Life Insurance 2 - exercises

Martin Branda, 29 March 2020

4 Multiple Life Insurance

Please read the theory in Chapter 8 of Gerber book. You can ${ }^{1}$ also solve the examples in Appendix C.8.

We consider m independent ${ }^{2}$ lives with (random) future lifetimes

$$
T_{1}:=T_{x_{1}}, \ldots, T_{m}:=T_{x_{m}} .
$$

Notation

- Joint-life status
- status $u=x_{1}: x_{2}: \cdots: x_{m}=$ all m participating lives survive,
- failure time

$$
T(u)=\min \left\{T_{1}, \ldots, T_{m}\right\},
$$

- survival probability

$$
{ }_{t} p_{x_{1}: x_{2}: \cdots: x_{m}}=P(T(u)>t)=\prod_{k=1}^{m} P\left(T_{k}>t\right)=\prod_{k=1}^{m}{ }_{t} p_{x_{k}},
$$

and

$$
{ }_{t} q_{x_{1}: x_{2}: \cdots: x_{m}}=1-{ }_{t} p_{x_{1}: x_{2}: \cdots: x_{m}} .
$$

Under independence, we set

$$
l_{x_{1}: x_{2}: \cdots: x_{m}}=\prod_{k=1}^{m} l_{x_{k}}, d_{x_{1}: x_{2}: \cdots: x_{m}}=l_{x_{1}: x_{2}: \cdots: x_{m}}-l_{x_{1}+1: x_{2}+1: \cdots: x_{m}+1} .
$$

Then

$$
{ }_{t} p_{x_{1}: x_{2}: \cdots: x_{m}}=\frac{l_{x_{1}+t: x_{2}+t: \cdots: x_{m}+t}}{l_{x_{1}: x_{2}: \cdots: x_{m}}} .
$$

- Last-survivor status
- status $u=\overline{x_{1}: x_{2}: \cdots: x_{m}}=$ at least one of the m lives survives,
- failure time

$$
T(u)=\max \left\{T_{1}, \ldots, T_{m}\right\}
$$

[^0]- survival probability

$$
{ }_{t} p_{\overline{x_{1}: x_{2}: \cdots: x_{m}}}=P(T(u)>t)=S_{1}^{t}-S_{2}^{t}+\cdots(-1)^{m-1} S_{m}^{t},
$$

where

$$
S_{k}^{t}=\sum_{\left(j_{1}, \ldots, j_{k}\right) \subset\{1, \ldots, m\}}{ }^{t} p_{x_{j_{1}}: x_{j_{2}}: \cdots: x_{j_{k}}},
$$

and

$$
{ }_{t} q_{\overline{x_{1}: x_{2} ; \cdots: x_{m}}}=1-{ }_{t} p_{\overline{x_{1}: x_{2}: \cdots: x_{m}}} .
$$

Example 4.1 Consider the following insurances for a pair of independent lifes at ages x and y :
a) joint-life whole life insurance payable on the first death,
b) joint-life life annuity-due.
c) joint-life life annuity-due for n years.

Derive a reasonable generalization of the commutation functions which enable you to simplify the computation of the net single premiums.

Solution: a) Under the independence of lifes

$$
\begin{aligned}
A_{x: y} & =\sum_{k=0}^{\infty} v^{k+1}{ }_{k} p_{x: y} q_{x: y} \\
& =\sum_{k=0}^{\infty} v^{k} \frac{l_{x+k: y+k}}{l_{x: y}} \frac{d_{x+k: y+k}}{l_{x+k: y+k}} \\
& =\sum_{k=0}^{\infty} \frac{v^{f(x+k, y+k)}}{v^{f(x, y)}} \frac{d_{x+k: y+k}}{l_{x: y}} .
\end{aligned}
$$

