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4 Chance constrained programming

Chance constrained problem

min
x∈X

f(x)

s.t. P (g1(x, ξ) ≤ 0, . . . , gr(x, ξ) ≤ 0) ≥ p,

where p ∈ [0, 1] is given level, X ⊆ Rn is a set of (deterministic) constraints, ξ is a real

random vector on probability space (Ω,F , P ). If r > 1, then we speak about joint chance

constraint, whereas r = 1 corresponds to individual chance constraint.

For a given x ∈ X, the probability of ξ for which the random constraint is ful�lled

must be at least p:

P (g1(x, ξ) ≤ 0, . . . , gr(x, ξ) ≤ 0) = P ({ξ : g1(x, ξ) ≤ 0, . . . , gr(x, ξ) ≤ 0}) ≥ p.

Example 4.1 Consider ξ = (ξ1, ξ2, ξ3) with equiprobable realizations pi = 1/4:
(−1, 0,−1), (0,−1,−1), (1, 0,−1), (0, 1,−1). For p ∈ [0, 1], derive the set of feasible given

by chance constraint:

X(p) =
{

(x1, x2) ∈ R2 : P (ξ1x1 + ξ2x2 ≤ ξ3) ≥ p
}
.

Discuss the convexity of the set.

Solution: Realize that p ∈
(
0, 14
]
means that the random constraint if ful�lled for at

least one realization of random vector ξ, whereas p ∈
(
1
4 ,

1
2

]
requires that the constraint

is ful�lled for at least two realizations at the same time. This leads to these sets:

p ∈
(
0, 14
]

x1

x2

1

-1

1-1

p ∈
(
1
4 ,

1
2

]

x1

x2

1

-1

1-1
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For p ∈
(
0, 14
]
, we have

X(p) = {x1 ≥ 1} or {x2 ≥ 1} or {x1 ≤ −1} or {x2 ≤ −1},

whereas for p ∈
(
1
4 ,

1
2

]
X(p) = {x1 ≥ 1, x2 ≥ 1} or {x1 ≥ 1, x2 ≤ −1}

or {x1 ≤ −1, x2 ≥ 1} or {x1 ≤ −1, x2 ≤ −1}.

Moreover X(0) = R2 and X(p) = ∅ for p ∈ (12 , 1]. Obviously the set is convex only

in the trivial case for p = 0. Please realize that even though we used very simple chance

constraint, the set is already nonconvex. �

Example 4.2 Let ξ have a uniform distribution on interval [−1, 1]. Derive the reformu-

lation of chance constraint

P

(
ξ(x1 − x2) ≥

1

2

)
≥ 1

4
.

Solution: We can use the explicit formula for the distribution function of ξ, i.e.

F (x) =

{ 0, x ≤ −1,
x+1
2 , x ∈ [−1, 1],

1, x ≥ 1.

Assume that x1 6= x2. If x1 > x2,

P

(
ξ(x1 − x2) ≥

1

2

)
= 1−P

(
ξ ≤ 1

2(x1 − x2)

)
= 1−

1
2(x1−x2)

+ 1

2
=

2(x1 − x2)− 1

4(x1 − x2)
≥ 1

4
,

which holds if

x1 − x2 ≥ 1.

If x1 < x2,

P

(
ξ(x1 − x2) ≥

1

2

)
= P

(
ξ ≤ 1

2(x1 − x2)

)
=

1
2(x1−x2)

+ 1

2
=

2(x1 − x2) + 1

4(x1 − x2)
≥ 1

4
,

which holds if

x1 − x2 ≤ −1.

Other cases lead to empty set, so the chance constrain is equivalent to

x1 − x2 ≥ 1 or x1 − x2 ≤ −1.

Realize that it is a union of two disjunctive half-spaces. �
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Example 4.3 Let ξ1 have a uniform distribution on interval [1, 4], ξ2 ∼ U [1/3, 1] and

ξ1, ξ2 be independent. Derive the explicit form of the chance constrained problem

min
x1,2

x1 + x2

s.t. P (ξ1x1 + x2 ≥ 7, ξ2x1 + x2 ≥ 4) ≥ p,
x1,2 ≥ 0.

Solution: Use the independence and explicit formula for cdf of the uniform distribution.

Be careful with the bounds where some of the probabilities is equal to 0 or 1.

