Introduction to Integer Linear Programming

Martin Branda

Charles University in Prague Faculty of Mathematics and Physics Department of Probability and Mathematical Statistics

Computational Aspects of Optimization

< 日 > < 同 > < 三 > < 三 >

2017-03-13

1 / 31

2 Formulation and properties

Martin Branda (KPMS MFF UK)

(日)

Knapsack problem

Values $a_1 = 4$, $a_2 = 6$, $a_3 = 7$, costs $c_1 = 4$, $c_2 = 5$, $c_3 = 11$, budget b = 10:

$$\begin{array}{l} \max \; \sum_{i=1}^{3} c_{i} x_{i} \\ \mathrm{s.t.} \; \sum_{i=1}^{3} a_{i} x_{i} \leq 10, \\ \; x_{i} \in \{0,1\}. \end{array}$$

Consider = instead of \leq , $0 \leq x_i \leq 1$ and rounding instead of $x_i \in \{0, 1\}$, heuristic (ratio c_i/a_i) ...

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ○臣 ● のへの

Why is integrality so important?

Real (mixed-)integer programming problems (not always linear)

- **Portfolio optimization** integer number of assets, fixed transaction costs
- Scheduling integer (binary) decision variables to assign a job to a machine
- Vehicle Routing Problems (VRP) binary decision variables which identify a successor of a node on the route

• ...

In general – modelling of logical relations, e.g.

- at least two constraints from three are fulfilled,
- if we buy this asset than the fixed transaction costs increase,

• ...

イロト イポト イヨト イヨト 二日

Facility Location Problem

- *i* warehouses (facilities, branches), *j* customers,
- x_{ij} sent (delivered, served) quantity,
- y_i a warehouse is built,
- c_{ij} unit supplying costs,
- f_i fixed costs of building the warehouse,
- *K_i* warehouse capacity,
- D_j − demand.

$$\begin{split} \min_{x_{ij},y_i} & \sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} x_{ij} + \sum_{i} f_i y_i \\ \text{s.t.} & \sum_{j=1}^{m} x_{ij} \leq K_i y_i, \ i = 1, \dots, n, \\ & \sum_{i=1}^{n} x_{ij} = D_j, \ j = 1, \dots, m, \\ & x_{ij} \geq 0, \ y_i \in \{0,1\}. \end{split}$$

Scheduling to Minimize the Makespan

- i machines, j jobs,
- y machine makespan,
- x_{ij} assignment variable,
- t_{ij} time necessary to process job j on machine i.

$$\min_{x_{ij},y} y$$
s.t. $\sum_{i=1}^{m} x_{ij} = 1, j = 1, ..., n,$

$$\sum_{j=1}^{n} t_{ij} x_{ij} \le y, i = 1, ..., m,$$

$$x_{ij} \in \{0,1\}, y \ge 0.$$

$$(1)$$

イロト イポト イヨト イヨト 二日

Lot Sizing Problem Uncapacitated single item LSP

- x_t production at period t,
- y_t − on/off decision at period t,
- s_t inventory at the end of period t ($s_0 \ge 0$ fixed),
- D_t (predicted) expected demand at period t,
- p_t unit production costs at period t,
- f_t setup costs at period t,
- h_t inventory costs at period t,
- *M* a large constant.

$$\min_{x_{t}, y_{t}, s_{t}} \sum_{t=1}^{T} (p_{t}x_{t} + f_{t}y_{t} + h_{t}s_{t})$$
s.t. $s_{t-1} + x_{t} - D_{t} = s_{t}, t = 1, ..., T,$
 $x_{t} \leq My_{t},$
 $x_{t}, s_{t} \geq 0, y_{t} \in \{0, 1\}.$
(2)

ASS. Wagner-Whitin costs $p_{t+1} \leq p_t + h_t$.

