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HW 2021: Example 1.8 (any method), example 1.10 (KKT conditions)

3 Multiobjective optimization

We start with the notation of dominance for two-dimensional vectors.

De�nition 3.1 We say that
(
x1
x2

)
strictly dominates

(
y1
y2

)
, denoted by

(
x1
x2

)
�
(
y1
y2

)
, i� x1 <

y1 and x2 < y2
1. We say that

(
x1
x2

)
dominates

(
y1
y2

)
, denoted by

(
x1
x2

)
�
(
y1
y2

)
, i� x1 ≤ y1 and

x2 ≤ y2 with at least one inequality strict. We say that
(
x1
x2

)
is (weakly) e�cient if there is

no other
(
y1
y2

)
such that

(
y1
y2

)
� (�)

(
x1
x2

)
.

Example 3.2 Consider �ve pairs

A =

(
1

2

)
, B =

(
2

5

)
, C =

(
1

3

)
, D =

(
3

1

)
, E =

(
3

3

)
.

Identify all (weakly) e�cient pairs.

Solution: We can identify pairs which are dominated, i.e.(
1

3

)
� (�)

(
2

5

)
,

(
1

2

)
� (�)

(
3

3

)
,

(
1

2

)
� (�)

(
1

3

)
Therefore, A,C,D are weakly e�cient, whereas only A,D are e�cient. �

We repeat the notion of optimality in multiobjective optimization.

De�nition 3.3 Consider multiobjective optimization problem

min
x∈X

(f1(x), . . . , fK(x)) ,

where fk : Rn → R and X ⊆ Rn. We say that x̂ ∈ X is an e�cient solution if there exists

no other x ∈ X such that fk(x) ≤ fk(x̂) for all k with at least one inequality strict. We

denote by Xeff ⊆ X the set of e�cient solutions.

Basic methods to �nd the e�cient solutions are:

1. Aggregate function approach:

min
x∈X

K∑
k=1

λkfk(x),

with parameters λk ≥ 0.

1Since we will consider minimization problems later, lower values are preferred.
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2. ε-constrained approach

min f1(x)

s.t. fk(x) ≤ εk, k = 2, . . . ,K,

x ∈ X,

where parameters εk are selected such that the problem is feasible.

3. Goal programming.

For basic properties see the lecture notes.

Example 3.4 Consider biobjective nonlinear optimization problem

min
x

(
(x− 1)2

3(x− 2)2

)
s.t. x ∈ [0, 3].

Find all e�cient solutions.

Solution: We can use the plot

x

y

1 2 3

By comparing the objective functions at di�erent points of domain [0, 3], we can identify

the e�cient solutions as interval [1, 2]. �

Example 3.5 Consider biobjective nonlinear optimization problem

min
x

(
2(x+ 1)2

(x− 2)2

)
s.t. x ∈ [0, 5].

Find all e�cient solutions.
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Example 3.6 Consider biobjective linear optimization problem

min

(
−3x1 − x2
x1 − 2x2

)
s.t. x1 + x2 ≤ 4,

x1 ≤ 3,

x2 ≤ 3,

x1, x2 ≥ 0.

Find all e�cient solutions.

Solution: Denote by f : R2 → R2 the vector objective, i.e.

f(x1, x2) =

(
−3x1 − x2
x1 − 2x2

)
.

We plot the set of feasibility solutions

x1

x2

0

1

2

3

4

0 1 2 3 4

Using the picture of the feasibility set, we can identify the extreme points and compute

their images, i.e.

f(0, 0) =

(
0

0

)
, f(3, 0) =

(
−9
3

)
, f(3, 1) =

(
−10
1

)
, f(1, 3) =

(
−6
−5

)
, f(0, 3) =

(
−3
−6

)
.