Example 4.4 Consider chance constrained problem

max
x1,2,3

x3

s.t. P (ξ1x1 + ξ2x2 ≤ x3) = 0.37,

P (3x1 + 2x2 ≤ ξ3) = 0.8,

P (−x1 + 4x2 ≤ ξ4) = 0.9,

x1,2 ≥ 0.

and assume that(
ξ1
ξ2

)
∼ N2

((
−1
2

)
,

(
10 7
7 20

))
,

(
ξ3
ξ4

)
∼ N2

((
3
3

)
,

(
2 0.4

0.4 1

))
.

Find a nonlinear programming reformulation.

Solution: Realize that under our distributional assumption it holds

ξ1x1 + ξ2x2 ∼ N (−x1 + 2x2, 10x21 + 14x1x2 + 20x22) =: N (µ(x), σ2(x)).

Then we have

P (ξ1x1 + ξ2x2 ≤ x3) = P

(
ξ1x1 + ξ2x2 − µ(x)

σ(x)
≤ x3 − µ(x)

σ(x)

)
= Φ

(
x3 − µ(x)

σ(x)

)
,

where Φ is cdf of N (0, 1). Then

Φ

(
x3 − µ(x)

σ(x)

)
= 0.38 ⇔ x3 = µ(x) + u0.38 · σ(x)

⇔ x3 = −x1 + 2x2 + u0.38 ·
√

10x21 + 14x1x2 + 20x22,

where u0.38 = Φ−1(0.38). We can use similar approach to the second chance constraint.

P (3x1 + 2x2 ≤ ξ3) = P

(
3x1 + 2x2 − 3√

2
≤ ξ3 − 3√

2

)
= 1− Φ

(
3x1 + 2x2 − 3√

2

)
= 0.8

⇔ 3x1 + 2x2 = 3 + u0.2 ·
√

2.
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The reformulation of the last constraint is analogous. Note that the dependence between

ξ3 and ξ4 will not e�ect anything. �

Example 4.5 Let f, g(·, ξ) : Rn → R be real functions, X ⊆ Rn , ξ be a real random

vector, p ∈ (0, 1):

min
x∈X

f(x)

s.t. P (g(x, ξ) ≤ 0) ≥ p.

Let ξ has a �nite discrete distribution with realizations ξ1, . . . , ξS and probabilities ps > 0,∑S
s=1 ps = 1. Find a mixed-integer programming reformulation.

Solution: We can use S binary variables ys.

minx,y f(x)
s.t.∑S

s=1 psys ≥ p,
g(x, ξs) ≤ M(1− ys), s = 1, . . . , S

ys ∈ {0, 1}, s = 1, . . . , S,
x ∈ X,

(1)

where M ≥ maxs=1,...,S supx∈X g(x, ξs) is so called big-M constant. Realize that if ys = 1,
then the corresponding constraint g(x, ξs) ≤ 0 must be ful�lled and probability ps contri-
butes to ful�ll the chance constraint, i.e. to reach the probability p. On the other hand, if

the constraint is not ful�lled, i.e. g(x, ξs) > 0, then corresponding ys = 0. �

Example 4.6 Find reformulations of the Value at Risk portfolio optimization problem

min
z,x

z

s.t. P

(
−

n∑
i=1

Rixi ≤ z

)
≥ p,

n∑
i=1

E[Ri] · xi ≥ r0,

n∑
i=1

xi = 1, xi ≥ 0,

where Ri is random rate of return of i-th asset and minimal expected return r0 is selected

in such way that the problem is feasible. Assume that the distribution of returns is

1. discrete with realizations ris, s = 1, . . . , S, and probabilities ps = 1/S,

2. multivariate normal with mean µ and variance matrix Σ.
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4.1 Separated right-hand side

Let g : Rn → R and ξ be a random variable with distribution function F , p ∈ [0, 1]. Then
the individual chance constraint with separated right-hand side is

P (g(x) ≥ ξ) ≥ p,

and it can be reformulated using the quantile function as

g(x) ≥ F−1(p).

Using so called p-level e�cient points (pLEPs), this approach can be generalized to the

joint chance constrained case, i.e. to reformulate

P
(
g1(x) ≥ ξ1, . . . , gr(x) ≥ ξr

)
≥ p.

De�nition 4.7 Let X be a r-dimensional random vector with distribution function F :
Rr → [0, 1] and p ∈ [0, 1]. We say that z ∈ Rr is a p-level e�cient point (pLEP) if

F (z) ≥ p and there is no other y ∈ Rr for which F (y) ≥ p and y ≤ z, y 6= z.

