Introduction to integer linear programming

Martin Branda

Charles University in Prague Faculty of Mathematics and Physics Department of Probability and Mathematical Statistics

Computational Aspects of Optimization

< 日 > < 同 > < 三 > < 三 >

22-03-2016

1 / 38

Values $a_1 = 4$, $a_2 = 6$, $a_3 = 9$, costs $c_1 = 4$, $c_2 = 6$, $c_3 = 11$, budget b = 10:

$$\begin{array}{l} \max \; \sum_{i=1}^{3} c_{i} x_{i} \\ \mathrm{s.t.} \; \sum_{i=1}^{3} a_{i} x_{i} \leq 10, \\ \; x_{i} \in \{0,1\}. \end{array}$$

Consider = instead of \leq , or $0 \leq x_i \leq 1$ instead of $x_i \in \{0, 1\}$...

▲日 ▶ ▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Why is integrality so important?

Real (mixed-)integer programming problems (not always linear)

- Portfolio optimization integer number of assets, fixed transaction costs
- Scheduling integer (binary) decision variables to assign a job to a machine
- Vehicle Routing Problems (VRP) binary decision variables which identify a successor of a node on the route

• . . .

In general – modelling of logical relations, e.g.

- at least two constraints from three are fulfilled,
- if we buy this asset than the fixed transaction costs increase,

• ...

イロト イポト イヨト イヨト 二日

Integer linear programming

$$\min c^T x \tag{1}$$

$$Ax \geq b, \qquad (2)$$

$$x \in \mathbb{Z}_{+}^{n}$$
 (3)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Assumption: all coefficients are integer (rational before multiplying by a proper constant).

Set of feasible solution and its relaxation

$$S = \{x \in \mathbb{Z}^n_+ : Ax \ge b\}, \tag{4}$$

$$P = \{x \in \mathbb{R}^n_+ : Ax \ge b\}$$
(5)

Obviously $S \subseteq P$. Not so trivial that $S \subseteq \operatorname{conv}(S) \subseteq P$.

Example

Consider set S given by

< ロ > < 同 > < 回 > < 回 >

Formulation and properties

Set of feasible solutions, its relaxation and convex envelope

Škoda (2010)

Martin Branda (KPMS MFF UK)

22-03-2016 6 / 38

Integer linear programming problem

Problem

$$\min c^{\mathsf{T}} x: \ x \in S. \tag{10}$$

is equivalent to

$$\min c^T x: \ x \in \operatorname{conv}(S). \tag{11}$$

conv(S) is very difficult to construct – many constraints ("strong cuts") are necessary (there are some exceptions).

LP-relaxation:

$$\min c^T x: \ x \in P. \tag{12}$$

Mixed-integer linear programming

Often both integer and continuous decision variable appear:

min
$$c^T x + d^T y$$

s.t. $Ax + By \ge b$
 $x \in \mathbb{Z}_+^n, y \in \mathbb{R}_+^{n'}$.

(WE DO NOT CONSIDER IN INTRODUCTION)

Basic algorithms

We consider:

- Cutting Plane Method
- Branch-and-Bound

There are methods combining previous alg., e.g. Branch-and-Cut.

< 日 > < 同 > < 三 > < 三 >

Cutting plane method - Gomory cuts

- 1. Solve LP-relaxation using (primal or dual) SIMPLEX algorithm.
 - If the solution is integral END, we have found an optimal solution,
 - otherwise continue with the next step.
- 2. Add a **Gomory cut** (...) and solve the resulting problem using DUAL SIMPLEX alg.

イロト イポト イヨト イヨト 二日

・ロッ ・ 一 ・ ・ ・ ・

э

22-03-2016

э

11 / 38

Dual simplex for LP-relaxation ...

