Introduction to integer linear programming

Martin Branda

Charles University in Prague
Faculty of Mathematics and Physics
Department of Probability and Mathematical Statistics

Computational Aspects of Optimization

Knapsack problem

Values $a_{1}=4, a_{2}=6, a_{3}=9$, costs $c_{1}=4, c_{2}=6, c_{3}=11$, budget $b=10$:

$$
\begin{array}{ll}
\max & \sum_{i=1}^{3} c_{i} x_{i} \\
\text { s.t. } & \sum_{i=1}^{3} a_{i} x_{i} \leq 10 \\
& x_{i} \in\{0,1\}
\end{array}
$$

Consider $=$ instead of \leq, or $0 \leq x_{i} \leq 1$ instead of $x_{i} \in\{0,1\} \ldots$

Why is integrality so important?

Real (mixed-)integer programming problems (not always linear)

- Portfolio optimization - integer number of assets, fixed transaction costs
- Scheduling - integer (binary) decision variables to assign a job to a machine
- Vehicle Routing Problems (VRP) - binary decision variables which identify a successor of a node on the route
- ...

In general - modelling of logical relations, e.g.

- at least two constraints from three are fulfilled,
- if we buy this asset than the fixed transaction costs increase,
- ...

Integer linear programming

$$
\begin{align*}
\min c^{T} x & \tag{1}\\
A x & \geq b \tag{2}\\
x & \in \mathbb{Z}_{+}^{n} \tag{3}
\end{align*}
$$

Assumption: all coefficients are integer (rational before multiplying by a proper constant).

Set of feasible solution and its relaxation

$$
\begin{align*}
& S=\left\{x \in \mathbb{Z}_{+}^{n}: A x \geq b\right\}, \tag{4}\\
& P=\left\{x \in \mathbb{R}_{+}^{n}: A x \geq b\right\} \tag{5}
\end{align*}
$$

Obviously $S \subseteq P$. Not so trivial that $S \subseteq \operatorname{conv}(S) \subseteq P$.

Example

Consider set S given by

$$
\begin{align*}
x_{1}-2 x_{2} & \geq-4 \tag{6}\\
-5 x_{1}-x_{2} & \geq-20, \tag{7}\\
2 x_{1}+2 x_{2} & \geq 7, \tag{8}\\
x_{1}, x_{2} & \in \mathbb{Z}_{+} . \tag{9}
\end{align*}
$$

Set of feasible solutions, its relaxation and convex envelope

Škoda (2010)

Integer linear programming problem

Problem

$$
\begin{equation*}
\min c^{\top} x: x \in S \tag{10}
\end{equation*}
$$

is equivalent to

$$
\begin{equation*}
\min c^{T} x: x \in \operatorname{conv}(S) \tag{11}
\end{equation*}
$$

$\operatorname{conv}(S)$ is very difficult to construct - many constraints ("strong cuts") are necessary (there are some exceptions).

LP-relaxation:

$$
\begin{equation*}
\min c^{\top} x: x \in P \tag{12}
\end{equation*}
$$

Mixed-integer linear programming

Often both integer and continuous decision variable appear:

$$
\begin{aligned}
& \min c^{T} x+d^{T} y \\
& \text { s.t. } \\
& \qquad x+B y \geq b \\
& \quad x \in \mathbb{Z}_{+}^{n}, y \in \mathbb{R}_{+}^{n^{\prime}}
\end{aligned}
$$

(WE DO NOT CONSIDER IN INTRODUCTION)

Basic algorithms

We consider:

- Cutting Plane Method
- Branch-and-Bound

There are methods combining previous alg., e.g. Branch-and-Cut.

Cutting plane method - Gomory cuts

1. Solve LP-relaxation using (primal or dual) SIMPLEX algorithm.

- If the solution is integral - END, we have found an optimal solution,
- otherwise continue with the next step.

2. Add a Gomory cut (...) and solve the resulting problem using DUAL SIMPLEX alg.

Example

$$
\begin{align*}
\min 4 x_{1}+5 x_{2} & \tag{13}\\
x_{1}+4 x_{2} & \geq 5 \tag{14}\\
3 x_{1}+2 x_{2} & \geq 7 \tag{15}\\
x_{1}, x_{2} & \in \mathbb{Z}_{+}^{n} . \tag{16}
\end{align*}
$$

Dual simplex for LP-relaxation...

After two iterations of the dual SIMPLEX algorithm ...