Let {z1, . . . , zn} ⊂ Rr be the set of pLEPs and g(x) = (g1(x), . . . , gr(x))T . Then the

joint chance constraint is equivalent to

g(x) ≥ z for at least one z ∈ {z1, . . . , zn}.

Sometimes it is written in the disjunctive programming form

g(x) ∈
n⋃

i=1

{zi + Rr
+}.

Example 4.8 Consider 6 equiprobable realizations of random vector:(
1
1

)
,

(
1
2

)
,

(
1
3

)
,

(
2
1

)
,

(
2
2

)
,

(
2
3

)
.

Find pLEPs for arbitrary p ∈ (0, 1]. Derive a deterministic reformulation for the chance

constrained problem

min
x∈X

f(x)

s.t. P
(
g1(x) ≥ ξ1, g2(x) ≥ ξ2

)
≥ p.

Solution: Compute the value of distribution function F in each point (in order):

1

6
,

1

3
,

1

2
,

1

3
,

2

3
, 1.
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Then, we can derive from the de�nition

pLEPs =

{(
2
3

)}
, p ∈ (2/3, 1],

=

{(
2
2

)}
, p ∈ (1/2, 2/3],

=

{(
1
3

)
,

(
2
2

)}
, p ∈ (1/3, 1/2],

=

{(
1
2

)
,

(
2
1

)}
, p ∈ (1/6, 1/3],

=

{(
1
1

)}
, p ∈ (0, 1/6].

Note that �nding the set of pLEPs is in general highly demanding task and requires special

algorithms. It is a serious research topic.

Then, the chance constrained problem is equivalent to

min
x∈X

f(x)

s.t. g1(x) ≥ ξ1, g2(x) ≥ ξ2, for at least one (ξ1, ξ2) ∈ pLEPs.

�

Example 4.9 Consider compound Poisson distribution which characterizes the overall

loss of a non-life insurance portfolio over 1 year period. Estimate the minimal level of

portfolio premium such that the losses are covered with probability p.

Solution: Let {Xi}∞i=1 be iid positive random variables with �nite second moment which

model the claim severities and N ∼ Po(λ) be independent on {Xi}. Then, our goal is to
solve

min
x∈R+

x s.t. P

(
N∑
i=1

Xi ≤ x

)
≥ p.

In fact, we would like to compute the quantile, or Value at Risk. However, this is a di�cult

task for any compound distribution even using modern mathematical software tools. An

easy approach is to use a conservative approximation, in our case based on the one-sided

Chebyshev's inequality1: for X ∼ (µ, σ2), and a > 0,

P (X − µ ≥ a) ≤ σ2

σ2 + a2
.

1Its proof is not straightforward as for the traditional two-sided version. It is also known as Cantelli's
inequality (under this name Wiki refers to several papers with a proof).
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Now realize that for the moments of the compound Poisson distribution, it holds

µ := E

(
N∑
i=1

Xi

)
= E(N)E(X1) = λE(X1),

σ2 := var

(
N∑
i=1

Xi

)
= E(N) var(X1) + (E(X1))

2 var(N) = λE(X2
1 ).

By applying the one-sided Chebyshev's inequality for x > µ, we obtain

P

(
N∑
i=1

Xi ≥ x

)
= P

(
N∑
i=1

Xi − µ ≥ x− µ

)
≤ σ2

σ2 + (x− µ)2
≤ 1− p,

which is equivalent to

(x− µ)2 ≥ σ2

1− p
− σ2,

x ≥ µ+

√
p

1− p
σ,

x ≥ λE(X1) +

√
p

1− p

√
λE(X2

1 ).

To get the conservative estimate of safe premium, we can set x equal to the above ex-

pression. Realize that it is similar to the formula which we have obtained for the normal

distribution, but instead of the normal quantile we are using
√

p
1−p . It can be shown that

this is the most conservative (highest) value of quantile for the distribution with �nite

second moment.

Note that looking for new conservative tight approximations is still a serious research

topic in stochastic optimization. �

Summary: You have seen several general approaches to deal with chance constraints:

• direct evaluation, Example 4.1

• reformulation using cumulative distribution function, Example 4.2, 4.3

• reformulation under Gaussian distribution using quantiles, Example 4.4

• mixed-integer reformulation using binary variables, Examples 4.5, 4.6

• generalized quantiles for separated random right-hand side, Example 4.8

• conservative approximation using probability inequalities, Example 4.9
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