Martin Branda (KPMS MFF UK)

イロト イポト イヨト ・ヨ

Lot Sizing Problem Capacitated single item LSP

- x_t production at period t,
- y_t − on/off decision at period t,
- s_t inventory at the end of period t ($s_0 \ge 0$ fixed),
- D_t (predicted) expected demand at period t.
- p_t unit production costs at period t,
- f_t setup costs at period t,
- h_t inventory costs at period t,
- C_t production capacity at period t.

$$\min_{x_{t}, y_{t}, s_{t}} \sum_{t=1}^{T} (p_{t}x_{t} + f_{t}y_{t} + h_{t}s_{t})$$
s.t. $s_{t-1} + x_{t} - D_{t} = s_{t}, t = 1, ..., T,$
 $x_{t} \leq C_{t}y_{t},$
 $x_{t}, s_{t} \geq 0, y_{t} \in \{0, 1\}.$
(3)

ASS. Wagner-Whitin costs $p_{t+1} \leq p_t + h_t$.

Martin Branda (KPMS MFF UK)

イロト 不得 とうせい かほとう ほ

Unit Commitment Problem

- i = 1, ..., n units (power plants), t = 1, ..., T periods,
- y_{it} on/off decision for unit i at period t,
- x_{it} production level for unit i at period t,
- D_t (predicted) expected demand at period t,
- p_i^{min}, p_i^{max} minimal/maximal production capacity of unit *i*,
- c_{it} variable production costs,
- $f_{it} (fixed)$ start-up costs.

$$\min_{x_{it}, y_{it}} \sum_{i=1}^{n} \sum_{t=1}^{T} (c_{it} x_{it} + f_{it} y_{it})$$
s.t.
$$\sum_{i=1}^{n} x_{it} \ge D_t, \ t = 1, \dots, T,$$

$$p_i^{\min} y_{it} \le x_{it} \le p_i^{\max} y_{it},$$

$$x_{it} \ge 0, \ y_{it} \in \{0, 1\}.$$

$$(4)$$

イロト 不得 トイヨト イヨト 二日

Martin Branda (KPMS MFF UK)

(日)

Integer linear programming

$$\min c^{\mathsf{T}} x \tag{5}$$

$$Ax \geq b, \tag{6}$$

$$x \in \mathbb{Z}_+^n.$$
 (7)

Assumption: all coefficients are integer (rational before multiplying by a proper constant).

Set of feasible solution and its relaxation

$$S = \{x \in \mathbb{Z}^n_+ : Ax \ge b\}, \tag{8}$$

$$P = \{x \in \mathbb{R}^n_+ : Ax \ge b\}$$
(9)

Obviously $S \subseteq P$. Not so trivial that $S \subseteq \operatorname{conv}(S) \subseteq P$.

イロト イポト イヨト イヨト 二日

ILP – irrational data

Škoda (2010):

$$\max \sqrt{2}x - y$$

s.t. $\sqrt{2}x - y \le 0$,
 $x \ge 1$,
 $x, y \in \mathbb{N}$. (10)

The objective value is bounded (from above), but there is no optimal solution.

For any feasible solution with the objective value $z = \sqrt{2}x^* - \lfloor \sqrt{2}x^* \rfloor$ we can construct a solution with a higher objective value...

イロト 不得 トイヨト イヨト 二日

ILP – irrational data

Let $z = \sqrt{2}x^* - \lfloor \sqrt{2}x^* \rfloor$ be the optimal solution. Since -1 < z < 0, we can find $k \in \mathbb{N}$ such that kz < -1 and (k-1)z > -1. By setting $\epsilon = -1 - kz$ we get that $-1 < z < -\epsilon = 1 + kz < 0$. Then

$$\begin{aligned}
\sqrt{2}kx^* - \left\lceil \sqrt{2}kx^* \right\rceil \\
&= kz + k \left\lceil \sqrt{2}x^* \right\rceil - \left\lceil \sqrt{2}kx^* \right\rceil \\
&= -1 - \epsilon + k \left\lceil \sqrt{2}x^* \right\rceil - \left\lceil \sqrt{2}kx^* \right\rceil \\
&= k \left\lceil \sqrt{2}x^* \right\rceil - 1 - \epsilon - \left\lceil \left\lceil \sqrt{2}kx^* \right\rceil - 1 - \epsilon \right\rceil \\
&= -\epsilon > z.
\end{aligned}$$
(11)

 $(k \lfloor \sqrt{2}x^* \rfloor - 1 \text{ is integral})$ Thus, we have obtained a solution with a higher objective value which is a contradiction.