Martin Branda (KPMS MFF UK)

After two iterations of the dual SIMPLEX algorithm

			4	5	0	0
			<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> 4
5	<i>x</i> ₂	8/10	0	1	-3/10 2/10	1/10
4	<i>x</i> ₁	18/10	1	0	2/10	-4/10
		112/10	0	0	-7/10	-11/10

Gomory cuts

There is a row in simplex table, which corresponds to a non-integral solution x_i in the form:

$$x_i + \sum_{j \in N} w_{ij} x_j = d_i, \qquad (17)$$

where N denotes the set of non-basic variables; d_i is non-integral. We denote

$$\begin{aligned} w_{ij} &= \lfloor w_{ij} \rfloor + f_{ij}, \\ d_i &= \lfloor d_i \rfloor + f_i, \end{aligned} \tag{18}$$

i.e. $0 \le f_{ij}, f_i < 1$.

$$\sum_{j\in\mathbb{N}}f_{ij}x_j\geq f_i,\tag{20}$$

or rather $-\sum_{j\in N} f_{ij}x_j + s = -f_i$, $s \ge 0$.

General properties of cuts (including Gomory ones):

- Property 1: Current (non-integral) solution becomes infeasible (it is cut).
- Property 2: No feasible integral solution becomes infeasible (it is not cut).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Cutting plane method

Gomory cuts – property 1

We express the constraints in the form

$$x_{i} + \sum_{j \in \mathbb{N}} (\lfloor w_{ij} \rfloor + f_{ij}) x_{j} = \lfloor d_{i} \rfloor + f_{i}, \qquad (21)$$
$$x_{i} + \sum_{j \in \mathbb{N}} \lfloor w_{ij} \rfloor x_{j} - \lfloor d_{i} \rfloor = f_{i} - \sum_{j \in \mathbb{N}} f_{ij} x_{j}. \qquad (22)$$

Current solution $x_j^* = 0$ pro $j \in N$ a $x_i^* = d_i$ is non-integral, i.e. $0 < x_i^* - \lfloor d_i \rfloor < 1$, thus

$$0 < x_i^* - \lfloor d_i \rfloor = f_i - \sum_{j \in N} f_{ij} x_j^*$$
(23)

and

$$\sum_{j \in N} f_{ij} x_j^* < f_i, \tag{24}$$

22-03-2016

15 / 38

which is a contradiction with Gomory cut.

Martin Branda (KPMS MFF UK)

Gomory cuts – property 2

Consider an arbitrary integral feasible solution and rewrite the constraint as

$$x_i + \sum_{j \in N} \lfloor w_{ij} \rfloor x_j - \lfloor d_i \rfloor = f_i - \sum_{j \in N} f_{ij} x_j, \qquad (25)$$

Left-hand side (LS) is integral, thus right-hand side (RS) is integral. Moreover, $f_i < 1$ a $\sum_{j \in N} f_{ij} x_j \ge 0$, thus RS is strictly lower than 1 and at the same time it is integral, thus lower or equal to 0, i.e. we obtain Gomory cut

$$f_i - \sum_{j \in N} f_{ij} x_j \le 0.$$
 (26)

Thus each integral solution fulfills it.

・ロト ・同ト ・ヨト ・ヨト

Cutting plane method

Cutting plane methods – steps

Škoda (2010)

Martin Branda (KPMS MFF UK)

Image: A math a math

Dantzig cuts

$$\sum_{j\in\mathbb{N}}x_j\geq 1.$$
(27)

(Remind that non-basic variables are equal to zero.)

Martin Branda (KPMS MFF UK)

▶ ▲ 王 → 오 ○
 22-03-2016
 18 / 38

After two iterations of the dual SIMPLEX algorithm

			4	5	0	0
			<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> 4
5	<i>x</i> ₂	8/10	0	1	-3/10	1/10
4	x_1	18/10	1	0	2/10	-4/10
		112/10	0	0	-7/10	-11/10

For example, x_1 is not integral:

$$x_1 + 2/10x_3 - 4/10x_4 = 18/10,$$

 $x_1 + (0 + 2/10)x_3 + (-1 + 6/10)x_4 = 1 + 8/10.$

Gomory cut:

$$2/10x_3 + 6/10x_4 \ge 8/10.$$

New simplex table

			4	5	0	0	0
			<i>x</i> ₁	<i>x</i> 2	<i>x</i> 3	<i>X</i> 4	<i>x</i> 5
5	<i>x</i> ₂	8/10	0	1	-3/10	1/10	0
4	x_1	18/10	1	0	2/10	-4/10	0
0	<i>x</i> 5	-8/10	0	0	- 2/10	-6/10	1
		112/10	0	0	-7/10	-11/10	0

Dual simplex alg. ...

