
Introduction to integer programming II

Martin Branda

Charles University in Prague
Faculty of Mathematics and Physics

Department of Probability and Mathematical Statistics

Computational Aspects of Optimization

Martin Branda (KPMS MFF UK) 2017-03-20 1 / 39

Introduction to computational complexity

Introduction to complexity theory

Wolsey (1998): Consider decision problems having YES–NO answers.
Optimization problem

max
x∈M

cT x

can be replaced by (for some k integral)

Is there an x ∈ M with value cT x ≥ k?

For a problem instance X , the length of the input L(X ) is the length of
the binary representation of a standard representation of the instance.
Instance X = {c ,M}, X = {c ,M, k}.

Martin Branda (KPMS MFF UK) 2017-03-20 3 / 39

Introduction to computational complexity

Example: Knapsack decision problem

For an instance

X =

{
n∑

i=1

cixi ≥ k ,
n∑

i=1

aixi ≤ b, x ∈ {0, 1}n
}
,

the length of the input is

L(X ) =
n∑

i=1

dlog cie+
n∑

i=1

dlog aie+ dlog be+ dlog ke

Martin Branda (KPMS MFF UK) 2017-03-20 4 / 39

Introduction to computational complexity

Running time

Definition

fA(X ) is the number of elementary calculations required to run the
algorithm A on the instance X ∈ P.

Running time of the algorithm A

f ∗A (l) = sup
X
{fA(X ) : L(X ) = l}.

An algorithm A is polynomial for a problem P if f ∗A (l) = O(lp) for
some p ∈ N.

Martin Branda (KPMS MFF UK) 2017-03-20 5 / 39



Introduction to computational complexity

Classes NP and P

Definition

NP (Nondeterministic Polynomial) is the class of decision problems
with the property that: for any instance for which the answer is YES,
there is a polynomial proof of the YES.

P is the class of decision problems in NP for which there exists a
polynomial algorithm.

NP may be equivalently defined as the set of decision problems that can
be solved in polynomial time on a non-deterministic Turing machine1.

1NTM writes symbols one at a time on an endless tape by strictly following a set of
rules. It determines what action it should perform next according to its internal state
and what symbol it currently sees. It may have a set of rules that prescribes more than
one action for a given situation. The machine ”branches” into many copies, each of
which follows one of the possible transitions leading to a ”computation tree”.
Martin Branda (KPMS MFF UK) 2017-03-20 6 / 39

Introduction to computational complexity

Alan Turing

The Imitation Game (2014)

Martin Branda (KPMS MFF UK) 2017-03-20 7 / 39

Introduction to computational complexity

Polynomial reduction and the class NPC

Definition

If problems P,Q ∈ NP, and if an instance of P can be converted in
polynomial time to an instance of Q, then P is polynomially
reducible to Q.

NPC, the class of NP-complete problems, is the subset of problems
P ∈ NP such that for all Q ∈ NP, Q is polynomially reducible to P.

Proposition: Suppose that problems P,Q ∈ NP.

If Q ∈ P and P is polynomially reducible to Q, then P ∈ P.

If P ∈ NPC and P is polynomially reducible to Q, then Q ∈ NPC.

Proposition: If P ∩NPC 6= ∅, then P = NPC.

Martin Branda (KPMS MFF UK) 2017-03-20 8 / 39

Introduction to computational complexity

Open question & Euler diagram

Is P = NP?

Martin Branda (KPMS MFF UK) 2017-03-20 9 / 39



Introduction to computational complexity

NP-hard optimization problems

Definition

An optimization problem for which the decision problem lies in NPC is
called NP-hard.

Martin Branda (KPMS MFF UK) 2017-03-20 10 / 39

Introduction to computational complexity

Simplex algorithm

Klee–Minty (1972) example:

max
n∑

j=1

10n−jxj

s.t. 2
i−1∑
j=1

10i−jxj + xi ≤ 100i−1, i = 1, . . . , n,

xj ≥ 0, j = 1, . . . , n.

(1)

Can be easily reformulated in the standard form. The Simplex algorithm
takes 2n − 1 pivot steps, i.e. it is not polynomial in the worst case.