Martin Branda (KPMS MFF UK)

Consider set S given by

Formulation and properties

Set of feasible solutions, its relaxation and convex envelope

Škoda (2010)

Martin Branda (KPMS MFF UK)

Integer linear programming problem

Problem

$$\min c^{\mathsf{T}} x: \ x \in S. \tag{12}$$

is equivalent to

$$\min c^{\mathsf{T}} x: \ x \in \operatorname{conv}(S). \tag{13}$$

conv(S) is very difficult to construct – many constraints ("strong cuts") are necessary (there are some important exceptions).

LP-relaxation:

$$\min c^T x: \ x \in P. \tag{14}$$

・ロト ・得ト ・ヨト ・ヨト

2017-03-13

16 / 31

Mixed-integer linear programming

Often both integer and continuous decision variables appear:

min
$$c^T x + d^T y$$

s.t. $Ax + By \ge b$
 $x \in \mathbb{Z}_+^n, y \in \mathbb{R}_+^{n'}$.

(WE DO NOT CONSIDER IN INTRODUCTION)

Basic algorithms

We consider:

- Cutting Plane Method
- Branch-and-Bound

There are methods which combine the previous alg., e.g. **Branch-and-Cut** (add cuts to reduce the problem for B&B).

(日)

Content

Motivation and applications

2 Formulation and properties

Martin Branda (KPMS MFF UK)

< ロ > < 同 > < 回 > <

Cutting plane method - Gomory cuts

- 1. Solve LP-relaxation using (primal or dual) SIMPLEX algorithm.
 - If the solution is integral END, we have found an optimal solution,
 - otherwise continue with the next step.
- 2. Add a **Gomory cut** (...) and solve the resulting problem using DUAL SIMPLEX alg.

< ロ > < 部 > < 문 > < 문 > …

$$\begin{array}{lll} \min 4x_1 + 5x_2 & (15) \\ x_1 + 4x_2 & \geq & 5, & (16) \\ 3x_1 + 2x_2 & \geq & 7, & (17) \\ x_1, x_2 & \in & \mathbb{Z}_+^n. & (18) \end{array}$$

・ロッ ・ 一 ・ ・ ・ ・

3

21 / 31

2017-03-13

Dual simplex for LP-relaxation ...

Martin Branda (KPMS MFF UK)

After two iterations of the dual SIMPLEX algorithm ...

			4	5	0	0
			<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> 4
5	x ₂	8/10	0	1	-3/10 2/10	1/10
4	x ₁	18/10	1	0	2/10	-4/10
		112/10	0	0	-7/10	-11/10

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Gomory cuts

There is a row in simplex table, which corresponds to a **non-integral** solution x_i in the form:

$$x_i + \sum_{j \in N} w_{ij} x_j = d_i, \qquad (19)$$

where N denotes the set of non-basic variables; d_i is non-integral. We denote

$$\begin{aligned} w_{ij} &= \lfloor w_{ij} \rfloor + f_{ij}, \\ d_i &= \lfloor d_i \rfloor + f_i, \end{aligned}$$
 (20)

i.e. $0 \le f_{ij}, f_i < 1$.

$$\sum_{j\in\mathbb{N}}f_{ij}x_j\geq f_i,\tag{22}$$

2017-03-13

23 / 31

or rather $-\sum_{j\in N} f_{ij}x_j + s = -f_i$, $s \ge 0$.

General properties of cuts (including Gomory ones):

- Property 1: Current (non-integral) solution becomes infeasible (it is cut).
- Property 2: No feasible integral solution becomes infeasible (it is not cut).

