Introduction to integer programming II

Martin Branda

Charles University in Prague aculty of Mathematics and Physic Department of Probability and Mathematical Statistics

Computational Aspects of Optimization

Example: Knapsack decision problem

For an instance

$$
X=\left\{\sum_{i=1}^{n} c_{i} x_{i} \geq k, \sum_{i=1}^{n} a_{i} x_{i} \leq b, x \in\{0,1\}^{n}\right\}
$$

the length of the input is

$$
L(X)=\sum_{i=1}^{n}\left\lceil\log c_{i}\right\rceil+\sum_{i=1}^{n}\left\lceil\log a_{i}\right\rceil+\lceil\log b\rceil+\lceil\log k\rceil
$$

Wolsey (1998): Consider decision problems having YES-NO answers. Optimization problem

$$
\max _{x \in M} c^{T} x
$$

can be replaced by (for some k integral)

$$
\text { Is there an } x \in M \text { with value } c^{T} x \geq k ?
$$

For a problem instance X, the length of the input $L(X)$ is the length of the binary representation of a standard representation of the instance Instance $X=\{c, M\}, X=\{c, M, k\}$.

Definition

- $f_{A}(X)$ is the number of elementary calculations required to run the algorithm A on the instance $X \in P$
- Running time of the algorithm A

$$
f_{A}^{*}(I)=\sup _{X}\left\{f_{A}(X): L(X)=I\right\} .
$$

- An algorithm A is polynomial for a problem P if $f_{A}^{*}(I)=O\left(I^{p}\right)$ for some $p \in \mathbb{N}$.

Definition

- $\mathcal{N P}$ (Nondeterministic Polynomial) is the class of decision problems with the property that: for any instance for which the answer is YES, there is a polynomial proof of the YES.
- \mathcal{P} is the class of decision problems in $\mathcal{N P}$ for which there exists a polynomial algorithm.
$\mathcal{N} \mathcal{P}$ may be equivalently defined as the set of decision problems that can be solved in polynomial time on a non-deterministic Turing machine ${ }^{1}$.
${ }^{1}$ NTM writes symbols one at a time on an endless tape by strictly following a set of ules. It determines what action it should perform next according to its internal state and what symbol it currently sees. It may have a set of rules that prescribes more than one action for a given situation. The machine "branches" into many copies, each of which follows one of the possible transitions leading to a "computation tree"

The Imitation Game (2014)

Open question \& Euler diagram

Definition

- If problems $P, Q \in \mathcal{N} \mathcal{P}$, and if an instance of P can be converted in polynomial time to an instance of Q, then P is polynomially reducible to Q.
- $\mathcal{N P} \mathcal{C}$, the class of $\mathcal{N} \mathcal{P}$-complete problems, is the subset of problems $P \in \mathcal{N} \mathcal{P}$ such that for all $Q \in \mathcal{N} \mathcal{P}, Q$ is polynomially reducible to P

Proposition: Suppose that problems $P, Q \in \mathcal{N} \mathcal{P}$

- If $Q \in \mathcal{P}$ and P is polynomially reducible to Q, then $P \in \mathcal{P}$.
- If $P \in \mathcal{N P} \mathcal{C}$ and P is polynomially reducible to Q, then $Q \in \mathcal{N} \mathcal{P C}$

Proposition: If $\mathcal{P} \cap \mathcal{N} \mathcal{P C} \neq \emptyset$, then $\mathcal{P}=\mathcal{N} \mathcal{P} \mathcal{C}$.

Is $\mathcal{P}=\mathcal{N} \mathcal{P}$?

Definition

An optimization problem for which the decision problem lies in $\mathcal{N P C}$ is called $\mathcal{N} \mathcal{P}$-hard.

Branch-and-Bound

Klee-Minty (1972) example:

$$
\begin{array}{ll}
\max & \sum_{j=1}^{n} 10^{n-j} x_{j} \\
\text { s.t. } & \sum_{j=1}^{i-1} 10^{i-j} x_{j}+x_{i} \leq 100^{i-1}, i=1, \ldots, n \\
& x_{j} \geq 0, j=1, \ldots, n
\end{array}
$$

Can be easily reformulated in the standard form. The Simplex algorithm takes $2^{n}-1$ pivot steps, i.e. it is not polynomial in the worst case.

Branch-and-Bound

General principles:

- Solve LP problem without integrality only.
- Branch using additional constraints on integrality: $x_{i} \leq\left\lfloor x_{i}^{*}\right\rfloor$, $x_{i} \geq\left\lfloor x_{i}^{*}\right\rfloor+1$
- Cut inperspective branches before solving (using bounds on the optimal value).

General principles:

- Solve only LP problems with relaxed integrality.
- Branching: if an optimal solution is not integral, e.g. \hat{x}_{i}, create and save two new problems with constraints $x_{i} \leq\left\lfloor\hat{x}_{i}\right\rfloor, x_{i} \geq\left\lceil\hat{x}_{i}\right\rceil$.
- Bounding ("different" cutting): save the objective value of the best integral solution and cut all problems in the queue created from the problems with higher optimal values ${ }^{2}$.
Exact algorithm ..