Martin Branda (KPMS MFF UK) 2017-03-20 11 / 39

Branch-and-Bound

Branch-and-Bound

Basic idea: DIVIDE AND RULE

Let M = M1 ∪M2 ∪ · · · ∪Mr be a partitioning of thefeasibility set and let

fj = min
x∈Mj

f (x).

Then
min
x∈M

f (x) = min
j=1,...,r

fj .

Martin Branda (KPMS MFF UK) 2017-03-20 13 / 39

Branch-and-Bound

Branch-and-Bound

General principles:

Solve LP problem without integrality only.

Branch using additional constraints on integrality: xi ≤ bx∗i c,
xi ≥ bx∗i c+ 1.

Cut inperspective branches before solving (using bounds on the
optimal value).

Martin Branda (KPMS MFF UK) 2017-03-20 14 / 39



Branch-and-Bound

Branch-and-Bound

General principles:

Solve only LP problems with relaxed integrality.

Branching: if an optimal solution is not integral, e.g. x̂i , create and
save two new problems with constraints xi ≤ bx̂ic, xi ≥ dx̂ie.
Bounding (“different” cutting): save the objective value of the best
integral solution and cut all problems in the queue created from the
problems with higher optimal values2.

Exact algorithm ..

2Branching cannot improve it.
Martin Branda (KPMS MFF UK) 2017-03-20 15 / 39

Branch-and-Bound

Branch-and-Bound

P. Pedegral (2004). Introduction to optimization, Springer-Verlag, New York.

Martin Branda (KPMS MFF UK) 2017-03-20 16 / 39

Branch-and-Bound

Branch-and-Bound

0. fmin =∞, xmin = ·, list of problems P = ∅
Solve LP-relaxed problem and obtain f ∗, x∗. If the solution is integral, STOP. If
the problem is infeasible or unbounded, STOP.

1. BRANCHING: There is xi basic non-integral variable such that k < xi < k + 1 for
some k ∈ N:

Add constraint xi ≤ k to previous problem and put it into list P.
Add constraint xi ≥ k + 1 to previous problem and put it into list P.

2. Take problem from P and solve it: f ∗, x∗.

3. If f ∗ < fmin and x∗ is non-integral, GO TO 1.
BOUNDING: If f ∗ < fmin a x∗ is integral, set fmin = f ∗ a xmin = x∗,
GO TO 4.
BOUNDING: If f ∗ ≥ fmin, GO TO 4.
Problem is infeasible, GO TO 4.

4. If P 6= ∅, GO TO 2.
If P = ∅ a fmin =∞, integral solution does not exist.
If P = ∅ a fmin <∞, optimal value and solution are fmin, xmin.

Martin Branda (KPMS MFF UK) 2017-03-20 17 / 39

Branch-and-Bound

Better ...

2./3. Take problem from list P and solve it: f ∗, x∗. If for the optimal value
of the current problem holds f ∗ ≥ fmin, then the branching is not
necessary, since by solving the problems with added branching
constraints we can only increase the optimal value and obtain the
same fmin.

Martin Branda (KPMS MFF UK) 2017-03-20 18 / 39



Branch-and-Bound

Branch-and-Bound

Algorithmic issues:

Problem selection from the list P: FIFO, LIFO (depth-first search),
problem with the smallest f ∗.

Selection of the branching variable x∗i : the highest/smallest
violation of integrality OR the highest/smallest coefficient in the
objective function.

Martin Branda (KPMS MFF UK) 2017-03-20 19 / 39

Branch-and-Bound

B&B – Example I

min 4x1 + 5x2

x1 + 4x2 ≥ 5,

3x1 + 2x2 ≥ 7,

x1, x2 ∈ Z+.

After two iterations of the dual SIMPLEX algorithm ...

4 5 0 0
x1 x2 x3 x4

5 x2 8/10 0 1 -3/10 1/10
4 x1 18/10 1 0 2/10 -4/10

112/10 0 0 -7/10 -11/10

Martin Branda (KPMS MFF UK) 2017-03-20 20 / 39

Branch-and-Bound

B&B – Example I

Branching means adding a cut of the form x1 ≤ 1, i.e.

x1 + x5 = 1, x5 ≥ 0.

(α = (1, 0, 0, 0, 1), αB = (1, 0))

4 5 0 0 0
x1 x2 x3 x4 x5

5 x2 8/10 0 1 -3/10 1/10 0
4 x1 18/10 1 0 2/10 -4/10 0
0 x5 -8/10 0 0 - 2/10 4/10 1

112/10 0 0 -7/10 -11/10 0

Dual feasible, primal infeasible – run the dual simplex ...

