Introduction to Integer Linear Programming

Martin Branda

Charles University in Prague Faculty of Mathematics and Physics Department of Probability and Mathematical Statistics

Computational Aspects of Optimization

Martin Branda (KPMS MFF UK)

2017-03-13 1 / 31

Motivation and applications

Why is integrality so important?

Real (mixed-)integer programming problems (not always linear)

- Portfolio optimization integer number of assets, fixed transaction costs
- Scheduling integer (binary) decision variables to assign a job to a machine
- Vehicle Routing Problems (VRP) binary decision variables which identify a successor of a node on the route
- ...

In general – modelling of logical relations, e.g.

- at least two constraints from three are fulfilled.
- if we buy this asset than the fixed transaction costs increase,
- ...

Motivation and application

Knapsack problem

Values $a_1 = 4$, $a_2 = 6$, $a_3 = 7$, costs $c_1 = 4$, $c_2 = 5$, $c_3 = 11$, budget b = 10:

$$\max \sum_{i=1}^{3} c_i x_i$$
s.t.
$$\sum_{i=1}^{3} a_i x_i \le 10,$$

$$x_i \in \{0, 1\}.$$

Consider = instead of \leq , $0 \leq x_i \leq 1$ and rounding instead of $x_i \in \{0,1\}$, heuristic (ratio c_i/a_i) ...

Martin Branda (KPMS MFF UK)

2017-03-13 3 / 31

Motivation and applications

Facility Location Problem

- i warehouses (facilities, branches), j customers,
- x_{ij} sent (delivered, served) quantity,
- y_i − a warehouse is built,
- c_{ii} unit supplying costs,
- f_i fixed costs of building the warehouse,
- K_i − warehouse capacity,
- D_j demand.

$$\min_{x_{ij},y_i} \sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} x_{ij} + \sum_{i} f_i y_i
\text{s.t. } \sum_{j=1}^{m} x_{ij} \le K_i y_i, \ i = 1, \dots, n,
\sum_{i=1}^{n} x_{ij} = D_j, \ j = 1, \dots, m,
x_{ij} \ge 0, \ y_i \in \{0, 1\}.$$

Martin Branda (KPMS MFF UK) 2017-03-13 4 / 31

Motivation and applications

Scheduling to Minimize the Makespan

- i machines, j jobs,
- y machine makespan,
- x_{ii} − assignment variable,
- t_{ij} time necessary to process job j on machine i.

$$\min_{x_{ij},y} y$$
s.t.
$$\sum_{i=1}^{m} x_{ij} = 1, \ j = 1, \dots, n,$$

$$\sum_{j=1}^{n} t_{ij} x_{ij} \le y, \ i = 1, \dots, m,$$

$$x_{ij} \in \{0,1\}, \ y > 0.$$
(1)

Martin Branda (KPMS MFF UK) 2017-03-13 6 / 31

Motivation and applications

Lot Sizing Problem

Capacitated single item LSP

- x_t production at period t,
- v_t on/off decision at period t,
- s_t inventory at the end of period t ($s_0 > 0$ fixed),
- D_t (predicted) expected demand at period t.
- p_t unit production costs at period t,
- f_t setup costs at period t,
- h_t inventory costs at period t,
- C_t production capacity at period t.

$$\min_{\substack{x_t, y_t, s_t \\ x_t, y_t, s_t}} \sum_{t=1}^{T} (p_t x_t + f_t y_t + h_t s_t)
\text{s.t. } s_{t-1} + x_t - D_t = s_t, \ t = 1, \dots, T,
x_t \le C_t y_t,
x_t, s_t \ge 0, \ y_t \in \{0, 1\}.$$
(3)

ASS. Wagner-Whitin costs $p_{t+1} \leq p_t + h_t$.

Motivation and application

Lot Sizing Problem

Uncapacitated single item LSP

- x_t production at period t,
- y_t on/off decision at period t,
- s_t inventory at the end of period t ($s_0 > 0$ fixed),
- D_t (predicted) expected demand at period t,
- p_t unit production costs at period t,
- f_t setup costs at period t,
- h_t inventory costs at period t,
- M − a large constant.

$$\min_{x_{t}, y_{t}, s_{t}} \sum_{t=1}^{T} (\rho_{t} x_{t} + f_{t} y_{t} + h_{t} s_{t})$$
s.t. $s_{t-1} + x_{t} - D_{t} = s_{t}, t = 1, ..., T,$

$$x_{t} \leq M y_{t},$$

$$x_{t}, s_{t} > 0, y_{t} \in \{0, 1\}.$$
(2)

ASS. Wagner-Whitin costs $p_{t+1} \leq p_t + h_t$.

