Optimization with application in finance - exercises

Martin Branda, 26 April 2021
HW: Examples 4.3, 4.6.

4 Chance constrained programming

Chance constrained problem

$$
\begin{array}{rl}
\min _{x \in X} & f(x) \\
\text { s.t. } & P\left(g_{1}(x, \xi) \leq 0, \ldots, g_{r}(x, \xi) \leq 0\right) \geq p
\end{array}
$$

where $p \in[0,1]$ is given level, $X \subseteq \mathbb{R}^{n}$ is a set of (deterministic) constraints, ξ is a real random vector on probability space (Ω, \mathcal{F}, P). If $r>1$, then we speak about joint chance constraint, whereas $r=1$ corresponds to individual chance constraint.

For a given $x \in X$, the probability of ξ for which the random constraint is fulfilled must be at least p :

$$
P\left(g_{1}(x, \xi) \leq 0, \ldots, g_{r}(x, \xi) \leq 0\right)=P\left(\left\{\xi: g_{1}(x, \xi) \leq 0, \ldots, g_{r}(x, \xi) \leq 0\right\}\right) \geq p
$$

Example 4.1 Consider $\xi=\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$ with equiprobable realizations $p_{i}=1 / 4$: $(-1,0,-1),(0,-1,-1),(1,0,-1),(0,1,-1)$. For $p \in[0,1]$, derive the set of feasible given by chance constraint:

$$
X(p)=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: P\left(\xi_{1} x_{1}+\xi_{2} x_{2} \leq \xi_{3}\right) \geq p\right\} .
$$

Discuss the convexity of the set.
Solution: Realize that $p \in\left(0, \frac{1}{4}\right]$ means that the random constraint if fulfilled for at least one realization of random vector ξ, whereas $p \in\left(\frac{1}{4}, \frac{1}{2}\right]$ requires that the constraint is fulfilled for at least two realizations at the same time. This leads to these sets:

For $p \in\left(0, \frac{1}{4}\right]$, we have

$$
X(p)=\left\{x_{1} \geq 1\right\} \text { or }\left\{x_{2} \geq 1\right\} \text { or }\left\{x_{1} \leq-1\right\} \text { or }\left\{x_{2} \leq-1\right\},
$$

whereas for $p \in\left(\frac{1}{4}, \frac{1}{2}\right]$

$$
\begin{aligned}
X(p)= & \left\{x_{1} \geq 1, x_{2} \geq 1\right\} \text { or }\left\{x_{1} \geq 1, x_{2} \leq-1\right\} \\
& \text { or }\left\{x_{1} \leq-1, x_{2} \geq 1\right\} \text { or }\left\{x_{1} \leq-1, x_{2} \leq-1\right\} .
\end{aligned}
$$

Moreover $X(0)=\mathbb{R}^{2}$ and $X(p)=\emptyset$ for $p \in\left(\frac{1}{2}, 1\right]$. Obviously the set is convex only in the trivial case for $p=0$. Please realize that even though we used very simple chance constraint, the set is already nonconvex.

Example 4.2 Let ξ have a uniform distribution on interval $[-1,1]$. Derive the reformulation of chance constraint

$$
P\left(\xi\left(x_{1}-x_{2}\right) \geq \frac{1}{2}\right) \geq \frac{1}{4} .
$$

Solution: We can use the explicit formula for the distribution function of ξ, i.e.

$$
F(x)= \begin{cases}0, & x \leq-1 \\ \frac{x+1}{2}, & x \in[-1,1] \\ 1, & x \geq 1\end{cases}
$$

Assume that $x_{1} \neq x_{2}$. If $x_{1}>x_{2}$,
$P\left(\xi\left(x_{1}-x_{2}\right) \geq \frac{1}{2}\right)=1-P\left(\xi \leq \frac{1}{2\left(x_{1}-x_{2}\right)}\right)=1-\frac{\frac{1}{2\left(x_{1}-x_{2}\right)}+1}{2}=\frac{2\left(x_{1}-x_{2}\right)-1}{4\left(x_{1}-x_{2}\right)} \geq \frac{1}{4}$,
which holds if

$$
x_{1}-x_{2} \geq 1 .
$$

If $x_{1}<x_{2}$,

$$
P\left(\xi\left(x_{1}-x_{2}\right) \geq \frac{1}{2}\right)=P\left(\xi \leq \frac{1}{2\left(x_{1}-x_{2}\right)}\right)=\frac{\frac{1}{2\left(x_{1}-x_{2}\right)}+1}{2}=\frac{2\left(x_{1}-x_{2}\right)+1}{4\left(x_{1}-x_{2}\right)} \geq \frac{1}{4},
$$

which holds if

$$
x_{1}-x_{2} \leq-1
$$

Other cases lead to empty set, so the chance constrain is equivalent to

$$
x_{1}-x_{2} \geq 1 \text { or } x_{1}-x_{2} \leq-1
$$

Realize that it is a union of two disjunctive half-spaces.