			4	5	0	0
			x_{1}	x_{2}	x_{3}	x_{4}
5	x_{2}	$8 / 10$	0	1	$-3 / 10$	$1 / 10$
4	x_{1}	$18 / 10$	1	0	$2 / 10$	$-4 / 10$
		$112 / 10$	0	0	$-7 / 10$	$-11 / 10$

Gomory cuts

There is a row in simplex table, which corresponds to a non-integral solution x_{i} in the form:

$$
\begin{equation*}
x_{i}+\sum_{j \in N} w_{i j} x_{j}=d_{i} \tag{17}
\end{equation*}
$$

where N denotes the set of non-basic variables; d_{i} is non-integral. We denote

$$
\begin{align*}
w_{i j} & =\left\lfloor w_{i j}\right\rfloor+f_{i j} \tag{18}\\
d_{i} & =\left\lfloor d_{i}\right\rfloor+f_{i} \tag{19}
\end{align*}
$$

i.e. $0 \leq f_{i j}, f_{i}<1$.

$$
\begin{equation*}
\sum_{j \in N} f_{i j} x_{j} \geq f_{i} \tag{20}
\end{equation*}
$$

or rather $-\sum_{j \in N} f_{i j} x_{j}+s=-f_{i}, s \geq 0$.

Gomory cuts

General properties of cuts (including Gomory ones):

- Property 1: Current (non-integral) solution becomes infeasible (it is cut).
- Property 2: No feasible integral solution becomes infeasible (it is not cut).

Gomory cuts - property 1

We express the constraints in the form

$$
\begin{align*}
x_{i}+\sum_{j \in N}\left(\left\lfloor w_{i j}\right\rfloor+f_{i j}\right) x_{j} & =\left\lfloor d_{i}\right\rfloor+f_{i} \tag{21}\\
x_{i}+\sum_{j \in N}\left\lfloor w_{i j}\right\rfloor x_{j}-\left\lfloor d_{i}\right\rfloor & =f_{i}-\sum_{j \in N} f_{i j} x_{j} . \tag{22}
\end{align*}
$$

Current solution $x_{j}^{*}=0$ pro $j \in N$ a $x_{i}^{*}=d_{i}$ is non-integral, i.e. $0<x_{i}^{*}-\left\lfloor d_{i}\right\rfloor<1$, thus

$$
\begin{equation*}
0<x_{i}^{*}-\left\lfloor d_{i}\right\rfloor=f_{i}-\sum_{j \in N} f_{i j} x_{j}^{*} \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j \in N} f_{i j} x_{j}^{*}<f_{i} \tag{24}
\end{equation*}
$$

which is a contradiction with Gomory cut.

Gomory cuts - property 2

Consider an arbitrary integral feasible solution and rewrite the constraint as

$$
\begin{equation*}
x_{i}+\sum_{j \in N}\left\lfloor w_{i j}\right\rfloor x_{j}-\left\lfloor d_{i}\right\rfloor=f_{i}-\sum_{j \in N} f_{i j} x_{j}, \tag{25}
\end{equation*}
$$

Left-hand side (LS) is integral, thus right-hand side (RS) is integral. Moreover, $f_{i}<1$ a $\sum_{j \in N} f_{i j} x_{j} \geq 0$, thus RS is strictly lower than 1 and at the same time it is integral, thus lower or equal to 0 , i.e. we obtain Gomory cut

$$
\begin{equation*}
f_{i}-\sum_{j \in N} f_{i j} x_{j} \leq 0 \tag{26}
\end{equation*}
$$

Thus each integral solution fulfills it.

Cutting plane methods - steps

Škoda (2010)

Dantzig cuts

$$
\begin{equation*}
\sum_{j \in N} x_{j} \geq 1 \tag{27}
\end{equation*}
$$

(Remind that non-basic variables are equal to zero.)

After two iterations of the dual SIMPLEX algorithm ...

			4	5	0	0
			x_{1}	x_{2}	x_{3}	x_{4}
5	x_{2}	$8 / 10$	0	1	$-3 / 10$	$1 / 10$
4	x_{1}	$18 / 10$	1	0	$2 / 10$	$-4 / 10$
		$112 / 10$	0	0	$-7 / 10$	$-11 / 10$

For example, x_{1} is not integral:

$$
\begin{aligned}
x_{1}+2 / 10 x_{3}-4 / 10 x_{4} & =18 / 10 \\
x_{1}+(0+2 / 10) x_{3}+(-1+6 / 10) x_{4} & =1+8 / 10
\end{aligned}
$$

Gomory cut:

$$
2 / 10 x_{3}+6 / 10 x_{4} \geq 8 / 10 .
$$

New simplex table

			4	5	0	0	0
			x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
5	x_{2}	$8 / 10$	0	1	$-3 / 10$	$1 / 10$	0
4	x_{1}	$18 / 10$	1	0	$2 / 10$	$-4 / 10$	0
0	x_{5}	$-8 / 10$	0	0	$-2 / 10$	$-6 / 10$	1
		$112 / 10$	0	0	$-7 / 10$	$-11 / 10$	0

Dual simplex alg. ...