Branch-and-Bound

0. $f_{\text {min }}=\infty, x_{\text {min }}=\cdot$, list of problems $P=\emptyset$

Solve LP-relaxed problem and obtain f^{*}, x^{*}. If the solution is integral, STOP. If the problem is infeasible or unbounded, STOP.

1. BRANCHING: There is x_{i} basic non-integral variable such that $k<x_{i}<k+1$ for some $k \in \mathbb{N}$:

- Add constraint $x_{i} \leq k$ to previous problem and put it into list P. - Add constraint $x_{i} \geq k+1$ to previous problem and put it into list P.

2. Take problem from P and solve it: f^{*}, x^{*}.
3. If $f^{*}<f_{\text {min }}$ and x^{*} is non-integral, GO TO 1.

- BOUNDING: If $f^{*}<f_{\min }$ a x^{*} is integral, set $f_{\min }=f^{*}$ a $x_{\min }=x^{*}$

GO TO 4.

- BOUNDING: If $f^{*} \geq f_{\text {min }}$, GO TO 4
- Problem is infeasible, GO TO 4.

4. - If $P \neq \emptyset$, GO TO 2 .

- If $P=\emptyset$ a $f_{\text {min }}=\infty$, integral solution does not exist.
- If $P=\emptyset$ a $f_{\text {min }}<\infty$, optimal value and solution are $f_{\text {min }}, x_{\text {min }}$.

P. Pedegral (2004). Introduction to optimization, Springer-Verlag, New York.

Better

2./3. Take problem from list P and solve it: f^{*}, x^{*}. If for the optimal value of the current problem holds $f^{*} \geq f_{\text {min }}$, then the branching is not necessary, since by solving the problems with added branching constraints we can only increase the optimal value and obtain the same $f_{\text {min }}$.

$$
\begin{aligned}
\min 4 x_{1}+5 x_{2} & \\
x_{1}+4 x_{2} & \geq 5 \\
3 x_{1}+2 x_{2} & \geq 7, \\
x_{1}, x_{2} & \in \mathbb{Z}_{+} .
\end{aligned}
$$

After two iterations of the dual SIMPLEX algorithm ..

				4	5	0
			x_{1}	x_{2}	x_{3}	x_{4}
5	x_{2}	$8 / 10$	0	1	$-3 / 10$	$1 / 10$
4	x_{1}	$18 / 10$	1	0	$2 / 10$	$-4 / 10$
		$112 / 10$	0	0	$-7 / 10$	$-11 / 10$

B\&B - Example I

Branching means adding a cut of the form $x_{1} \leq 1$, i.e.

$$
x_{1}+x_{5}=1, x_{5} \geq 0
$$

$$
\left(\alpha=(1,0,0,0,1), \alpha_{B}=(1,0)\right)
$$

			4	5	0	0	0
			x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
5	x_{2}	$8 / 10$	0	1	$-3 / 10$	$1 / 10$	0
4	x_{1}	$18 / 10$	1	0	$2 / 10$	$-4 / 10$	0
0	x_{5}	$-8 / 10$	0	0	$-2 / 10$	$4 / 10$	1
		$112 / 10$	0	0	$-7 / 10$	$-11 / 10$	0

Dual feasible, primal infeasible - run the dual simplex ...

Duality

Set $S(b)=\left\{x \in \mathbb{Z}_{+}^{n}: A x=b\right\}$ and define the value function

$$
\begin{equation*}
z(b)=\min _{x \in S(b)} c^{T} x \tag{2}
\end{equation*}
$$

A dual function $F: \mathbb{R}^{m} \rightarrow \overline{\mathbb{R}}$

$$
\begin{equation*}
F(b) \leq z(b), \forall b \in \mathbb{R}^{m} \tag{3}
\end{equation*}
$$

A general form of dual problem

$$
\begin{equation*}
\max _{F}\left\{F(b): \text { s.t. } F(b) \leq z(b), b \in \mathbb{R}^{m}, F: \mathbb{R}^{m} \rightarrow \mathbb{R}\right\} \tag{4}
\end{equation*}
$$

We call F a weak dual function if it is feasible, and strong dual if moreover $F(b)=z(b)$.

A function F is subadditive over a domain Θ if

$$
F\left(\theta_{1}+\theta_{2}\right) \leq F\left(\theta_{1}\right)+F\left(\theta_{2}\right)
$$

for all $\theta_{1}+\theta_{2}, \theta_{1}, \theta_{2} \in \Theta$.
The value function z is subadditive over $\{b: S(b) \neq \emptyset\}$, since the sum of optimal x 's is feasible for the problem with $b_{1}+b_{2}$ r.h.s., i.e.
$\hat{x}_{1}+\hat{x}_{2} \in S\left(b_{1}+b_{2}\right)$.