These values can be then used to plot the image of the feasibility set.
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f1

f2
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Since we minimize the vector objective, we can identify the e�cient frontier in the

image space (in bold). Then we can return back to the decision vector space and identify

the e�cient solutions (in bold):

x1

x2

0

1

2

3

4

0 1 2 3 4

The set of e�cient solutions can be written as

Xeff =

{
α

(
3

1

)
+ (1− α)

(
1

3

)
, α ∈ [0, 1]

}
∪
{
α

(
1

3

)
+ (1− α)

(
0

3

)
, α ∈ [0, 1]

}
,

i.e. it is union of two edges. Realize that the set is not convex.
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Instead of deriving the image of the feasibility set, we can use the aggregate function

approach, i.e. minimize one objective

λ(−3x1 − x2) + (1− λ)(x1 − 2x2) = (−4λ+ 1)x1 + (λ− 2)x2,

for di�erent values of parameter λ ∈ [0, 1].

x1

x2

0

1

2

3

4

5

0 1 2 3 4 5

λ = 1
4

λ = 1
8

λ = 3
5

We can observe from the picture that already values λ = 3
5 and λ = 1

4 identify the whole

set of e�cient solutions. �

Example 3.7 Consider biobjective linear optimization problem

min

(
3x1 + x2
−x1 − 2x2

)
s.t. x2 ≤ 3,

3x1 − x2 ≤ 6,

x1, x2 ≥ 0.

Find all e�cient solutions.

Solution: In this case, we are going to use the simplex algorithm, which is e�ective in

the case of two (linear) objective functions. First, we will reformulate the problem in the

standard form and apply the aggregation of objectives for λ ∈ [0, 1]:

min λ(3x1 + x2) + (1− λ)(−x1 − 2x2) = (4λ− 1)x1 + (3λ− 2)x2

s.t. x2 + x3 = 3,

3x1 − x2 + x4 = 6,

x1, x2, x3, x4 ≥ 0.

We can start the simplex table with x3, x4 as the basic variables.
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4λ− 1 3λ− 2 0 0

x1 x2 x3 x4
0 x3 3 0 1 1 0

0 x4 6 3 -1 0 1

0 −4λ+ 1 −3λ+ 2 0 0

≤ 0⇔ λ ≥ 1
4 ≤ 0⇔ λ ≥ 2

3 ≤ 0 ≤ 0

The �rst table is already optimal for λ ∈ [23 , 1], i.e. (0, 0, 3, 6) is an optimal (e�cient)

solution. We can continue in iterations for values λ ∈ [14 ,
2
3 ]. We change the basis: x3 is

replaced by x2.

4λ− 1 3λ− 2 0 0

x1 x2 x3 x4
3λ− 2 x2 3 0 1 1 0

0 x4 9 3 0 1 1

9λ− 6 −4λ+ 1 0 3λ− 2 0

≤ 0⇔ λ ≥ 1
4 ≤ 0 ≤ 0⇔ λ ≤ 2

3 ≤ 0

The optimality condition is ful�lled for λ ∈ [14 ,
2
3 ], i.e. (0, 3, 0, 9) is an optimal (e�cient)

solution. We continue for λ ∈ [0, 14 ] by changing the basis: x4 is replaced by x1.

4λ− 1 3λ− 2 0 0

x1 x2 x3 x4
3λ− 2 x2 3 0 1 1 0

4λ− 1 x1 3 1 0 1
3

1
3

21λ− 9 0 0 13λ−7
3

4λ−1
3

≤ 0 ≤ 0 ≤ 0⇔ λ ≤ 7
13 ≤ 0⇔ λ ≤ 1

4

The optimality condition is ful�lled for λ ∈ [0, 14 ], i.e. (3, 3, 0, 0) is an optimal (e�cient)

solution. We went through all possible values of parameter λ.

We must be careful with values λ ∈ {0, 1}, because then one objective function is not

taken into account. Uniqueness of the optimal solution is then necessary to verify that it

is an e�cient solution. However, in our case the e�ciency is ensured by that the values

{0, 1} are contained in nontrivial intervals λ ∈ [23 , 1], and λ ∈ [0, 14 ], for which the solutions

are stable.

If we return back to the original problem (by excluding slack variables x3, x4), we
obtain the set of e�cient solutions

Xeff =

{
α

(
0

0

)
+ (1− α)

(
0

3

)
, α ∈ [0, 1]

}
∪
{
α

(
0

3

)
+ (1− α)

(
3

3

)
, α ∈ [0, 1]

}
.

Alternative way how to �nd the e�cient solutions, is to use the ε-constrained approach
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when one objective is minimized and the other one is used as a constraint:

min 3x1 + x2

s.t. − x1 − 2x2 ≤ ε,
x2 ≤ 3,

3x1 − x2 ≤ 6,

x1, x2 ≥ 0,

where ε is a parameter. This parameter must be restricted to the values when the problem

is feasible. Realize that if the parametric problem is solved by the simplex algorithm, the

parameter ε appears only in the column B−1b. �

Example 3.8 Consider biobjective linear optimization problem

min

(
2x1 − x2
x1 − 2x2

)
s.t. − x1 + x2 ≤ 2,

x1 ≤ 2,

x1, x2 ≥ 0.