Martin Branda (KPMS MFF UK) 2017-03-20 21 / 39

Branch-and-Bound

node 0
x∗1 = 1.8
x∗2 = 0.8

f̂ = 11.2

node 2
x∗1 = 2

x∗2 = 0.75

f̂ = 11.75

node 4
x∗1 = 2
x∗2 = 1

f̂ = 13

x2 ≥ 1

node 3
x∗1 = 5
x∗2 = 0

f̂ = 20
x2
≤ 0x1 ≥ 2

node 1
x∗1 = 1
x∗2 = 2

f̂ = 14
x1
≤ 1

Martin Branda (KPMS MFF UK) 2017-03-20 22 / 39



Branch-and-Bound

B&B – Example II

max 23x1 + 19x2 + 28x3 + 14x4 + 44x5

s.t. 8x1 + 7x2 + 11x3 + 6x4 + 19x5 ≤ 25,

x1, x2, x3, x4, x5 ∈ {0, 1}.

Martin Branda (KPMS MFF UK) 2017-03-20 23 / 39

Branch-and-Bound

B&B – Example II

node 0
f̂ = 67.45

node 2
f̂ = 67.28

node 4
f̂ = 67.127

node 6
f̂ = −∞

x1 = 1

node 5
f̂ = 63.32

pruned

x1
= 0x2 = 1

node 3
f̂ = 65

x2
= 0x3 = 1

node 1
f̂ = 65.26

branching continues ...

x3
= 0

Martin Branda (KPMS MFF UK) 2017-03-20 24 / 39

Branch-and-Bound

Branch-and-Bound – remarks

If you are able to get a feasible solution quickly, deliver it to the
software (solver).

Branch-and-Cut: add cuts at the beginning/during B&B.

Algorithm termination: (Relative) difference between a lower and
an upper bound – construct the upper bound (for minimization) using
a feasible solution, lower bound ...

Martin Branda (KPMS MFF UK) 2017-03-20 25 / 39

Duality

Duality

Set S(b) = {x ∈ Zn
+ : Ax = b} and define the value function

z(b) = min
x∈S(b)

cT x . (2)

A dual function F : Rm → R

F (b) ≤ z(b), ∀b ∈ Rm. (3)

A general form of dual problem

max
F
{F (b) : s.t. F (b) ≤ z(b), b ∈ Rm, F : Rm → R} . (4)

We call F a weak dual function if it is feasible, and strong dual if
moreover F (b) = z(b).

Martin Branda (KPMS MFF UK) 2017-03-20 27 / 39



Duality

Duality

A function F is subadditive over a domain Θ if

F (θ1 + θ2) ≤ F (θ1) + F (θ2)

for all θ1 + θ2, θ1, θ2 ∈ Θ.

The value function z is subadditive over {b : S(b) 6= ∅}, since the sum of
optimal x ’s is feasible for the problem with b1 + b2 r.h.s., i.e.
x̂1 + x̂2 ∈ S(b1 + b2).

Martin Branda (KPMS MFF UK) 2017-03-20 28 / 39

Duality

Duality

If F is subadditive, then condition F (Ax) ≤ cT x for x ∈ Zn
+ is equivalent

to F (a·j) ≤ cj , j = 1, . . . ,m.

This is true since F (Aej) ≤ cT ej is the same as F (a·j) ≤ cj .

On the other hand, if F is subadditive and F (a·j) ≤ cj , j = 1, . . . ,m imply

F (Ax) ≤
m∑
j=1

F (a·j)xj ≤
m∑
j=1

cjxj = cT x .

Martin Branda (KPMS MFF UK) 2017-03-20 29 / 39

Duality

Duality

If we set

Γm = {F : Rm → R, F (0) = 0, F subadditive},

then we can write a subadditive dual independent of x :

max
F
{F (b) : s.t. F (a·j) ≤ cj , F ∈ Γm} . (5)

Weak and strong duality holds.