Martin Branda (KPMS MFF UK)

2017-03-13 7 / 31

Motivation and applicati

Unit Commitment Problem

- i = 1, ..., n units (power plants), t = 1, ..., T periods,
- y_{it} on/off decision for unit i at period t,
- x_{it} production level for unit i at period t,
- D_t (predicted) expected demand at period t,
- p_i^{min} , p_i^{max} minimal/maximal production capacity of unit i,
- cit variable production costs,
- f_{it} (fixed) start-up costs.

$$\min_{x_{it}, y_{it}} \sum_{i=1}^{n} \sum_{t=1}^{T} (c_{it}x_{it} + f_{it}y_{it})$$
s.t.
$$\sum_{i=1}^{n} x_{it} \ge D_t, t = 1, \dots, T,$$

$$\rho_i^{min} y_{it} \le x_{it} \le \rho_i^{max} y_{it},$$

$$x_{it} \ge 0, y_{it} \in \{0, 1\}.$$
(4)

Formulation and properties

Integer linear programming

$$\min c^T x \tag{5}$$

$$Ax \geq b,$$
 (6)

$$x \in \mathbb{Z}_+^n. \tag{7}$$

Assumption: all coefficients are integer (rational before multiplying by a proper constant).

Set of feasible solution and its relaxation

$$S = \{x \in \mathbb{Z}_+^n : Ax \ge b\}, \tag{8}$$

$$P = \{x \in \mathbb{R}^n_+ : Ax \ge b\} \tag{9}$$

Obviously $S \subseteq P$. Not so trivial that $S \subseteq \text{conv}(S) \subseteq P$.

Martin Branda (KPMS MFF UK)

2017-03-13 11 / 31

Formulation and properties

ILP - irrational data

Let $z=\sqrt{2}x^*-\left\lceil\sqrt{2}x^*\right\rceil$ be the optimal solution. Since -1< z<0, we can find $k\in\mathbb{N}$ such that kz<-1 and (k-1)z>-1. By setting $\epsilon=-1-kz$ we get that $-1< z<-\epsilon=1+kz<0$. Then

$$\sqrt{2}kx^* - \left\lceil \sqrt{2}kx^* \right\rceil \\
= kz + k \left\lceil \sqrt{2}x^* \right\rceil - \left\lceil \sqrt{2}kx^* \right\rceil \\
= -1 - \epsilon + k \left\lceil \sqrt{2}x^* \right\rceil - \left\lceil \sqrt{2}kx^* \right\rceil \\
= k \left\lceil \sqrt{2}x^* \right\rceil - 1 - \epsilon - \left\lceil \left\lceil \sqrt{2}kx^* \right\rceil - 1 - \epsilon \right\rceil \\
= -\epsilon > z.$$
(11)

$$(k \lceil \sqrt{2}x^* \rceil - 1 \text{ is integral})$$

Thus, we have obtained a solution with a higher objective value which is a contradiction.

Formulation and propertie

ILP – irrational data

Škoda (2010):

$$\max \sqrt{2}x - y$$
s.t. $\sqrt{2}x - y \le 0$,
$$x \ge 1$$
,
$$x, y \in \mathbb{N}$$
.
(10)

The objective value is bounded (from above), but there is no optimal solution

For any feasible solution with the objective value $z = \sqrt{2}x^* - \lceil \sqrt{2}x^* \rceil$ we can construct a solution with a higher objective value...

