (primal is infeasible), then there exists a growth direction \tilde{u} such that $W^T\tilde{u}\leq 0$ and $(h-T\hat{x})^T\tilde{u}>0$. For any feasible x there exists some $y\geq 0$ such that Wy=h-Tx. If we multiply it by \tilde{u}

$$\tilde{u}^T(h-T\hat{x})=\tilde{u}^TWy\leq 0,$$

which has to hold for any feasible x, but is violated by \hat{x} . Thus by

$$\tilde{u}^T(h-Tx)\leq 0$$

the infeasible \hat{x} is cut off.

Martin Branda (KPMS MFF UK) 2021-03-15 9/39

Algorithm

Algorithm – the optimality cut

There is an optimal solution \hat{u} of the dual problem such that

$$f(\hat{x}) = (h - T\hat{x})^T \hat{u}.$$

For arbitrary x we have

$$f(x) = \sup_{u \in \mathbb{R}} \{ (h - Tx)^T u : W^T u \le q \},$$
 (9)

$$\geq (h - Tx)^T \hat{u}, \tag{10}$$

because \hat{u} is feasible for arbitrary x. From inequality $f(x) \leq \theta$ we have the optimality cut

$$\hat{u}^T(h-Tx)\leq \theta.$$

If this cut is fulfilled for actual $(\hat{x}, \hat{\theta})$, then STOP, \hat{x} is an optimal solution.

Martin Branda (KPMS MFF UK)

2021-03-15 10 / 39

2021-03-15 12 / 39

Algorithm

Algorithm

Martin Branda (KPMS MFF UK)

- 0. INIC: Set $\theta = -\infty$, L = 0, K = 0.
- 1. Solve the **master problem** to obtain $(\hat{x}, \hat{\theta})$.
- 2. For \hat{x} , solve the **dual of the second-stage** (recourse) problem to obtain
 - ullet a direction of unbounded decrease (feasibility cut), L=L+1,
 - or an optimal solution (optimality cut), K = K + 1.
- 3. STOP, if the current solution $(\hat{x}, \hat{\theta})$ fulfills the optimality cuts. Otherwise GO TO Step 1.

Algorithm

Algorithm - master problem

We solve the master problem with cuts

min
$$c^T x + \theta$$

s.t. $Ax = b$,
 $\tilde{u}_I^T (h - Tx) \le 0, \ I = 1, ..., L$, (11)
 $\tilde{u}_k^T (h - Tx) \le \theta, \ k = 1, ..., K$,
 $x > 0$.

Martin Branda (KPMS MFF UK)

2021-03-15 11 / 39

Algorith

Convergence of the algorithm

There are finitely many extreme directions that can generate the feasibility cuts and finitely many (dual) feasible basis which can produce the optimality cuts.

Let (x^*, θ^*) be an optimal solution of the reformulated original problem.

- 1. The feasibility set of the master problem (6) is always contained in the feasibility set of the master problem with cuts (11) (no feasible solutions are cut).
- 2. The optimal solution $(\hat{x}, \hat{\theta})$ obtained by the algorithm is feasible for the master problem (6), because

$$\hat{\theta} \geq (h - T\hat{x})^T \hat{u} = f(\hat{x}).$$

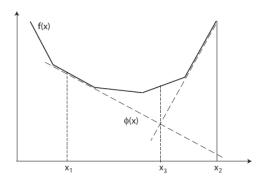
Thus, from 1, and 2, we obtain

$$c^T x^* + \theta^* \ge c^T \hat{x} + \hat{\theta} \ge c^T x^* + \theta^*.$$

Kall and Mayer (2005), Proposition 2.19

Algorithm

Benders optimality cuts



Kall and Mayer (2005)

Martin Branda (KPMS MFF UK)

2021-03-15 14 / 39

Example

Example

Recourse function

$$f(x) = \min 2y_1 + 3y_2$$
s.t. $y_1 + 2y_2 = 3 - x$,
$$2y_1 - y_2 = 4 - 3x$$
,
$$y_1, y_2 \ge 0$$
.
(13)