An easy feasible solution based on LP duality (= weak dual)

FLP(b) = max
y

bT y s.t. AT y ≤ c . (6)

Martin Branda (KPMS MFF UK) 2017-03-20 30 / 39

Duality

Duality

Complementary slackness condition: if x̂ is an optimal solution for IP,
and F̂ is an optimal subadditive dual solution, then

(F̂ (a·j)− cj)x̂j = 0, j = 1, . . . ,m.

Martin Branda (KPMS MFF UK) 2017-03-20 31 / 39



Dynamic programming

Knapsack problem

max
n∑

i=1

cixi

s.t.

n∑
i=1

aixi ≤ b,

xi ∈ {0, 1}.

Martin Branda (KPMS MFF UK) 2017-03-20 33 / 39

Dynamic programming

Dynamic programming

Let ai , b be positive integers.

fr (λ) = max
r∑

i=1

cixi

s.t.
r∑

i=1

aixi ≤ λ,

xi ∈ {0, 1}.

If

x̂r = 0, then fr (λ) = fr−1(λ),

x̂r = 1 then fr (λ) = cr + fr−1(λ− ar ).

Thus we arrive at the recursion

fr (λ) = max {fr−1(λ), cr + fr−1(λ− ar )} .

Martin Branda (KPMS MFF UK) 2017-03-20 34 / 39

Dynamic programming

Dynamic programming

0. Start with f1(λ) = 0 for 0 ≤ λ < a1 and f1(λ) = max{0, c1} for
λ ≥ a1.

1. Use the forward recursion

fr (λ) = max {fr−1(λ), cr + fr−1(λ− ar )} .

to successively calculate f2, . . . , fn for all λ ∈ {0, 1, . . . , b}; pn(b) is
the optimal value.

2. Keep indicator pr (λ) = 0 if fr (λ) = fr−1(λ), and pr (λ) = 1 otherwise.

3. Obtain the optimal solution by a backward recursion: if pn(b) = 0
then set x̂n = 0 and continue with fn−1(b), else (if pn(b) = 1) set
x̂n = 1 and continue with fn−1(b − an) ...

Martin Branda (KPMS MFF UK) 2017-03-20 35 / 39

Dynamic programming

Knapsack problem

Values a1 = 4, a2 = 6, a3 = 7, costs c1 = 4, c2 = 5, c3 = 11, budget
b = 10:

max
3∑

i=1

cixi

s.t.
3∑

i=1

aixi ≤ 10,

xi ∈ {0, 1}.

Martin Branda (KPMS MFF UK) 2017-03-20 36 / 39



Dynamic programming

Knapsack problem – Dynamic programming

a1 = 4, a2 = 6, a3 = 7, c1 = 4, c2 = 5, c3 = 11

r/ λ 1 2 3 4 5 6 7 8 9 10

1 0 0 0 4 4 4 4 4 4 4
fr 2 0 0 0 4 4 5 5 5 5 9

3 0 0 0 4 4 5 5 11 11 11

1 0 0 0 1 1 1 1 1 1 1
pr 2 0 0 0 0 0 1 1 1 1 1

3 0 0 0 0 0 0 0 1 1 1

Martin Branda (KPMS MFF UK) 2017-03-20 37 / 39

Dynamic programming

Dynamic programming

Other successful applications

Uncapacitated lot-sizing problem

Shortest path problem

...

Martin Branda (KPMS MFF UK) 2017-03-20 38 / 39

Dynamic programming

Literature

V. Klee, G.J. Minty, (1972). How good is the simplex algorithm?. In Shisha, Oved.
Inequalities III (Proceedings of the Third Symposium on Inequalities held at the
University of California, Los Angeles, Calif., September 1–9, 1969). New
York-London: Academic Press, 159–175.

G.L. Nemhauser, L.A. Wolsey (1989). Integer Programming. Chapter VI in
Handbooks in OR & MS, Vol. 1, G.L. Nemhauser et al. Eds.

L.A. Wolsey (1998). Integer Programming. Wiley, New York.

L.A. Wolsey, G.L. Nemhauser (1999). Integer and Combinatorial Optimization.
Wiley, New York.

Northwestern University Open Text Book on Process Optimization, available
online: https://optimization.mccormick.northwestern.edu [2017-03-19]

Martin Branda (KPMS MFF UK) 2017-03-20 39 / 39


	Introduction to computational complexity
	Branch-and-Bound
	Duality
	Dynamic programming