Example 4.3 Let ξ_{1} have a uniform distribution on interval $[1,4], \xi_{2} \sim U[1 / 3,1]$ and ξ_{1}, ξ_{2} be independent. Derive the explicit form of the chance constrained problem

$$
\begin{aligned}
& \min _{x_{1,2}} x_{1}+x_{2} \\
& \text { s.t. } P\left(\xi_{1} x_{1}+x_{2} \geq 7, \xi_{2} x_{1}+x_{2} \geq 4\right) \geq p, \\
& \quad x_{1,2} \geq 0
\end{aligned}
$$

Solution: Use the independence and explicit formula for cdf of the uniform distribution. Be careful with the bounds where some of the probabilities is equal to 0 or 1 .

Example 4.4 Consider chance constrained problem

$$
\begin{aligned}
\max _{x_{1,2,3}} & x_{3} \\
\text { s.t. } & P\left(\xi_{1} x_{1}+\xi_{2} x_{2} \leq x_{3}\right)=0.37, \\
& P\left(3 x_{1}+2 x_{2} \leq \xi_{3}\right)=0.8 \\
& P\left(-x_{1}+4 x_{2} \leq \xi_{4}\right)=0.9 \\
& x_{1,2} \geq 0
\end{aligned}
$$

and assume that

$$
\binom{\xi_{1}}{\xi_{2}} \sim \mathcal{N}_{2}\left(\binom{-1}{2},\left(\begin{array}{cc}
10 & 7 \\
7 & 20
\end{array}\right)\right),\binom{\xi_{3}}{\xi_{4}} \sim \mathcal{N}_{2}\left(\binom{3}{3},\left(\begin{array}{cc}
2 & 0.4 \\
0.4 & 1
\end{array}\right)\right)
$$

Find a nonlinear programming reformulation.

Solution: Realize that under our distributional assumption it holds

$$
\xi_{1} x_{1}+\xi_{2} x_{2} \sim \mathcal{N}\left(-x_{1}+2 x_{2}, 10 x_{1}^{2}+14 x_{1} x_{2}+20 x_{2}^{2}\right)=: \mathcal{N}\left(\mu(x), \sigma^{2}(x)\right) .
$$

Then we have

$$
\begin{aligned}
P\left(\xi_{1} x_{1}+\xi_{2} x_{2} \leq x_{3}\right)= & P\left(\frac{\xi_{1} x_{1}+\xi_{2} x_{2}-\mu(x)}{\sigma(x)} \leq \frac{x_{3}-\mu(x)}{\sigma(x)}\right) \\
& =\Phi\left(\frac{x_{3}-\mu(x)}{\sigma(x)}\right)
\end{aligned}
$$

where Φ is cdf of $\mathcal{N}(0,1)$. Then

$$
\begin{aligned}
\Phi\left(\frac{x_{3}-\mu(x)}{\sigma(x)}\right)=0.38 & \Leftrightarrow x_{3}=\mu(x)+u_{0.38} \cdot \sigma(x) \\
& \Leftrightarrow x_{3}=-x_{1}+2 x_{2}+u_{0.38} \cdot \sqrt{10 x_{1}^{2}+14 x_{1} x_{2}+20 x_{2}^{2}}
\end{aligned}
$$

where $u_{0.38}=\Phi^{-1}(0.38)$. We can use similar approach to the second chance constraint.

$$
\begin{aligned}
P\left(3 x_{1}+2 x_{2} \leq \xi_{3}\right) & =P\left(\frac{3 x_{1}+2 x_{2}-3}{\sqrt{2}} \leq \frac{\xi_{3}-3}{\sqrt{2}}\right) \\
& =1-\Phi\left(\frac{3 x_{1}+2 x_{2}-3}{\sqrt{2}}\right)=0.8 \\
& \Leftrightarrow 3 x_{1}+2 x_{2}=3+u_{0.2} \cdot \sqrt{2} .
\end{aligned}
$$

The reformulation of the last constraint is analogous. Note that the dependence between ξ_{3} and ξ_{4} will not effect anything.

Example 4.5 Let $f, g(\cdot, \xi): \mathbb{R}^{n} \rightarrow \mathbb{R}$ be real functions, $X \subseteq \mathbb{R}^{n}$, ξ be a real random vector, $p \in(0,1)$:

$$
\begin{aligned}
& \min _{x \in X} f(x) \\
& \text { s.t. } P(g(x, \xi) \leq 0) \geq p
\end{aligned}
$$

Let ξ has a finite discrete distribution with realizations ξ^{1}, \ldots, ξ^{S} and probabilities $p_{s}>0$, $\sum_{s=1}^{S} p_{s}=1$. Find a mixed-integer programming reformulation.