Find all e�cient solutions.

Example 3.9 Consider biobjective nonlinear optimization problem

min

(
−x1 − 2x2
x21 + 5x2 − 1

)
s.t. 4x1 − x2 ≤ 0,

x2 ≤ 8.

Find all e�cient solutions using the KKT optimality conditions.

Solution: We can use the aggregate function approach to transform the problem to a

parametric optimization one, i.e. we solve for λ ∈ [0, 1]

min λ(−x1 − 2x2) + (1− λ)(x21 + 5x2 − 1)

s.t. 4x1 − x2 ≤ 0,

x2 ≤ 8.

Note that the problem is convex. The Lagrange function is then

L(x1, x2, u1, u2) = λ(−x1 − 2x2) + (1− λ)(x21 + 5x2 − 1) + u1(4x1 − x2) + u2(x2 − 8),
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with u1,2 ≥ 0. The KKT optimality conditions are

i) 4x1 − x2 ≤ 0, x2 − 8 ≤ 0,

ii) u1(4x1 − x2) = 0, u1 ≥ 0,

u2(x2 − 8) = 0, u2 ≥ 0,

iii)
∂L

∂x1
= −λ+ 2(1− λ)x1 + 4u1 = 0,

∂L

∂x2
= −2λ+ 5(1− λ)− u1 + u2 = 0.

We can split our solution to four cases according to the complementarity conditions:

1) u1 = 0, u2 = 0: from iii) we have 5 − 7λ = 0, i.e. parameter is restricted to

λ = 5
7 ∈ [0, 1]. From iii) we also obtain

x1 =
λ

2(1− λ)
=

5

4
.

To get a feasible solution, we must restrict x2 using i), i.e.

4x1 − x2 ≤ 0⇔ x2 ≥ 5 and also x2 ≤ 8.

Thus we have KKT point (
5

4
, x2 ∈ [5, 8], 0, 0

)
.

2) u1 = 0, x2 = 8: From iii) we have

x1 =
λ

2(1− λ)
,

and

u2 = 7λ− 5 ≥ 0⇔ λ ≥ 5

7
.

From i) it must hold 4x1 ≤ 8, i.e.

x1 =
λ

2(1− λ)
≤ 2⇔ λ ≤ 4

5
.

Thus we have KKT point(
λ

2(1− λ)
, 8, 0, 7λ− 5

)
, λ ∈

[
5

7
,
4

5

]
.

3) 4x1 − x2 = 0, u2 = 0: From iii) we have

u1 = −7λ+ 5 ≥ 0⇔ λ ≤ 5

7
.

Using iii)

−λ+ 2(1− λ)x1 + 4(−7λ+ 5) = 0⇔ x1 =
29λ− 20

2(1− λ)
.
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From ii) x2 = 4x1 and from i)

x2 ≤ 8⇔ λ ≤ 8

11
>

5

7
.

Thus we have KKT point(
29λ− 20

2(1− λ)
,
58λ− 40

1− λ
, −7λ+ 5, 0

)
, λ ∈

[
0,

5

7

]
.

4) 4x1 − x2 = 0, x2 = 8, i.e. x1 = 2: From iii) we have

− λ+ 4(1− λ) + 4u1 = 0,

− 2λ+ 5(1− λ)− u1 + u2 = 0.

We multiply the second equation by 4 and sum the equations, we derive

u2 =
33λ− 24

4
≥ 0⇔ λ ≥ 8

11
,

and

u1 =
5λ− 4

4
≥ 0⇔ λ ≥ 4

5
>

8

11
.

Thus we have KKT point(
2, 8,

5λ− 4

4
,
33λ− 24

4

)
, λ ∈

[
4

5
, 1

]
.

Each KKT point represents an e�cient solution of the multiobjective problem (for λ = 0
after discussion). �

Example 3.10 Consider biobjective nonlinear optimization problem

min

(
(x1 − 2)2 + x22
x21 + (x2 − 2)2

)
s.t. x1 + x2 ≤ 1.

Find all e�cient solutions using the KKT optimality conditions.
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