There are several possible choices of f :

$$
f(x, y)=\frac{x+y}{2}, f(x, y)=\max \{x, y\}, f(x, y)=\min \{x, y\} .
$$

On the other hand, it is not possible to use simple sum of the ages as f, because we need a transformation which preserves v^{k}. So, if we define the commutation functions as

$$
\begin{array}{lc}
C_{x: y}=v^{f(x+1, y+1)} d_{x: y}, & D_{x: y}=v^{f(x, y)} l_{x: y}, \\
M_{x: y}=\sum_{k=0}^{\infty} C_{x+k: y+k}, & N_{x: y}=\sum_{k=0}^{\infty} D_{x+k: y+k}, \\
R_{x: y}=\sum_{k=0}^{\infty} M_{x+k: y+k}, & S_{x: y}=\sum_{k=0}^{\infty} N_{x+k: y+k},
\end{array}
$$

we can get the standard expression for NSP

$$
A_{x: y}=\sum_{k=0}^{\infty} \frac{C_{x+k: y+k}}{D_{x: y}}=\frac{M_{x: y}}{D_{x: y}} .
$$

b) For the life annuity-due, we obtain

$$
\begin{aligned}
\ddot{a}_{x: y} & =\sum_{k=0}^{\infty} v^{k}{ }_{k} p_{x: y} \\
& =\sum_{k=0}^{\infty} v^{k+1} \frac{l_{x+k: y+k}}{l_{x: y}} \\
& =\sum_{k=0}^{\infty} \frac{v^{f(x+k+1, y+k+1)}}{v^{f(x, y)}} \frac{l_{x+k: y+k}}{l_{x: y}} \\
& =\sum_{k=0}^{\infty} \frac{D_{x+k: y+k}}{D_{x: y}}=\frac{N_{x: y}}{D_{x: y}} .
\end{aligned}
$$

c) For the life annuity-due for n years, we have

$$
\begin{aligned}
\ddot{a}_{x: y \bar{n} \mid} & =\sum_{k=0}^{n-1} v^{k}{ }_{k} p_{x: y} \\
& =\sum_{k=0}^{n-1} \frac{D_{x+k: y+k}}{D_{x: y}}=\frac{N_{x: y}-N_{x+n: y+n}}{D_{x: y}} .
\end{aligned}
$$

Remark 4.2 The generalization of the commutation functions to m lifes is straightforward, e.g.

$$
C_{x_{1}: x_{2}: \cdots: x_{m}}=v^{f\left(x_{1}+1, \ldots, x_{m}+1\right)} d_{x_{1}: x_{2}: \cdots: x_{m}}, D_{x_{1}: x_{2}: \cdots: x_{m}}=v^{f\left(x_{1}, \ldots, x_{m}\right)} l_{x_{1}: x_{2}: \cdots: x_{m}},
$$

where
$f\left(x_{1}, \ldots, x_{m}\right)=\frac{\sum_{k=1}^{m} x_{k}}{m}$, or $f\left(x_{1}, \ldots, x_{m}\right)=\max \left\{x_{1}, \ldots, x_{m}\right\}$, or $f\left(x_{1}, \ldots, x_{m}\right)=\min \left\{x_{1}, \ldots, x_{m}\right\}$.
Note that also the relations between CF which we know from the univariate case are valid, e.g.

$$
M_{x: y}=D_{x: y}-d N_{x: y}
$$

Example 4.3 Verify that

$$
\begin{aligned}
& A_{x: y}=1-d \cdot \ddot{a}_{x: y}, \\
& A_{\overline{x: y}}=1-d \cdot \ddot{a}_{\bar{x}: \bar{y}} .
\end{aligned}
$$

Solution: One possibility is to use the following identity

$$
1+v+\cdots+v^{K}=\frac{1-v^{K+1}}{1-v}
$$

and compute the expected value with respect to one of the following distribution of curtate future lifetime K :

$$
\begin{aligned}
& P(K=k)={ }_{k} p_{x: y} q_{x: y}, \text { or } \\
& P(K=k)={ }_{k} p_{\overline{x: y}} q_{\overline{x: y}}
\end{aligned}
$$

Other possibilities are a direct derivation using the formula for the net single premiums, or using the relations between the commutation functions.

Example 4.4 Consider the following insurances for a pair of independent lifes at ages x and y :
a) last-survival life annuity-due.
b) last-survival whole life insurance payable on the last death,

