Introduction to Integer Linear Programming

Martin Branda

Charles University in Prague
Faculty of Mathematics and Physics
Department of Probability and Mathematical Statistics

Computational Aspects of Optimization

Content

(1) Motivation and applications
(2) Formulation and properties
(3) Cutting plane method

Knapsack problem

Values $a_{1}=4, a_{2}=6, a_{3}=7$, costs $c_{1}=4, c_{2}=5, c_{3}=11$, budget $b=10$:

$$
\begin{aligned}
\max & \sum_{i=1}^{3} c_{i} x_{i} \\
\text { s.t. } & \sum_{i=1}^{3} a_{i} x_{i} \leq 10 \\
& x_{i} \in\{0,1\}
\end{aligned}
$$

Consider $=$ instead of $\leq, 0 \leq x_{i} \leq 1$ and rounding instead of $x_{i} \in\{0,1\}$, heuristic (ratio c_{i} / a_{i}) ...

Why is integrality so important?

Real (mixed-)integer programming problems (not always linear)

- Portfolio optimization - integer number of assets, fixed transaction costs
- Scheduling - integer (binary) decision variables to assign a job to a machine
- Vehicle Routing Problems (VRP) - binary decision variables which identify a successor of a node on the route

In general - modelling of logical relations, e.g.

- at least two constraints from three are fulfilled,
- if we buy this asset than the fixed transaction costs increase,
- ...

Facility Location Problem

- i warehouses (facilities, branches), j customers,
- $x_{i j}$ - sent (delivered, served) quantity,
- y_{i}-a warehouse is built,
- $c_{i j}$ - unit supplying costs,
- f_{i} - fixed costs of building the warehouse,
- K_{i} - warehouse capacity,
- D_{j} - demand.

$$
\begin{aligned}
\min _{x_{i j}, y_{i}} & \sum_{i=1}^{n} \sum_{j=1}^{m} c_{i j} x_{i j}+\sum_{i} f_{i} y_{i} \\
\text { s.t. } & \sum_{j=1}^{m} x_{i j} \leq K_{i} y_{i}, i=1, \ldots, n \\
& \sum_{i=1}^{n} x_{i j}=D_{j}, j=1, \ldots, m \\
& x_{i j} \geq 0, \quad y_{i} \in\{0,1\}
\end{aligned}
$$

Scheduling to Minimize the Makespan

- i machines, j jobs,
- y-machine makespan,
- $x_{i j}$ - assignment variable,
- $t_{i j}$ - time necessary to process job j on machine i.

$$
\begin{array}{rl}
\min _{x_{i j}, y} & y \\
\text { s.t. } & \sum_{i=1}^{m} x_{i j}=1, j=1, \ldots, n \\
& \sum_{j=1}^{n} t_{i j} x_{i j} \leq y, i=1, \ldots, m \tag{1}\\
& x_{i j} \in\{0,1\}, \quad y \geq 0
\end{array}
$$

Lot Sizing Problem

Uncapacitated single item LSP

- x_{t} - production at period t,
- y_{t} - on/off decision at period t,
- s_{t} - inventory at the end of period $t\left(s_{0} \geq 0\right.$ fixed),
- D_{t} - (predicted) expected demand at period t,
- p_{t} - unit production costs at period t,
- f_{t} - setup costs at period t,
- h_{t} - inventory costs at period t,
- M - a large constant.

$$
\begin{align*}
\min _{x_{t}, y_{t}, s_{t}} & \sum_{t=1}^{T}\left(p_{t} x_{t}+f_{t} y_{t}+h_{t} s_{t}\right) \\
\text { s.t. } & s_{t-1}+x_{t}-D_{t}=s_{t}, t=1, \ldots, T, \tag{2}\\
& x_{t} \leq M y_{t}, \\
& x_{t}, s_{t} \geq 0, y_{t} \in\{0,1\} .
\end{align*}
$$

ASS. Wagner-Whitin costs $p_{t+1} \leq p_{t}+h_{t}$.