Martin Branda (KPMS MFF UK) 2017-03-13 12 / 31

Formulation and properti

Example

Consider set S given by

$$7x_1 + 2x_2 \ge 5,$$

$$7x_1 + x_2 \le 28,$$

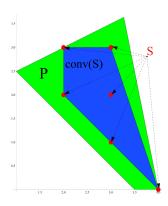
$$-4x_1 + 14x_2 \le 35,$$

$$x_1, x_2 \in \mathbb{Z}_+.$$

Martin Branda (KPMS MFF UK) 2017-03-13 13 / 31 Martin Branda (KPMS MFF UK) 2017-03-13 14 / 31

Formulation and properties

Set of feasible solutions, its relaxation and convex envelope



Škoda (2010)

Martin Branda (KPMS MFF UK) 2017-03-13 15 / 31

Formulation and properties

Mixed-integer linear programming

Often both integer and continuous decision variables appear:

min
$$c^T x + d^T y$$

s.t. $Ax + By \ge b$
 $x \in \mathbb{Z}_+^n, \ y \in \mathbb{R}_+^{n'}$

(WE DO NOT CONSIDER IN INTRODUCTION)

Formulation and properties

Integer linear programming problem

Problem

$$\min c^T x: \ x \in \mathcal{S}. \tag{12}$$

is equivalent to

$$\min c^T x : x \in \text{conv}(S). \tag{13}$$

conv(S) is very difficult to construct – many constraints ("strong cuts") are necessary (there are some important exceptions).

LP-relaxation:

$$\min c^T x: x \in P. \tag{14}$$

Martin Branda (KPMS MFF UK)

2017-03-13 16 / 31

Formulation and proper

Basic algorithms

We consider:

- Cutting Plane Method
- Branch-and-Bound

There are methods which combine the previous alg., e.g. **Branch-and-Cut** (add cuts to reduce the problem for B&B).

Martin Branda (KPMS MFF UK) 2017-03-13 17 / 31 Martin Branda (KPMS MFF UK) 2017-03-13 18 / 31

Cutting plane method

Cutting plane method – Gomory cuts

- 1. Solve LP-relaxation using (primal or dual) SIMPLEX algorithm.
 - If the solution is integral END, we have found an optimal solution,
 - otherwise continue with the next step.
- Add a Gomory cut (...) and solve the resulting problem using DUAL SIMPLEX alg.

Martin Branda (KPMS MFF UK)

Martin Branda (KPMS MFF UK)

2017-03-13 20 / 31

2017-03-13 22 / 31

Cutting plane method

After two iterations of the dual SIMPLEX algorithm ...

			4	5	0	0
			x_1	<i>x</i> ₂	<i>X</i> 3	<i>X</i> ₄
5	<i>X</i> ₂	8/10	0	1	-3/10	1/10
4	<i>x</i> ₁	18/10	1	0	2/10	-4/10
		112/10	0	0	-7/10	-11/10

Cutting plane meth

Example

$$\min 4x_1 + 5x_2$$
 (15)

$$x_1 + 4x_2 \geq 5,$$
 (16)

$$3x_1 + 2x_2 \geq 7,$$
 (17)

$$x_1, x_2 \in \mathbb{Z}_+^n. \tag{18}$$

Dual simplex for LP-relaxation ...

Martin Branda (KPMS MFF UK)

2017-03-13 21 / 31

Cutting plane method

Gomory cuts

There is a row in simplex table, which corresponds to a **non-integral** solution x_i in the form:

$$x_i + \sum_{j \in N} w_{ij} x_j = d_i, \tag{19}$$

where ${\it N}$ denotes the set of non-basic variables; ${\it d}_i$ is non-integral. We denote

$$w_{ij} = \lfloor w_{ij} \rfloor + f_{ij}, \tag{20}$$

$$d_i = \lfloor d_i \rfloor + f_i, \tag{21}$$

i.e. $0 \le f_{ij}, f_i < 1$.

$$\sum_{j\in\mathcal{N}} f_{ij} x_j \ge f_i,\tag{22}$$

or rather $-\sum_{j\in N}f_{ij}x_j+s=-f_i,\ s\geq 0.$

Martin Branda (KPMS MFF UK) 2017-03-13 23 / 31

Cutting plane method

Gomory cuts

General properties of cuts (including Gomory ones):

- Property 1: Current (non-integral) solution becomes infeasible (it is cut).
- Property 2: No feasible integral solution becomes infeasible (it is not cut).