Exampl

Example

min
$$2x + 2y_1 + 3y_2$$

s.t. $x + y_1 + 2y_2 = 3$,
 $3x + 2y_1 - y_2 = 4$,
 $x, y_1, y_2 \ge 0$. (12)

Martin Branda (KPMS MFF UK)

2021-03-15 16 / 39

Example

Iteration 1

Set $\theta=-\infty$ and solve master problem

$$\min_{x} 2x \text{ s.t. } x \ge 0. \tag{14}$$

Optimal solution $\hat{x} = 0$.

Martin Branda (KPMS MFF UK) 2021-03-15 17/39 Martin Branda (KPMS MFF UK) 2021-03-15 18/39

Example

Iteration 1

Solve the dual problem for $\hat{x} = 0$:

$$\max_{u} (3-x)u_1 + (4-3x)u_2$$
s.t. $u_1 + 2u_2 \le 2$, (15)
$$2u_1 - u_2 \le 3$$
.

Optimal solution is $\hat{u}=(8/5,1/5)$ with optimal value 28/5, thus no feasibility cut is necessary. We can construct an optimality cut

$$(3-x)8/5 + (4-3x)1/5 = 28/5 - 11/5x \le \theta.$$

Martin Branda (KPMS MFF UK)

2021-03-15 19 / 39

Example

Iteration 2

Solve the dual problem for $\hat{x} = 2.5455$:

$$\max_{u} (3-x)u_1 + (4-3x)u_2$$
s.t. $u_1 + 2u_2 \le 2$, (17)
$$2u_1 - u_2 \le 3$$
.

Optimal solution is $\hat{u}=(1.5,0)$ with optimal value 0.6818, thus no feasibility cut is necessary. We can construct an optimality cut

$$(3-x)1.5 + (4-3x)0 = 4.5 - 1.5x \le \theta.$$

Example

Iteration 2

Add the optimality cut and solve

$$\min_{x,\theta} 2x + \theta
\text{s.t. } 28/5 - 11/5x \le \theta,
x > 0.$$
(16)

Optimal solution $(\hat{x}, \hat{\theta}) = (2.5455, 0)$ with optimal value 5.0909.

Martin Branda (KPMS MFF UK)

2021-03-15 20 / 39

Examp

Iteration 3

Add the optimality cut and solve

$$\min_{x,\theta} 2x + \theta
\text{s.t. } 28/5 - 11/5x \le \theta,
4.5 - 1.5x \le \theta,
x > 0.$$
(18)

...

Martin Branda (KPMS MFF UK) 2021-03-15 21/39 Martin Branda (KPMS MFF UK) 2021-03-15 22/39

L-shaped algorithm

Two-stage stochastic programming problem

Probabilities $0 < p_s < 1$, $\sum_s p_s = 1$,

min
$$c^{T}x + \sum_{s=1}^{S} p_{s}q_{s}^{T}y_{s}$$

s.t. $Ax = b$,
 $Wy_{1} + T_{1}x = h_{1}$, (19)
 $Wy_{2} + T_{2}x = h_{2}$,
 $\vdots \vdots \vdots$
 $Wy_{S} + T_{S}x = h_{S}$,
 $x > 0, y_{S} > 0, s = 1, \dots, S$.

One master and ${\cal S}$ "second-stage" problems – apply the dual approach to each of them.

Martin Branda (KPMS MFF UK)

2021-03-15 24 / 39

Extensions and applications

Minimization of Conditional Value at Risk

Conditional Value at Risk

Master problem

$$\min_{\xi, x_i} \xi + \frac{1}{(1 - \alpha)S} \sum_{s=1}^{S} f_s(x, \xi),$$

s.t.
$$\sum_{i=1}^{n} x_i \overline{R}_i \ge r_0, \ \sum_{i=1}^{n} x_i = 1, \ x_i \ge 0,$$

Second-stage problems

$$f_{s}(x,\xi) = \min_{y} y,$$
s.t. $y \ge -\sum_{i=1}^{n} x_{i} r_{is} - \xi,$

$$y \ge 0.$$

Solve the dual problems quickly ..