Lot Sizing Problem

Capacitated single item LSP

- x_{t} - production at period t,
- y_{t} - on/off decision at period t,
- s_{t} - inventory at the end of period $t\left(s_{0} \geq 0\right.$ fixed),
- D_{t} - (predicted) expected demand at period t.
- p_{t} - unit production costs at period t,
- f_{t} - setup costs at period t,
- h_{t} - inventory costs at period t,
- C_{t} - production capacity at period t.

$$
\begin{align*}
\min _{x_{t}, y_{t}, s_{t}} & \sum_{t=1}^{T}\left(p_{t} x_{t}+f_{t} y_{t}+h_{t} s_{t}\right) \\
\text { s.t. } & s_{t-1}+x_{t}-D_{t}=s_{t}, t=1, \ldots, T, \tag{3}\\
& x_{t} \leq C_{t} y_{t} \\
& x_{t}, s_{t} \geq 0, y_{t} \in\{0,1\} .
\end{align*}
$$

ASS. Wagner-Whitin costs $p_{t+1} \leq p_{t}+h_{t}$.

Unit Commitment Problem

- $i=1, \ldots, n$ units (power plants), $t=1, \ldots, T$ periods,
- $y_{i t}$ - on/off decision for unit i at period t,
- $x_{i t}$ - production level for unit i at period t,
- D_{t} - (predicted) expected demand at period t,
- $p_{i}^{\text {min }}, p_{i}^{\text {max }}$ - minimal/maximal production capacity of unit i,
- $c_{i t}$ - variable production costs,
- $f_{i t}$ - (fixed) start-up costs.

$$
\begin{align*}
\min _{x_{i t}, y_{i t}} & \sum_{i=1}^{n} \sum_{t=1}^{T}\left(c_{i t} x_{i t}+f_{i t} y_{i t}\right) \\
\text { s.t. } & \sum_{i=1}^{n} x_{i t} \geq D_{t}, t=1, \ldots, T \tag{4}\\
& p_{i}^{\min } y_{i t} \leq x_{i t} \leq p_{i}^{\max } y_{i t} \\
& x_{i t} \geq 0, y_{i t} \in\{0,1\}
\end{align*}
$$

Content

(1) Motivation and applications

(2) Formulation and properties

(3) Cutting plane method

Integer linear programming

$$
\begin{align*}
\min c^{\top} x & \tag{5}\\
A x & \geq b, \tag{6}\\
x & \in \mathbb{Z}_{+}^{n} . \tag{7}
\end{align*}
$$

Assumption: all coefficients are integer (rational before multiplying by a proper constant).

Set of feasible solution and its relaxation

$$
\begin{align*}
S & =\left\{x \in \mathbb{Z}_{+}^{n}: A x \geq b\right\} \tag{8}\\
P & =\left\{x \in \mathbb{R}_{+}^{n}: A x \geq b\right\} \tag{9}
\end{align*}
$$

Obviously $S \subseteq P$. Not so trivial that $S \subseteq \operatorname{conv}(S) \subseteq P$.

ILP - irrational data

Škoda (2010):

$$
\begin{align*}
\max & \sqrt{2} x-y \\
\text { s.t. } & \sqrt{2} x-y \leq 0, \tag{10}\\
& x \geq 1, \\
& x, y \in \mathbb{N} .
\end{align*}
$$

The objective value is bounded (from above), but there is no optimal solution.

For any feasible solution with the objective value $z=\sqrt{2} x^{*}-\left\lceil\sqrt{2} x^{*}\right\rceil$ we can construct a solution with a higher objective value...

ILP - irrational data

Let $z=\sqrt{2} x^{*}-\left\lceil\sqrt{2} x^{*}\right\rceil$ be the optimal solution. Since $-1<z<0$, we can find $k \in \mathbb{N}$ such that $k z<-1$ and $(k-1) z>-1$. By setting $\epsilon=-1-k z$ we get that $-1<z<-\epsilon=1+k z<0$. Then

$$
\begin{align*}
& \sqrt{2} k x^{*}-\left\lceil\sqrt{2} k x^{*}\right\rceil \\
& =k z+k\left\lceil\sqrt{2} x^{*}\right\rceil-\left\lceil\sqrt{2} k x^{*}\right\rceil \\
& =-1-\epsilon+k\left\lceil\sqrt{2} x^{*}\right\rceil-\left\lceil\sqrt{2} k x^{*}\right\rceil \tag{11}\\
& =k\left\lceil\sqrt{2} x^{*}\right\rceil-1-\epsilon-\left\lceil\left\lceil\sqrt{2} k x^{*}\right\rceil-1-\epsilon\right\rceil \\
& =-\epsilon>z .
\end{align*}
$$

($k\left\lceil\sqrt{2} x^{*}\right\rceil-1$ is integral)
Thus, we have obtained a solution with a higher objective value which is a contradiction.