<ロ> <同> <同> < 同> < 同>

General principles:

- Solve LP problem without integrality only.
- Branch using additional constraints on integrality: $x_i \leq \lfloor x_i^* \rfloor$, $x_i \geq \lfloor x_i^* \rfloor + 1$.
- Cut inperspective branches before solving (using bounds on the optimal value).

(日)

General principles:

- Solve only LP problems with relaxed integrality.
- Branching: if an optimal solution is not integral, e.g. x̂_i, create and save two new problems with constraints x_i ≤ [x̂_i], x_i ≥ [x̂_i].
- **Bounding** ("different" cutting): save the objective value of the best integral solution and cut all problems in the queue created from the problems with higher optimal values¹.

< ロ > < 同 > < 回 > < 回 > < □ > <

22-03-2016

22 / 38

Exact algorithm ...

¹Branching cannot improve it.

Martin Branda (KPMS MFF UK)

P. Pedegral (2004). Introduction to optimization, Springer-Verlag, New York.

Image: A mathematical states and a mathem

0. $f_{min} = \infty$, $x_{min} = \cdot$, list of problems $P = \emptyset$

Solve LP-relaxed problem and obtain f^* , x^* . If the solution is integral, STOP. If the problem is infeasible or unbounded, STOP.

- BRANCHING: There is x_i basic non-integral variable such that k < x_i < k + 1 for some k ∈ N:
 - Add constraint $x_i \leq k$ to previous problem and put it into list P.
 - Add constraint $x_i \ge k + 1$ to previous problem and put it into list *P*.
- 2. Take problem from P and solve it: f^* , x^* .
- 3. If $f^* < f_{min}$ and x^* is non-integral, GO TO 1.
 - **BOUNDING**: If $f^* < f_{min}$ a x^* is integral, set $f_{min} = f^*$ a $x_{min} = x^*$, GO TO 4.
 - **BOUNDING**: If $f^* \ge f_{min}$, GO TO 4.
 - Problem is infeasible, GO TO 4.
- 4. If $P \neq \emptyset$, GO TO 2.
 - If $P = \emptyset$ a $f_{min} = \infty$, integral solution does not exist.
 - If $P = \emptyset$ a $f_{min} < \infty$, optimal value and solution are f_{min} , x_{min} .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

2./3. Take problem from list P and solve it: f^* , x^* . If for the optimal value of the current problem holds $f^* \ge f_{min}$, then the branching is not necessary, since by solving the problems with added branching constraints we can only increase the optimal value and obtain the same f_{min} .

(日)

<ロ> <同> <同> < 同> < 同>

Algorithmic issues:

- **Problem selection from list** *P*: FIFO/LIFO/problem with the smallest *f**.
- Selection of the branching variable x_i^* : the highest/smallest violation of integrality OR the highest/smallest coefficient in the objective function.

(日)

Totally unimodular matrix

Totally unimodular matrix A: for arbitrary INTEGRAL right-hand side vector b we obtain an integral solution, e.g. transportation problem.

イロト イボト イヨト イヨ

Duality

Algorithms – a remark

(Relative) difference between a lower and upper bound – construct the upper bound (for minimization) using a feasible solution, lower bound ?

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Duality

Duality

Set $S(b) = \{x \in \mathbb{Z}_+^n : Ax = b\}$ and define the value function

$$z(b) = \min_{x \in S(b)} c^{\mathsf{T}} x.$$
⁽²⁸⁾

A dual function $F : \mathbb{R}^m \to \overline{\mathbb{R}}$

$$F(b) \leq z(b), \ \forall b \in \mathbb{R}^m.$$
 (29)

A general form of dual problem

$$\max_{F} \left\{ F(b) : \text{ s.t. } F(b) \le z(b), \ b \in \mathbb{R}^m, \ F : \mathbb{R}^m \to \mathbb{R} \right\}.$$
(30)

We call F a **weak dual** function if it is feasible, and **strong dual** if moreover F(b) = z(b).