Extensions and application

Minimization of Conditional Value at Ris

Minimization of Conditional Value at Risk

If the distribution of R_i is discrete with realizations r_{is} and probabilities $p_s = 1/S$, then we can use **linear programming** formulation

$$\min_{\xi, x_i} \xi + \frac{1}{(1 - \alpha)S} \sum_{s=1}^{S} [-\sum_{i=1}^{n} x_i r_{is} - \xi]_+,$$
s.t.
$$\sum_{i=1}^{n} x_i \overline{R}_i \ge r_0,$$

$$\sum_{i=1}^{n} x_i = 1, \ x_i \ge 0,$$

where $\overline{R}_i = 1/S \sum_{s=1}^{S} r_{is}$, $[\cdot]_+ = \max{\{\cdot, 0\}}$.

Martin Branda (KPMS MFF UK)

2021-03-15 25 / 39

Extensions and application

Nested Renders decompositi

Multistage Stochastic Linear Programming

 $\label{eq:MSLiP} MSLiP{=}Multistage\ Stochastic\ Linear\ Programming\ -\ "nested\ Benders\ decomposition\ with\ added\ algorithmic\ features".$

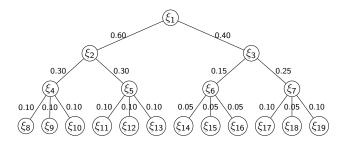
• Support of an arbitrary number of time periods and finite discrete distributions with Markovian structure.

Scenario TREE = a set of nodes $\mathcal{K} = \{1, \dots, \mathcal{K}_T\}$ with stages $\mathcal{K}_t = \{\mathcal{K}_{t-1} + 1, \dots, \mathcal{K}_t\}$ and probabilities $p_1, \dots, p_T > 0$, $\sum_{n \in \mathcal{K}_t} p_n = 1$,

- a_n the ancestor of the node n,
- $\mathcal{D}(n)$ the set of descentants of the node n,
- t(n) the time stage of the node n.

Martin Branda (KPMS MFF UK) 2021-03-15 26/39 Martin Branda (KPMS MFF UK) 2021-03-15 27/39

Scenario tree



For example a(12) = 5, $\mathcal{D}(6) = \{14, 15, 16\}$, t(4) = 3.

Martin Branda (KPMS MFF UK)

2021-03-15 28 / 39

Extensions and applications

Nested Benders decomposition

Nested two-stage problem

(M)(n) Master program = n-th nested two-stage problem:

$$\begin{array}{rcl} F_n(x_{a_n}) & = & \min_{x_n,\vartheta_n} c_n^T x_n + \vartheta_n \\ & \text{s.t.} \\ & W_n x_n & = & h_n - T_n x_{a_n}, \\ & \vartheta_n & \geq & Q_n(x_n), \text{ convex constraint,} \\ & Q_n(x_n) & = & \sum_{m \in \mathcal{D}(n)} \frac{P_m}{P_n} F_m(x_n). \end{array}$$

 $F_1=F_1(x_{a_1})$, where we set $x_{a_1}=0$, $W_1=A$ and $h_1=b$. We set $\vartheta_n=0$ for $n=K_{T-1}+1,\ldots,K_T$.

Extensions and applications

Nested Benders decomposition

Nested formulation of the discrete MSLP

For starting node (n = 1)

$$F_{1} = \min_{x_{1},\vartheta_{1}} \left\{ c_{1}^{T} x_{1} + \vartheta_{1} \text{ s.t. } Ax_{1} = b, \ \vartheta_{1} \geq Q_{1}(x_{1}) \right\},$$

$$Q_{1}(x_{1}) = \sum_{m \in \mathcal{D}(1)} \frac{p_{m}}{p_{n}} F_{m}(x_{1}).$$

For nested stages $n = 2, ..., K_{T-1}$

$$F_{n}(x_{a_{n}}) = \min_{x_{n},\vartheta_{n}} \left\{ c_{n}^{T} x_{n} + \vartheta_{n} \quad s.t. \ W_{n} x_{n} = h_{n} - T_{n} x_{a_{n}}, \right.$$
$$\vartheta_{n} \geq Q_{n}(x_{n}) \right\},$$
$$Q_{n}(x_{n}) = \sum_{m \in \mathcal{D}(n)} \frac{p_{m}}{p_{n}} F_{m}(x_{n}).$$