Solution: We can use S binary variables y_{s}.

$$
\begin{align*}
\min _{x, y} f(x) & \\
\text { s.t. } & \tag{1}\\
\sum_{s=1}^{S} p_{s} y_{s} & \geq p, \\
g\left(x, \xi_{s}\right) & \leq M\left(1-y_{s}\right), s=1, \ldots, S \\
y_{s} & \in\{0,1\}, s=1, \ldots, S \\
x & \in X
\end{align*}
$$

where $M \geq \max _{s=1, \ldots, S} \sup _{x \in X} g\left(x, \xi_{s}\right)$ is so called big-M constant. Realize that if $y_{s}=1$, then the corresponding constraint $g\left(x, \xi_{s}\right) \leq 0$ must be fulfilled and probability p_{s} contributes to fulfill the chance constraint, i.e. to reach the probability p. On the other hand, if the constraint is not fulfilled, i.e. $g\left(x, \xi_{s}\right)>0$, then corresponding $y_{s}=0$.

Example 4.6 Find reformulations of the Value at Risk portfolio optimization problem

$$
\begin{gathered}
\min _{z, x} z \\
\text { s.t. } P\left(-\sum_{i=1}^{n} R_{i} x_{i} \leq z\right) \geq p, \\
\sum_{i=1}^{n} \mathbb{E}\left[R_{i}\right] \cdot x_{i} \geq r_{0} \\
\sum_{i=1}^{n} x_{i}=1, x_{i} \geq 0
\end{gathered}
$$

where R_{i} is random rate of return of i-th asset and minimal expected return r_{0} is selected in such way that the problem is feasible. Assume that the distribution of returns is

1. discrete with realizations $r_{i s}, s=1, \ldots, S$, and probabilities $p_{s}=1 / S$,
2. multivariate normal with mean μ and variance matrix Σ.

4.1 Separated right-hand side

Let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and ξ be a random variable with distribution function $F, p \in[0,1]$. Then the individual chance constraint with separated right-hand side is

$$
P(g(x) \geq \xi) \geq p
$$

and it can be reformulated using the quantile function as

$$
g(x) \geq F^{-1}(p) .
$$

Using so called p-level efficient points (pLEPs), this approach can be generalized to the joint chance constrained case, i.e. to reformulate

$$
P\left(g_{1}(x) \geq \xi_{1}, \ldots, g_{r}(x) \geq \xi_{r}\right) \geq p
$$

Definition 4.7 Let \mathbf{X} be a r-dimensional random vector with distribution function F : $\mathbb{R}^{r} \rightarrow[0,1]$ and $p \in[0,1]$. We say that $z \in \mathbb{R}^{r}$ is a p-level efficient point ($p L E P$) if $F(z) \geq p$ and there is no other $y \in \mathbb{R}^{r}$ for which $F(y) \geq p$ and $y \leq z, y \neq z$.

Let $\left\{z_{1}, \ldots, z_{n}\right\} \subset \mathbb{R}^{r}$ be the set of pLEPs and $\mathbf{g}(x)=\left(g_{1}(x), \ldots, g_{r}(x)\right)^{T}$. Then the joint chance constraint is equivalent to

$$
\mathbf{g}(x) \geq z \text { for at least one } z \in\left\{z_{1}, \ldots, z_{n}\right\}
$$

Sometimes it is written in the disjunctive programming form

$$
\mathbf{g}(x) \in \bigcup_{i=1}^{n}\left\{z_{i}+\mathbb{R}_{+}^{r}\right\} .
$$

Example 4.8 Consider 6 equiprobable realizations of random vector:

$$
\binom{1}{1},\binom{1}{2},\binom{1}{3},\binom{2}{1},\binom{2}{2},\binom{2}{3} .
$$

Find $p L E P s$ for arbitrary $p \in(0,1]$. Derive a deterministic reformulation for the chance constrained problem

$$
\begin{array}{rl}
\min _{x \in X} & f(x) \\
\text { s.t. } & P\left(g_{1}(x) \geq \xi_{1}, g_{2}(x) \geq \xi_{2}\right) \geq p
\end{array}
$$

Solution: Compute the value of distribution function F in each point (in order):

$$
\frac{1}{6}, \frac{1}{3}, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}, 1
$$

Then, we can derive from the definition

$$
\begin{aligned}
\mathrm{pLEPs} & =\left\{\binom{2}{3}\right\}, p \in(2 / 3,1] \\
& =\left\{\binom{2}{2}\right\}, p \in(1 / 2,2 / 3] \\
& =\left\{\binom{1}{3},\binom{2}{2}\right\}, p \in(1 / 3,1 / 2] \\
& =\left\{\binom{1}{2},\binom{2}{1}\right\}, p \in(1 / 6,1 / 3] \\
& =\left\{\binom{1}{1}\right\}, p \in(0,1 / 6] .
\end{aligned}
$$

Note that finding the set of pLEPs is in general highly demanding task and requires special algorithms. It is a serious research topic.