Example

Consider set S given by

$$
\begin{aligned}
7 x_{1}+2 x_{2} & \geq 5, \\
7 x_{1}+x_{2} & \leq 28, \\
-4 x_{1}+14 x_{2} & \leq 35, \\
x_{1}, x_{2} & \in \mathbb{Z}_{+} .
\end{aligned}
$$

Set of feasible solutions, its relaxation and convex envelope

Škoda (2010)

Integer linear programming problem

Problem

$$
\begin{equation*}
\min c^{\top} x: x \in S \tag{12}
\end{equation*}
$$

is equivalent to

$$
\begin{equation*}
\min c^{T} x: x \in \operatorname{conv}(S) \tag{13}
\end{equation*}
$$

$\operatorname{conv}(S)$ is very difficult to construct - many constraints ("strong cuts") are necessary (there are some important exceptions).

LP-relaxation:

$$
\begin{equation*}
\min c^{T} x: x \in P \tag{14}
\end{equation*}
$$

Mixed-integer linear programming

Often both integer and continuous decision variables appear:

$$
\begin{array}{ll}
\min & c^{T} x+d^{T} y \\
\text { s.t. } & A x+B y \geq b \\
& x \in \mathbb{Z}_{+}^{n}, y \in \mathbb{R}_{+}^{n^{\prime}}
\end{array}
$$

(WE DO NOT CONSIDER IN INTRODUCTION)

Basic algorithms

We consider:

- Cutting Plane Method
- Branch-and-Bound

There are methods which combine the previous alg., e.g. Branch-and-Cut (add cuts to reduce the problem for B\&B).

Content

(1) Motivation and applications

(2) Formulation and properties
(3) Cutting plane method

Cutting plane method - Gomory cuts

1. Solve LP-relaxation using (primal or dual) SIMPLEX algorithm.

- If the solution is integral - END, we have found an optimal solution,
- otherwise continue with the next step.

2. Add a Gomory cut (...) and solve the resulting problem using DUAL SIMPLEX alg.

Example

$$
\begin{align*}
\min 4 x_{1}+5 x_{2} & \tag{15}\\
x_{1}+4 x_{2} & \geq 5 \tag{16}\\
3 x_{1}+2 x_{2} & \geq 7 \\
x_{1}, x_{2} & \in \mathbb{Z}_{+}^{n} .
\end{align*}
$$

Dual simplex for LP-relaxation ...

After two iterations of the dual SIMPLEX algorithm ...

			4	5	0	0
			x_{1}	x_{2}	x_{3}	x_{4}
5	x_{2}	$8 / 10$	0	1	$-3 / 10$	$1 / 10$
4	x_{1}	$18 / 10$	1	0	$2 / 10$	$-4 / 10$
		$112 / 10$	0	0	$-7 / 10$	$-11 / 10$

Gomory cuts

There is a row in simplex table, which corresponds to a non-integral solution x_{i} in the form:

$$
\begin{equation*}
x_{i}+\sum_{j \in N} w_{i j} x_{j}=d_{i} \tag{19}
\end{equation*}
$$

where N denotes the set of non-basic variables; d_{i} is non-integral. We denote

$$
\begin{align*}
w_{i j} & =\left\lfloor w_{i j}\right\rfloor+f_{i j} \tag{20}\\
d_{i} & =\left\lfloor d_{i}\right\rfloor+f_{i} \tag{21}
\end{align*}
$$

i.e. $0 \leq f_{i j}, f_{i}<1$.

$$
\begin{equation*}
\sum_{j \in N} f_{i j} x_{j} \geq f_{i} \tag{22}
\end{equation*}
$$

or rather $-\sum_{j \in N} f_{i j} x_{j}+s=-f_{i}, s \geq 0$.

Gomory cuts

General properties of cuts (including Gomory ones):

- Property 1: Current (non-integral) solution becomes infeasible (it is cut).
- Property 2: No feasible integral solution becomes infeasible (it is not cut).