(日)

Gomory cuts – property 1

We express the constraints in the form

$$x_{i} + \sum_{j \in N} (\lfloor w_{ij} \rfloor + f_{ij}) x_{j} = \lfloor d_{i} \rfloor + f_{i}, \qquad (23)$$
$$x_{i} + \sum_{j \in N} \lfloor w_{ij} \rfloor x_{j} - \lfloor d_{i} \rfloor = f_{i} - \sum_{j \in N} f_{ij} x_{j}. \qquad (24)$$

Current solution $x_j^* = 0$ pro $j \in N$ a $x_i^* = d_i$ is non-integral, i.e. $0 < x_i^* - \lfloor d_i \rfloor < 1$, thus

$$0 < x_i^* - \lfloor d_i \rfloor = f_i - \sum_{j \in N} f_{ij} x_j^*$$
(25)

and

$$\sum_{j \in N} f_{ij} x_j^* < f_i, \tag{26}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ... □

which is a contradiction with the Gomory cut.

Martin Branda (KPMS MFF UK)

Gomory cuts – property 2

Consider an arbitrary integral feasible solution and rewrite the constraint as

$$x_i + \sum_{j \in \mathbb{N}} \lfloor w_{ij} \rfloor x_j - \lfloor d_i \rfloor = f_i - \sum_{j \in \mathbb{N}} f_{ij} x_j, \qquad (27)$$

Left-hand side (LS) is integral, thus right-hand side (RS) is integral. Moreover, $f_i < 1$ a $\sum_{j \in N} f_{ij} x_j \ge 0$, thus RS is strictly lower than 1 and at the same time it is integral, thus lower or equal to 0, i.e. we obtain Gomory cut

$$f_i - \sum_{j \in N} f_{ij} x_j \le 0.$$
(28)

・ロト ・得ト ・ヨト ・ヨト

2017-03-13

26 / 31

Thus each integral solution fulfills it.

Cutting plane method

Cutting plane methods – steps

Škoda (2010)

Martin Branda (KPMS MFF UK)

Image: A mathematical states and a mathem

Dantzig cuts

$$\sum_{j\in\mathbb{N}}x_j\geq 1.$$
(29)

(日)

(Remind that non-basic variables are equal to zero.)

Martin Branda (KPMS MFF UK)

2017-03-13 28 / 31

After two iterations of the dual SIMPLEX algorithm ...

			4	5	0	0
			<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>X</i> 4
5	<i>x</i> ₂	8/10	0	1	-3/10	1/10
4	x_1	8/10 18/10	1	0	2/10	-4/10
		112/10	0	0	-7/10	-11/10

For example, x_1 is not integral:

$$x_1 + 2/10x_3 - 4/10x_4 = 18/10,$$

 $x_1 + (0 + 2/10)x_3 + (-1 + 6/10)x_4 = 1 + 8/10.$

Gomory cut:

$$2/10x_3 + 6/10x_4 \ge 8/10.$$

< 日 > < 同 > < 三 > < 三 >

New simplex table

			4	5	0	0	0
			<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>x</i> 5
5	<i>x</i> ₂	8/10	0	1	-3/10	1/10	0
4	x_1	18/10	1	0	2/10	-4/10	0
0	<i>x</i> 5	-8/10	0	0	- 2/10	-6/10	1
		112/10	0	0	-7/10	-11/10	0

Dual simplex alg. ... Gomory cut:

 $4/6x_3 + 1/6x_5 \ge 2/3.$

Dual simplex alg. ... optimal solution (2, 1, 1, 1, 0, 0).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Literature

- G.L. Nemhauser, L.A. Wolsey (1989). Integer Programming. Chapter VI in Handbooks in OR & MS, Vol. 1, G.L. Nemhauser et al. Eds.
- P. Pedegral (2004). Introduction to optimization, Springer-Verlag, New York.
- Š. Škoda: Řešení lineárních úloh s celočíselnými omezeními v GAMSu. Bc. práce MFF UK, 2010. (In Czech)
- L.A. Wolsey (1998). Integer Programming. Wiley, New York.
- L.A. Wolsey, G.L. Nemhauser (1999). Integer and Combinatorial Optimization. Wiley, New York.

(日)