For final stage $n = K_{T-1} + 1, \dots, K_T$

$$F_n(x_{a_n}) = \min_{x_n} \{c_n^T x_n \text{ s.t. } Wx_n = h_n - T_n x_{a_n}\}.$$

Martin Branda (KPMS MFF UK)

2021-03-15 29 / 39

Extensions and application

Nested Renders decomposition

Relaxed Master problem

(RM)(n) Relaxed Master program, $n = 1, \dots, K_T$:

$$\begin{array}{lll} \widetilde{F}_n(x_{a_n}) & = & \min_{x_n,\vartheta_n} c_n^T x_n + \vartheta_n \\ & & s.t. \\ & & W_n x_n & = & h_n - T_n x_{a_n}, \\ & & & F_n x_n & \geq & f_n, \\ & & & D_n x_n + 1 \vartheta_n & \geq & d_n, \end{array}$$
 feasibility cuts

 $\widetilde{F}_1 = \widetilde{F}_1(x_{a_1})$, where we set $x_{a_1} = 0$, $W_1 = A$ and $h_1 = b$. (RM)(n), $n = K_{T-1} + 1, \ldots, K_T$, compensatory bounds ϑ_n and cuts are not involved.

Martin Branda (KPMS MFF UK) 2021-03-15 30/39 Martin Branda (KPMS MFF UK)

Dual problem

(RD)(n) Dual problem to the relaxed master problem (RM)(n), $n=2,\ldots,K_T$:

$$\max_{\pi_n,\alpha_n,\beta_n,\lambda_n,\mu_n} \pi_n^\mathsf{T} (h_n - T_n x_{a_n}) + \alpha_n^\mathsf{T} f_n + \beta_n^\mathsf{T} d_n$$

$$\begin{array}{rcl} s.t. \\ \pi_n^T W_n + \alpha_n^T F_n + \beta_n^T D_n &=& c_n, \\ 1^T \beta_n &=& 1, \\ \alpha_n, \beta_n &\geq& 0, \\ \pi_n & \text{unrestricted.} \end{array}$$

We set $\alpha_n, \beta_n = 0$ for $n = K_{T-1} + 1, \dots, K_T$

Martin Branda (KPMS MFF UK)

2021-03-15 32 / 39

Extensions and applications

Nested Benders decomposition

Algorithm MSLiP

(1)

- Solve the dual problem (RD)(m) to the (RM)(m), $\forall m \in \mathcal{D}(n)$. We get
 - dual optimal solution $(\pi_m^*, \alpha_m^*, \beta_m^*), \forall m \in \mathcal{D}(n)$,
 - or feasible extreme direction $(\pi^j_{m(j)}, \alpha^j_{m(j)}, \beta^j_{m(j)})$ in which the dual problem to the subproblem $m(j) \in \mathcal{D}(n)$ is unbounded, i.e.

$$\pi_{m(j)}^{j}(b_{m(j)}-W_{m}x_{n})+\alpha_{m(j)}^{j}f_{m}>0.$$

 \rightarrow feasibility cut of the feasible set of (MR)(n):

$$\underbrace{\pi_{m(j)}^{j}W_{m}x_{n}}_{(F_{0})_{i}} \geq \underbrace{\pi_{m(j)}^{j}b_{m(j)} + \alpha_{m(j)}^{j}f_{m}}_{(f_{0})_{i}}.$$

Algorithm MSLiP

(0)