Martin Branda (KPMS MFF UK)

2017-03-13 24 / 31

2017-03-13 26 / 31

Cutting plane method

Gomory cuts – property 2

Consider an arbitrary integral feasible solution and rewrite the constraint as

$$x_i + \sum_{j \in N} \lfloor w_{ij} \rfloor x_j - \lfloor d_i \rfloor = f_i - \sum_{j \in N} f_{ij} x_j, \qquad (27)$$

Left-hand side (LS) is integral, thus right-hand side (RS) is integral. Moreover, $f_i < 1$ a $\sum_{j \in \mathcal{N}} f_{ij} x_j \geq 0$, thus RS is strictly lower than 1 and at the same time it is integral, thus lower or equal to 0, i.e. we obtain Gomory cut

$$f_i - \sum_{i \in N} f_{ij} x_j \le 0. \tag{28}$$

Thus each integral solution fulfills it.

Martin Branda (KPMS MFF UK)

Cutting plane method

Gomory cuts – property 1

We express the constraints in the form

$$x_i + \sum_{j \in N} (\lfloor w_{ij} \rfloor + f_{ij}) x_j = \lfloor d_i \rfloor + f_i,$$
 (23)

$$x_i + \sum_{j \in N} \lfloor w_{ij} \rfloor x_j - \lfloor d_i \rfloor = f_i - \sum_{j \in N} f_{ij} x_j.$$
 (24)

Current solution $x_j^*=0$ pro $j\in N$ a $x_i^*=d_i$ is non-integral, i.e. $0< x_i^*-\lfloor d_i\rfloor<1$, thus

$$0 < x_i^* - \lfloor d_i \rfloor = f_i - \sum_{j \in N} f_{ij} x_j^*$$
 (25)

and

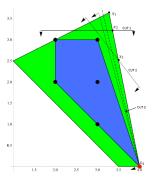
$$\sum_{j \in N} f_{ij} x_j^* < f_i, \tag{26}$$

which is a contradiction with the Gomory cut.

Martin Branda (KPMS MFF UK) 2017-03-13 25 / 31

Cutting plane meth

Cutting plane methods - steps



Škoda (2010)

Martin Branda (KPMS MFF UK) 2017-03-13 27 / 31

Cutting plane method

Dantzig cuts

$$\sum_{j\in N} x_j \ge 1. \tag{29}$$

(Remind that non-basic variables are equal to zero.)

Martin Branda (KPMS MFF UK) 2017-03-13 28 / 31

Cutting plane method

New simplex table

			4	5	0	0	0
			<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5
5	<i>x</i> ₂	8/10	0	1	-3/10	1/10	0
4	x_1	18/10	1	0	2/10	-4/10	0
0	<i>x</i> ₅	-8/10	0	0	- 2/10	-6/10	1
		112/10	0	0	-7/10	-11/10	0

Dual simplex alg. ... Gomory cut:

$$4/6x_3 + 1/6x_5 \ge 2/3$$
.

Dual simplex alg. ... optimal solution (2, 1, 1, 1, 0, 0).

Martin Branda (KPMS MFF UK) 2017-03-13 30 / 31

Cutting plane method

After two iterations of the dual SIMPLEX algorithm ...

			4	5	0	0
			<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4
5	<i>X</i> ₂	8/10	0	1	-3/10	1/10
4	<i>x</i> ₁	18/10	1	0	2/10	-4/10
		112/10	0	0	-7/10	-11/10

For example, x_1 is not integral:

$$x_1 + 2/10x_3 - 4/10x_4 = 18/10,$$

 $x_1 + (0 + 2/10)x_3 + (-1 + 6/10)x_4 = 1 + 8/10.$

Gomory cut:

$$2/10x_3 + 6/10x_4 \ge 8/10$$
.

Martin Branda (KPMS MFF UK) 2017-03-13 29 / 31

Cutting plane method

Literature

- G.L. Nemhauser, L.A. Wolsey (1989). Integer Programming. Chapter VI in Handbooks in OR & MS, Vol. 1, G.L. Nemhauser et al. Eds.
- P. Pedegral (2004). Introduction to optimization, Springer-Verlag, New York.
- Š. Škoda: Řešení lineárních úloh s celočíselnými omezeními v GAMSu. Bc. práce MFF UK, 2010. (In Czech)
- L.A. Wolsey (1998). Integer Programming. Wiley, New York.
- L.A. Wolsey, G.L. Nemhauser (1999). Integer and Combinatorial Optimization.
 Wiley, New York.

Martin Branda (KPMS MFF UK) 2017-03-13 31 / 31