Life Insurance 2 — exercises

Martin Branda, 29 March 2020

4 Multiple Life Insurance

Please read the theory in Chapter 8 of Gerber book. You can' also solve the examples in
Appendix C.8.

We consider m independent? lives with (random) future lifetimes
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Notation
e Joint-life status

— status u =x1 : x2 : -+ : x,, = all m participating lives survive,

— failure time
T(u) = min{Th,..., T},

— survival probability
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e Last-survivor status
— status u =Ty : T2 : - : T, = at least one of the m lives survives,

— failure time
T(u) = max{T1,...,Tm},

Tt is not mandatory, but it can help you.

2The independence is quite questionable assumption, especially when we consider a family insurance.
There are several approaches how to elaborate the dependence, e.g., copula functions or conditional forces
of mortality.



— survival probability

it = P(T(u) > t) = S{ — Sy + - (=)™ 'S,

where
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Example 4.1 Consider the following insurances for a pair of independent lifes at ages x
and y:

a) joint-life whole life insurance payable on the first death,
b) joint-life life annuity-due.
c) joint-life life annuity-due for n years.

Derive a reasonable generalization of the commutation functions which enable you to sim-
plify the computation of the net single premiums.

Solution: a) Under the independence of lifes
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There are several possible choices of f:
flz,y) = xQﬂ f(z,y) = max{z,y}, f(z,y) =min{z,y}.

On the other hand, it is not possible to use simple sum of the ages as f, because we need
a transformation which preserves v*. So, if we define the commutation functions as

Cy = vf(z+1,y+1)dx:y’ Dy = vf(””’y)lx;y,
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we can get the standard expression for NSP
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b) For the life annuity-due, we obtain
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c) For the life annuity-due for n years, we have
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Remark 4.2 The generalization of the commutation functions to m lifes is straightfor-
ward, e.g.
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Note that also the relations between CF which we know from the univariate case are valid,

e.g.
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Example 4.3 Verify that

Ax:y: 1*d'&x:ya

yor f(z1,...,&m) = max{z1,...,Tm},0r f(x1,...,2y) = min{z,...
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Solution: One possibility is to use the following identity
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and compute the expected value with respect to one of the following distribution of curtate
future lifetime K:

P(K = k) = kPzy qx:y, OT
P(K = k) = 1Pz Gz

Other possibilities are a direct derivation using the formula for the net single premiums,
or using the relations between the commutation functions. [

Example 4.4 Consider the following insurances for a pair of independent lifes at ages x
and y:

a) last-survival life annuity-due.
b) last-survival whole life insurance payable on the last death,

Using the above introduced commutation functions derive the net single premiums.

Solution: a)
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b) We can use the previous example to get
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Example 4.5 Consider

a) widow’s annuity-due (asymmetric) — payment stream of rate 1 starts at the death of
husband x and terminates at the death of wife y.

b) widow’s and widower’s annuity-due (symmetric) — payment stream starts at the death
of husband x or wife y and terminates at the death of wife y or husband x.

¢) orphan’s annuity-due — payment stream starts at the death of parents x,y and ter-
minates at the death of child z or by reaching the age of 18.

Solution: a) Denote by u the status when wife is living and husband died

WD\ = kpy (1 — 1ps).

Then
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b) Denote by u the status when the wife is living and the husband died or vice versa
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Then
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c¢) Denote by u the status when the child is living and the parents died and set n = 18 — .
Then
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Example 4.6 Consider orphan’s annuity-due where payment stream starts at the death
of parents x,y and terminates when both children z, w reach the age of 18 or at the death
of last child.