イロト 不得 トイヨト イヨト 二日

A function F is **subadditive** over a domain Θ if

$$F(\theta_1 + \theta_2) \leq F(\theta_1) + F(\theta_2)$$

for all $\theta_1 + \theta_2, \theta_1, \theta_2 \in \Theta$.

The value function z is subadditive over $\{b : S(b) \neq \emptyset\}$, since the sum of optimal x's is feasible for the problem with $b_1 + b_2$ r.h.s., i.e. $\hat{x}_1 + \hat{x}_2 \in S(b_1 + b_2)$.

< ロ > < 部 > < 문 > < 문 > …

Duality

Duality

If F is subadditive, then condition $F(Ax) \leq c^T x$ for $x \in \mathbb{Z}^n_+$ is equivalent to $F(a_{\cdot j}) \leq c_j, j = 1, ..., m$.

This is true since $F(Ae_j) \leq c^T e_j$ is the same as $F(a_j) \leq c_j$.

On the other hand, if F is subadditive and $F(a_{.j}) \leq c_j$, $j = 1, \ldots, m$ imply

$$F(Ax) \leq \sum_{j=1}^{m} F(a_j) x_j \leq \sum_{j=1}^{m} c_j x_j = c^T x_j$$

▲ロ > ▲母 > ▲臣 > ▲臣 > ▲臣 = のへの

Duality

Duality

If we set

$$\Gamma^m = \{F : \mathbb{R}^m \to \mathbb{R}, \ F(0) = 0, \ F \text{ subadditive}\},\$$

then we can write a **subadditive dual** independent of *x*:

$$\max_{F} \left\{ F(b) : \text{ s.t. } F(a_{j}) \leq c_{j}, F \in \Gamma^{m} \right\}.$$
(31)

Weak and strong duality holds.

An easy feasible solution based on LP duality (= weak dual)

$$F_{LP}(b) = \max_{y} b^{T} y \text{ s.t. } A^{T} y \leq c.$$
(32)

<ロ> <同> <同> < 同> < 同>

Complementary slackness condition: if \hat{x} is an optimal solution for IP, and \hat{F} is an optimal subadditive dual solution, then

$$(\hat{F}(a_{...j}) - c_j)\hat{x}_j = 0, \ j = 1, \ldots, m.$$

Martin Branda (KPMS MFF UK)

22-03-2016 34 / 38

(日)

- Interfaces: GAMS, CPlex Studio, Gurobi, ...
- Solvers: CPlex (MILP, MIQP), Gurobi (MILP, MIQP), Baron, Bonmin (MINLP), Dicopt (MINLP), Knitro (MINLP), Lindo, ...

For difficult problems usually **heuristic and meta-heuristic algorithms** (greedy h., genetic alg., tabu search, simulated annealing, \dots)

・ロト ・同ト ・ヨト ・ヨト

Integer variables

- Integer variables nonnegative with predefined upper bound 100 (can be changed using x.up(i) = 1000;)!
- Binary variables

Command SOLVE using

- MILP
- MIQCP
- MINLP

< 日 > < 同 > < 三 > < 三 >

TOLERANCE for optimal value of the integer problems:

- optcr relative tolerance (default value 0.1 usually too high)
- optca absolute tolerance (turned off)
- reslim maximal running time in seconds (default value 1000 usually too low)
- nlp = conopt, lp = gurobi, mip = cplex solver selection in code

For example OPTIONS optcr=0.000001 reslim = 3600;

イロト イポト イヨト イヨト 二日

- G.L. Nemhauser, L.A. Wolsey (1989). Integer Programming. Chapter VI in Handbooks in OR & MS, Vol. 1, G.L. Nemhauser et al. Eds.
- P. Pedegral (2004). Introduction to optimization, Springer-Verlag, New York.
- Š. Škoda: Řešení lineárních úloh s celočíselnými omezeními v GAMSu. Bc. práce MFF UK, 2010. (In Czech)
- L.A. Wolsey (1998). Integer Programming. Wiley, New York.
- L.A. Wolsey, G.L. Nemhauser (1999). Integer and Combinatorial Optimization. Wiley, New York.

(日)