Branch-and-Bound

General principles:

- Solve LP problem without integrality only.
- Branch using additional constraints on integrality: $x_{i} \leq\left\lfloor x_{i}^{*}\right\rfloor$, $x_{i} \geq\left\lfloor x_{i}^{*}\right\rfloor+1$.
- Cut inperspective branches before solving (using bounds on the optimal value).

Branch-and-Bound

General principles:

- Solve only LP problems with relaxed integrality.
- Branching: if an optimal solution is not integral, e.g. \hat{x}_{i}, create and save two new problems with constraints $x_{i} \leq\left\lfloor\hat{x}_{i}\right\rfloor, x_{i} \geq\left\lceil\hat{x}_{i}\right\rceil$.
- Bounding ("different" cutting): save the objective value of the best integral solution and cut all problems in the queue created from the problems with higher optimal values ${ }^{1}$.
Exact algorithm ..
${ }^{1}$ Branching cannot improve it.

Branch-and-Bound

P. Pedegral (2004). Introduction to optimization, Springer-Verlag, New York.

Branch-and-Bound

0. $f_{\text {min }}=\infty, x_{\text {min }}=\cdot$, list of problems $P=\emptyset$

Solve LP-relaxed problem and obtain f^{*}, x^{*}. If the solution is integral, STOP. If the problem is infeasible or unbounded, STOP.

1. BRANCHING: There is x_{i} basic non-integral variable such that $k<x_{i}<k+1$ for some $k \in \mathbb{N}$:

- Add constraint $x_{i} \leq k$ to previous problem and put it into list P.
- Add constraint $x_{i} \geq k+1$ to previous problem and put it into list P.

2. Take problem from P and solve it: f^{*}, x^{*}.
3. - If $f^{*}<f_{\min }$ and x^{*} is non-integral, GO TO 1.

- BOUNDING: If $f^{*}<f_{\min }$ a x^{*} is integral, set $f_{\min }=f^{*}$ a $x_{\min }=x^{*}$, GO TO 4.
- BOUNDING: If $f^{*} \geq f_{\text {min }}$, GO TO 4 .
- Problem is infeasible, GO TO 4.

4. - If $P \neq \emptyset, \mathrm{GO}$ TO 2 .

- If $P=\emptyset$ a $f_{\text {min }}=\infty$, integral solution does not exist.
- If $P=\emptyset$ a $f_{\text {min }}<\infty$, optimal value and solution are $f_{\text {min }}, x_{\text {min }}$.

Better

2./3. Take problem from list P and solve it: f^{*}, x^{*}. If for the optimal value of the current problem holds $f^{*} \geq f_{\min }$, then the branching is not necessary, since by solving the problems with added branching constraints we can only increase the optimal value and obtain the same $f_{\text {min }}$.

Branch-and-Bound

Branch-and-Bound

Algorithmic issues:

- Problem selection from list P : FIFO/LIFO/problem with the smallest f^{*}.
- Selection of the branching variable x_{i}^{*} : the highest/smallest violation of integrality OR the highest/smallest coefficient in the objective function.

Totally unimodular matrix

Totally unimodular matrix A: for arbitrary INTEGRAL right-hand side vector b we obtain an integral solution, e.g. transportation problem.

Algorithms - a remark

(Relative) difference between a lower and upper bound - construct the upper bound (for minimization) using a feasible solution, lower bound?

Duality

Set $S(b)=\left\{x \in \mathbb{Z}_{+}^{n}: A x=b\right\}$ and define the value function

$$
\begin{equation*}
z(b)=\min _{x \in S(b)} c^{T} x \tag{28}
\end{equation*}
$$

A dual function $F: \mathbb{R}^{m} \rightarrow \overline{\mathbb{R}}$

$$
\begin{equation*}
F(b) \leq z(b), \forall b \in \mathbb{R}^{m} \tag{29}
\end{equation*}
$$

A general form of dual problem

$$
\begin{equation*}
\max _{F}\left\{F(b): \text { s.t. } F(b) \leq z(b), b \in \mathbb{R}^{m}, F: \mathbb{R}^{m} \rightarrow \mathbb{R}\right\} \tag{30}
\end{equation*}
$$

We call F a weak dual function if it is feasible, and strong dual if moreover $F(b)=z(b)$.