- Set $\vartheta_n^{(0)} = 0$ for all $n = 1, \dots, K_{T-1}$,
- Solve

$$x_1^{(0)} = \arg\min_{x_1} \{c_1^T x_1 \ s.t. \ Ax_1 = b\}.$$

Martin Branda (KPMS MFF UK)

2021-03-15 33 / 39

Extensions and application

Nested Benders decompositi

Algorithm MSLiP

(2)

• If $\vartheta_n < Q_n(x_n) \to {f optimality} \ {f cut} \ {f of the feasible set of (MR)(n)}$

$$\underbrace{\sum_{m \in \mathcal{D}(n)}^{(\mathcal{D}_n)_i}}_{p_m \pi_m^i T_m} x_n + \vartheta_n \ge \underbrace{\sum_{m \in \mathcal{D}(n)}^{(\mathcal{D}_n)_i}}_{p_m \left[\pi_m^i h_m + \alpha_m^i f_m + \beta_m^i d_m\right]}.$$

• Else if $\vartheta_n \geq Q_n(x_n)$ then we have optimal solution x_n of (MR)(n).

Extensions and applications Nested Benders decomposition

Fast-forward-fast-back (FFFB)

- FORWARD pass $(t = 1, ..., T, n = K_t 1, ..., K_t)$ terminates by:
 - infeasibility of the relaxed master program $(RM)(n) \rightarrow add$ feasibility cut to $(RM)(a_n)$ & BACKTRACKING,
 - obtaining optimal solutions \hat{x}_n for all $n = 1, \dots, K_T \to \mathsf{BACKWARD}$
- BACKTRACKING $(n \rightarrow a_n)$ terminates by:
 - feasibility of the relaxed master program $(RM)(a_n) \rightarrow FORWARD$ pass,
 - ullet reaching the root node with an infeasible (RM)(1) o MSLP is infeasible.
- BACKWARD pass always goes through all nodes (adding optimality cuts if necessary).
 - ullet No optimality cuts have been added o optimal solution,
 - ullet else o FORWARD pass.

Martin Branda (KPMS MFF UK)

2021-03-15 36 / 39

Extensions and applications

QDECOM

= Quadratic DECOMposizion, regularizing quadratic term in the objective (two-stage).

(RMQ) Relaxed Master program

$$\begin{split} \widetilde{F} &= \min_{x,\vartheta^m} c^T x_n + \sum_{m \in \mathcal{D}} p_m \vartheta^m + \frac{1}{2} \left\| x - x^{(i-1)} \right\|^2 \\ &\text{s.t.} \\ &Ax &= b, \\ &Fx &\geq f, \\ &D^m x + 1 \vartheta^m &> d^m, \forall m \in \mathcal{D}. \end{split}$$

Extensions and applications

Nested Benders decomposition

MSLiP

- The algorithm (FFFB) terminates in a **finite number of iterations**.
- If termination occurs after BACKWARD pass then the current solution is optimal.
- Validity of
 - feasibility cuts \sim feasible solutions of (M)(n) are not cut off.
 - optimality cuts ~ objective function of (RM)(n) yields a lower bound to the objective function (M)(n).
- Cuts generated by the algorithm are valid.

"
$$\widetilde{F}_1^{(BACKWARD)} \le F_1 \le \widetilde{F}_1^{(FORWARD)}$$
"

Martin Branda (KPMS MFF UK)

2021-03-15 37 / 39

Extensions and applications

Literature

- L. Adam: Nelinearity v úlohách stochastického programování: aplikace na řízení portfolia. Diplomová práce MFF UK, 2011. (IN CZECH)
- J.F. Benders (1962): Partitioning procedures for solving mixed-variables programming problems, Numerische Mathematik 4(3), 238-252.
- P. Kall, J. Mayer: Stochastic Linear Programming: Models, Theory, and Computation. Springer, 2005.

Martin Branda (KPMS MFF UK) 2021-03-15 38 / 39 Martin Branda (KPMS MFF UK) 2021-03-15 39 / 39