Then, the chance constrained problem is equivalent to

$$
\begin{array}{rl}
\min _{x \in X} & f(x) \\
\text { s.t. } & g_{1}(x) \geq \xi_{1}, g_{2}(x) \geq \xi_{2}, \text { for at least one }\left(\xi_{1}, \xi_{2}\right) \in \text { pLEPs. }
\end{array}
$$

Example 4.9 Consider compound Poisson distribution which characterizes the overall loss of a non-life insurance portfolio over 1 year period. Estimate the minimal level of portfolio premium such that the losses are covered with probability p.

Solution: Let $\left\{X_{i}\right\}_{i=1}^{\infty}$ be iid positive random variables with finite second moment which model the claim severities and $N \sim P o(\lambda)$ be independent on $\left\{X_{i}\right\}$. Then, our goal is to solve

$$
\min _{x \in \mathbb{R}_{+}} x \text { s.t. } P\left(\sum_{i=1}^{N} X_{i} \leq x\right) \geq p
$$

In fact, we would like to compute the quantile, or Value at Risk. However, this is a difficult task for any compound distribution even using modern mathematical software tools. An easy approach is to use a conservative approximation, in our case based on the one-sided Chebyshev's inequality ${ }^{1}$: for $X \sim\left(\mu, \sigma^{2}\right)$, and $a>0$,

$$
P(X-\mu \geq a) \leq \frac{\sigma^{2}}{\sigma^{2}+a^{2}}
$$

[^0]Now realize that for the moments of the compound Poisson distribution, it holds

$$
\begin{aligned}
\mu & :=\mathbb{E}\left(\sum_{i=1}^{N} X_{i}\right)=\mathbb{E}(N) \mathbb{E}\left(X_{1}\right)=\lambda \mathbb{E}\left(X_{1}\right) \\
\sigma^{2}: & =\operatorname{var}\left(\sum_{i=1}^{N} X_{i}\right)=\mathbb{E}(N) \operatorname{var}\left(X_{1}\right)+\left(\mathbb{E}\left(X_{1}\right)\right)^{2} \operatorname{var}(N)=\lambda \mathbb{E}\left(X_{1}^{2}\right) .
\end{aligned}
$$

By applying the one-sided Chebyshev's inequality for $x>\mu$, we obtain

$$
P\left(\sum_{i=1}^{N} X_{i} \geq x\right)=P\left(\sum_{i=1}^{N} X_{i}-\mu \geq x-\mu\right) \leq \frac{\sigma^{2}}{\sigma^{2}+(x-\mu)^{2}} \leq 1-p
$$

which is equivalent to

$$
\begin{aligned}
(x-\mu)^{2} & \geq \frac{\sigma^{2}}{1-p}-\sigma^{2} \\
x & \geq \mu+\sqrt{\frac{p}{1-p}} \sigma \\
x & \geq \lambda \mathbb{E}\left(X_{1}\right)+\sqrt{\frac{p}{1-p}} \sqrt{\lambda \mathbb{E}\left(X_{1}^{2}\right)}
\end{aligned}
$$

To get the conservative estimate of safe premium, we can set x equal to the above expression. Realize that it is similar to the formula which we have obtained for the normal distribution, but instead of the normal quantile we are using $\sqrt{\frac{p}{1-p}}$. It can be shown that this is the most conservative (highest) value of quantile for the distribution with finite second moment.

Note that looking for new conservative tight approximations is still a serious research topic in stochastic optimization.

Summary: You have seen several general approaches to deal with chance constraints:

- direct evaluation, Example 4.1
- reformulation using cumulative distribution function, Example 4.2, 4.3
- reformulation under Gaussian distribution using quantiles, Example 4.4
- mixed-integer reformulation using binary variables, Examples 4.5, 4.6
- generalized quantiles for separated random right-hand side, Example 4.8
- conservative approximation using probability inequalities, Example 4.9

[^0]: ${ }^{1}$ Its proof is not straightforward as for the traditional two-sided version. It is also known as Cantelli's inequality (under this name Wiki refers to several papers with a proof).