Duality

A function F is subadditive over a domain Θ if

$$
F\left(\theta_{1}+\theta_{2}\right) \leq F\left(\theta_{1}\right)+F\left(\theta_{2}\right)
$$

for all $\theta_{1}+\theta_{2}, \theta_{1}, \theta_{2} \in \Theta$.
The value function z is subadditive over $\{b: S(b) \neq \emptyset\}$, since the sum of optimal x 's is feasible for the problem with $b_{1}+b_{2}$ r.h.s., i.e. $\hat{x}_{1}+\hat{x}_{2} \in S\left(b_{1}+b_{2}\right)$.

Duality

If F is subadditive, then condition $F(A x) \leq c^{T} x$ for $x \in \mathbb{Z}_{+}^{n}$ is equivalent to $F\left(a_{\cdot j}\right) \leq c_{j}, j=1, \ldots, m$.

This is true since $F\left(A e_{j}\right) \leq c^{T} e_{j}$ is the same as $F\left(a_{\cdot j}\right) \leq c_{j}$.
On the other hand, if F is subadditive and $F\left(a_{\cdot j}\right) \leq c_{j}, j=1, \ldots, m$ imply

$$
F(A x) \leq \sum_{j=1}^{m} F\left(a_{\cdot j}\right) x_{j} \leq \sum_{j=1}^{m} c_{j} x_{j}=c^{T} x .
$$

Duality

If we set

$$
\Gamma^{m}=\left\{F: \mathbb{R}^{m} \rightarrow \mathbb{R}, F(0)=0, F \text { subadditive }\right\}
$$

then we can write a subadditive dual independent of x :

$$
\begin{equation*}
\max _{F}\left\{F(b): \text { s.t. } F\left(a_{\cdot j}\right) \leq c_{j}, F \in \Gamma^{m}\right\} . \tag{31}
\end{equation*}
$$

Weak and strong duality holds.

An easy feasible solution based on LP duality (= weak dual)

$$
\begin{equation*}
F_{L P}(b)=\max _{y} b^{T} y \text { s.t. } A^{T} y \leq c \tag{32}
\end{equation*}
$$

Duality

Complementary slackness condition: if \hat{x} is an optimal solution for IP, and \hat{F} is an optimal subadditive dual solution, then

$$
\left(\hat{F}\left(a_{\ldots j}\right)-c_{j}\right) \hat{x}_{j}=0, j=1, \ldots, m
$$

Software

even for nonlinear integer problems

- Interfaces: GAMS, CPlex Studio, Gurobi, ...
- Solvers: CPlex (MILP, MIQP), Gurobi (MILP, MIQP), Baron, Bonmin (MINLP), Dicopt (MINLP), Knitro (MINLP), Lindo, ...

For difficult problems usually heuristic and meta-heuristic algorithms (greedy h., genetic alg., tabu search, simulated annealing, ...)

GAMS

Integer variables

- Integer variables - nonnegative with predefined upper bound 100 (can be changed using x.up(i) $=1000$;)!
- Binary variables

Command SOLVE using

- MILP
- MIQCP
- MINLP

GAMS - options

TOLERANCE for optimal value of the integer problems:

- optcr - relative tolerance (default value 0.1 - usually too high)
- optca - absolute tolerance (turned off)
- reslim - maximal running time in seconds (default value 1000 usually too low)
- nlp $=$ conopt, $\mathbf{l p}=$ gurobi, $\mathbf{m i p}=c p l e x-$ solver selection in code

For example
OPTIONS optcr $=0.000001$ reslim $=3600$;

Literature

- G.L. Nemhauser, L.A. Wolsey (1989). Integer Programming. Chapter VI in Handbooks in OR \& MS, Vol. 1, G.L. Nemhauser et al. Eds.
- P. Pedegral (2004). Introduction to optimization, Springer-Verlag, New York.
- Š. Škoda: Ǩešení lineárních úloh s celočíselnými omezeními v GAMSu. Bc. práce MFF UK, 2010. (In Czech)
- L.A. Wolsey (1998). Integer Programming. Wiley, New York.
- L.A. Wolsey, G.L. Nemhauser (1999). Integer and Combinatorial Optimization. Wiley, New York.