Using the above introduced commutation functions derive the net single premiums.
Solution: a)

$$
\begin{aligned}
\ddot{a}_{\overline{x: y}} & =\sum_{k=0}^{\infty} v^{k}{ }_{k} p_{\overline{x: y}} \\
& =\sum_{k=0}^{\infty} v^{k}\left({ }_{k} p_{x}+{ }_{k} p_{y}-{ }_{k} p_{x: y}\right) \\
& =\sum_{k=0}^{\infty} v^{k}{ }_{k} p_{x}+\sum_{k=0}^{\infty} v^{k}{ }_{k} p_{y}-\sum_{k=0}^{\infty} v^{k}{ }_{k} p_{x: y} \\
& =\frac{N_{x}}{D_{x}}+\frac{N_{y}}{D_{y}}-\frac{N_{x: y}}{D_{x: y}}
\end{aligned}
$$

b) We can use the previous example to get

$$
\begin{aligned}
\ddot{A}_{\overline{x: y}} & =1-d \ddot{a}_{\overline{x: y}} \\
& =1+1-1-d\left(\frac{N_{x}}{D_{x}}+\frac{N_{y}}{D_{y}}-\frac{N_{x: y}}{D_{x: y}}\right) \\
& =\frac{D_{x}-d N_{x}}{D_{x}}+\frac{D_{y}-d N_{y}}{D_{y}}-\frac{D_{x: y}-d N_{x: y}}{D_{x: y}} \\
& =\frac{M_{x}}{D_{x}}+\frac{M_{y}}{D_{y}}-\frac{M_{x: y}}{D_{x: y}}
\end{aligned}
$$

Example 4.5 Consider

a) widow's annuity-due (asymmetric) - payment stream of rate 1 starts at the death of husband x and terminates at the death of wife y.
b) widow's and widower's annuity-due (symmetric) - payment stream starts at the death of husband x or wife y and terminates at the death of wife y or husband x.
c) orphan's annuity-due - payment stream starts at the death of parents x, y and terminates at the death of child z or by reaching the age of 18 .

Solution: a) Denote by u the status when wife is living and husband died

$$
{ }_{k} p_{u}^{(a)}={ }_{k} p_{y}\left(1-{ }_{k} p_{x}\right) .
$$

Then

$$
\begin{aligned}
\ddot{a}_{u}^{(a)} & =\sum_{k=0}^{\infty} v^{k}{ }_{k} p_{u}^{(a)} \\
& =\sum_{k=0}^{\infty} v^{k}{ }_{k} p_{y}\left(1-{ }_{k} p_{x}\right) \\
& =\ddot{a}_{y}-\ddot{a}_{x: y} .
\end{aligned}
$$

b) Denote by u the status when the wife is living and the husband died or vice versa

$$
{ }_{k} p_{u}^{(b)}={ }_{k} p_{y}\left(1-{ }_{k} p_{x}\right)+{ }_{k} p_{x}\left(1-{ }_{k} p_{y}\right) .
$$

Then

$$
\begin{aligned}
\ddot{a}_{u}^{(b)} & =\sum_{k=0}^{\infty} v^{k}{ }_{k} p_{u}^{(b)} \\
& =\sum_{k=0}^{\infty} v^{k}{ }_{k} p_{y}\left(1-{ }_{k} p_{x}\right)+{ }_{k} p_{x}\left(1-{ }_{k} p_{y}\right) \\
& =\ddot{a}_{x}+\ddot{a}_{y}-2 \ddot{a}_{x: y} .
\end{aligned}
$$

c) Denote by u the status when the child is living and the parents died and set $n=18-z$. Then

$$
{ }_{k} p_{u}^{(c)}={ }_{k} p_{z}\left(1-{ }_{k} p_{x}\right)\left(1-{ }_{k} p_{y}\right),
$$

and

$$
\begin{aligned}
\ddot{a}_{u \bar{n} \mid}^{(c)} & =\sum_{k=0}^{n-1} v^{k}{ }_{k} p_{u}^{(c)} \\
& =\sum_{k=0}^{n-1} v^{k}{ }_{k} p_{z}\left(1-{ }_{k} p_{x}\right)\left(1-{ }_{k} p_{y}\right) \\
& =\ddot{a}_{z \bar{n} \mid}-\ddot{a}_{x: z \bar{n}}-\ddot{a}_{y: z \bar{n}}+\ddot{a}_{x: y: z \bar{n} .} .
\end{aligned}
$$

Example 4.6 Consider orphan's annuity-due where payment stream starts at the death of parents x, y and terminates when both children z, w reach the age of 18 or at the death of last child.

[^0]: ${ }^{1}$ It is not mandatory, but it can help you.
 ${ }^{2}$ The independence is quite questionable assumption, especially when we consider a family insurance. There are several approaches how to elaborate the dependence, e.g., copula functions or conditional forces of mortality.