Gomory cuts - property 1

We express the constraints in the form

$$
\begin{align*}
x_{i}+\sum_{j \in N}\left(\left\lfloor w_{i j}\right\rfloor+f_{i j}\right) x_{j} & =\left\lfloor d_{i}\right\rfloor+f_{i} \tag{23}\\
x_{i}+\sum_{j \in N}\left\lfloor w_{i j}\right\rfloor x_{j}-\left\lfloor d_{i}\right\rfloor & =f_{i}-\sum_{j \in N} f_{i j} x_{j} . \tag{24}
\end{align*}
$$

Current solution $x_{j}^{*}=0$ pro $j \in N$ a $x_{i}^{*}=d_{i}$ is non-integral, i.e. $0<x_{i}^{*}-\left\lfloor d_{i}\right\rfloor<1$, thus

$$
\begin{equation*}
0<x_{i}^{*}-\left\lfloor d_{i}\right\rfloor=f_{i}-\sum_{j \in N} f_{i j} x_{j}^{*} \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j \in N} f_{i j} x_{j}^{*}<f_{i} \tag{26}
\end{equation*}
$$

which is a contradiction with the Gomory cut.

Gomory cuts - property 2

Consider an arbitrary integral feasible solution and rewrite the constraint as

$$
\begin{equation*}
x_{i}+\sum_{j \in N}\left\lfloor w_{i j}\right\rfloor x_{j}-\left\lfloor d_{i}\right\rfloor=f_{i}-\sum_{j \in N} f_{i j} x_{j}, \tag{27}
\end{equation*}
$$

Left-hand side (LS) is integral, thus right-hand side (RS) is integral. Moreover, $f_{i}<1$ a $\sum_{j \in N} f_{i j} x_{j} \geq 0$, thus RS is strictly lower than 1 and at the same time it is integral, thus lower or equal to 0 , i.e. we obtain Gomory cut

$$
\begin{equation*}
f_{i}-\sum_{j \in N} f_{i j} x_{j} \leq 0 \tag{28}
\end{equation*}
$$

Thus each integral solution fulfills it.

Cutting plane methods - steps

Škoda (2010)

Dantzig cuts

$$
\begin{equation*}
\sum_{j \in N} x_{j} \geq 1 \tag{29}
\end{equation*}
$$

(Remind that non-basic variables are equal to zero.)

After two iterations of the dual SIMPLEX algorithm ...

			4	5	0	0
			x_{1}	x_{2}	x_{3}	x_{4}
5	x_{2}	$8 / 10$	0	1	$-3 / 10$	$1 / 10$
4	x_{1}	$18 / 10$	1	0	$2 / 10$	$-4 / 10$
		$112 / 10$	0	0	$-7 / 10$	$-11 / 10$

For example, x_{1} is not integral:

$$
\begin{aligned}
x_{1}+2 / 10 x_{3}-4 / 10 x_{4} & =18 / 10 \\
x_{1}+(0+2 / 10) x_{3}+(-1+6 / 10) x_{4} & =1+8 / 10
\end{aligned}
$$

Gomory cut:

$$
2 / 10 x_{3}+6 / 10 x_{4} \geq 8 / 10 .
$$

New simplex table

				4	5	0	0
x_{1}	x_{2}	x_{3}	x_{4}	x_{5}			
5			x_{2}	$8 / 10$	0	1	$-3 / 10$
4	$1 / 10$	0					
4	x_{1}	$18 / 10$	1	0	$2 / 10$	$-4 / 10$	0
0	x_{5}	$-8 / 10$	0	0	$-2 / 10$	$-6 / 10$	1
		$112 / 10$	0	0	$-7 / 10$	$-11 / 10$	0

Dual simplex alg. ... Gomory cut:

$$
4 / 6 x_{3}+1 / 6 x_{5} \geq 2 / 3
$$

Dual simplex alg. ... optimal solution (2, 1, 1, 1, 0, 0).

Literature

- G.L. Nemhauser, L.A. Wolsey (1989). Integer Programming. Chapter VI in Handbooks in OR \& MS, Vol. 1, G.L. Nemhauser et al. Eds.
- P. Pedegral (2004). Introduction to optimization, Springer-Verlag, New York.
- Š. Škoda: Řešení lineárních úloh s celočíselnými omezeními v GAMSu. Bc. práce MFF UK, 2010. (In Czech)
- L.A. Wolsey (1998). Integer Programming. Wiley, New York.
- L.A. Wolsey, G.L. Nemhauser (1999). Integer and Combinatorial Optimization. Wiley, New York.