Duality

If we set

$$
\Gamma^{m}=\left\{F: \mathbb{R}^{m} \rightarrow \mathbb{R}, F(0)=0, F \text { subadditive }\right\}
$$

then we can write a subadditive dual independent of x :

$$
\begin{equation*}
\max _{F}\left\{F(b): \text { s.t. } F\left(a_{\cdot j}\right) \leq c_{j}, F \in \Gamma^{m}\right\} \tag{5}
\end{equation*}
$$

Weak and strong duality holds.
An easy feasible solution based on LP duality (= weak dual)

$$
\begin{equation*}
F_{L P}(b)=\max _{y} b^{T} y \text { s.t. } A^{T} y \leq c \tag{6}
\end{equation*}
$$

If F is subadditive, then condition $F(A x) \leq c^{T} x$ for $x \in \mathbb{Z}_{+}^{n}$ is equivalent to $F\left(a_{. j}\right) \leq c_{j}, j=1, \ldots, m$.

This is true since $F\left(A e_{j}\right) \leq c^{T} e_{j}$ is the same as $F\left(a_{\cdot j}\right) \leq c_{j}$
On the other hand, if F is subadditive and $F\left(a_{. j}\right) \leq c_{j}, j=1, \ldots, m$ imply

$$
F(A x) \leq \sum_{j=1}^{m} F\left(a_{\cdot j}\right) x_{j} \leq \sum_{j=1}^{m} c_{j} x_{j}=c^{T} x .
$$

Duality

Complementary slackness condition: if \hat{x} is an optimal solution for IP, and \hat{F} is an optimal subadditive dual solution, then

$$
\left(\hat{F}\left(a_{\cdot j}\right)-c_{j}\right) \hat{x}_{j}=0, j=1, \ldots, m
$$

Dynamic programming

Let a_{i}, b be positive integers.

$$
\begin{aligned}
& \max \sum_{i=1}^{n} c_{i} x_{i} \\
& \text { s.t. } \sum_{i=1}^{n} a_{i} x_{i} \leq b, \\
& \\
& \quad x_{i} \in\{0,1\} .
\end{aligned}
$$

Dynamic programming

Dynamic programming

0 . Start with $f_{1}(\lambda)=0$ for $0 \leq \lambda<a_{1}$ and $f_{1}(\lambda)=\max \left\{0, c_{1}\right\}$ for $\lambda \geq a_{1}$.

1. Use the forward recursion

$$
f_{r}(\lambda)=\max \left\{f_{r-1}(\lambda), c_{r}+f_{r-1}\left(\lambda-a_{r}\right)\right\} .
$$

to successively calculate f_{2}, \ldots, f_{n} for all $\lambda \in\{0,1, \ldots, b\} ; p_{n}(b)$ is the optimal value.
2. Keep indicator $p_{r}(\lambda)=0$ if $f_{r}(\lambda)=f_{r-1}(\lambda)$, and $p_{r}(\lambda)=1$ otherwise
3. Obtain the optimal solution by a backward recursion: if $p_{n}(b)=0$ then set $\hat{x}_{n}=0$ and continue with $f_{n-1}(b)$, else (if $p_{n}(b)=1$) set $\hat{x}_{n}=1$ and continue with $f_{n-1}\left(b-a_{n}\right) .$.

```
\(f_{r}(\lambda)=\max \sum_{i=1}^{r} c_{i} x_{i}\)
s.t. \(\sum_{i=1}^{r} a_{i} x_{i} \leq \lambda\),
\(x_{i} \in\{0,1\}\).
If
    - \(\hat{x}_{r}=0\), then \(f_{r}(\lambda)=f_{r-1}(\lambda)\),
    - \(\hat{x}_{r}=1\) then \(f_{r}(\lambda)=c_{r}+f_{r-1}\left(\lambda-a_{r}\right)\)
```

Thus we arrive at the recursion

$$
f_{r}(\lambda)=\max \left\{f_{r-1}(\lambda), c_{r}+f_{r-1}\left(\lambda-a_{r}\right)\right\} .
$$

Knapsack problem

Values $a_{1}=4, a_{2}=6, a_{3}=7$, costs $c_{1}=4, c_{2}=5, c_{3}=11$, budget $b=10$:

$$
\begin{array}{ll}
\max & \sum_{i=1}^{3} c_{i} x_{i} \\
\text { s.t. } & \sum_{i=1}^{3} a_{i} x_{i} \leq 10, \\
& x_{i} \in\{0,1\}
\end{array}
$$

Other successful applications

- Uncapacitated lot-sizing problem
- Shortest path problem
\qquad

Literature

- V. Klee, G.J. Minty, (1972). How good is the simplex algorithm?. In Shisha, Oved Inequalities III (Proceedings of the Third Symposium on Inequalities held at the University of California, Los Angeles, Calif., September 1-9, 1969). New York-London: Academic Press, 159-175
- G.L. Nemhauser, L.A. Wolsey (1989). Integer Programming. Chapter VI in Handbooks in OR \& MS, Vol. 1, G.L. Nemhauser et al. Eds.
- L.A. Wolsey (1998). Integer Programming. Wiley, New York.
- L.A. Wolsey, G.L. Nemhauser (1999). Integer and Combinatorial Optimization. Wiley, New York
- Northwestern University Open Text Book on Process Optimization, available online: https://optimization.mccormick.northwestern.edu [2017-03-19]

Dynamic programming

