Introduction to integer programming II

Martin Branda

Charles University
Faculty of Mathematics and Physics
Department of Probability and Mathematical Statistics

COMPUTATIONAL ASPECTS OF OPTIMIZATION

Martin Branda (KPMS MFF UK) 2021-04-03 1/41

Introduction to computational complexity

Example: Knapsack decision problem

For an instance

$$X = \left\{ \sum_{i=1}^{n} c_i x_i \ge k, \sum_{i=1}^{n} a_i x_i \le b, \ x \in \{0,1\}^n \right\},\,$$

the length of the input is

$$L(X) = \sum_{i=1}^{n} \lceil \log c_i \rceil + \sum_{i=1}^{n} \lceil \log a_i \rceil + \lceil \log b \rceil + \lceil \log k \rceil$$

Introduction to computational complexity

Introduction to complexity theory

Wolsey (1998): Consider ${\it decision\ problems\ }$ having YES–NO answers.

Optimization problem

$$\max_{x \in M} c^T x$$

can be replaced by (for some k integral)

Is there an
$$x \in M$$
 with value $c^T x > k$?

For a problem instance X, the **length of the input** L(X) is the length of the binary representation of a standard representation of the instance. Instance $X = \{c, M\}, X = \{c, M, k\}$.

Martin Branda (KPMS MFF UK)

2021-04-03 3 / 41

Introduction to computational complexi

Running time

Definition

- $f_A(X)$ is the number of elementary calculations required to run the algorithm A on the instance $X \in P$.
- Running time of the algorithm A

$$f_A^*(I) = \sup_X \{ f_A(X) : L(X) = I \}.$$

• An algorithm A is **polynomial** for a problem P if $f_A^*(I) = O(I^p)$ for some $p \in \mathbb{N}$.

 Martin Branda (KPMS MFF UK)
 2021-04-03
 4/41

Classes \mathcal{NP} and \mathcal{P}

Definition

- NP (Nondeterministic Polynomial) is the class of decision problems with the property that: for any instance for which the answer is YES, there is a polynomial proof of the YES.
- \bullet ${\cal P}$ is the class of decision problems in ${\cal NP}$ for which there exists a polynomial algorithm.

 \mathcal{NP} may be equivalently defined as the set of decision problems that can be solved in polynomial time on a non-deterministic Turing machine¹.

Martin Branda (KPMS MFF UK) 2021-04-03 6 / 41

Introduction to computational complexity

Polynomial reduction and the class \mathcal{NPC}

Definition

- If problems $P, Q \in \mathcal{NP}$, and if an instance of P can be converted in polynomial time to an instance of Q, then P is **polynomially reducible** to Q.
- \mathcal{NPC} , the class of \mathcal{NP} -complete problems, is the subset of problems $P \in \mathcal{NP}$ such that for all $Q \in \mathcal{NP}$, Q is polynomially reducible to P.

Proposition: Suppose that problems $P, Q \in \mathcal{NP}$.

- If $Q \in \mathcal{P}$ and P is polynomially reducible to Q, then $P \in \mathcal{P}$.
- If $P \in \mathcal{NPC}$ and P is polynomially reducible to Q, then $Q \in \mathcal{NPC}$.

Proposition: If $\mathcal{P} \cap \mathcal{NPC} \neq \emptyset$, then $\mathcal{P} = \mathcal{NPC}$.

Introduction to computational complexity

Alan Turing

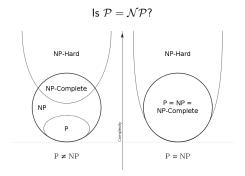
The Imitation Game (2014)

Martin Branda (KPMS MFF UK)

2021-04-03 7 / 41

Introduction to computational complexity

Open question & Euler diagram



Martin Branda (KPMS MFF UK) 2021-04-03 8/41 2021-04-03 9/41

¹NTM writes symbols one at a time on an endless tape by strictly following a set of rules. It determines what action it should perform next according to its internal state and what symbol it currently sees. It may have a set of rules that prescribes more than one action for a given situation. The machine "branches" into many copies, each of which follows one of the possible transitions leading to a "computation tree".

Introduction to computational complexity

\mathcal{NP} -hard optimization problems

Definition |

An optimization problem for which the decision problem lies in \mathcal{NPC} is called $\mathcal{NP}\text{-hard}.$

Martin Branda (KPMS MFF UK)

2021-04-03 10 / 41

Branch-and-Bound

Branch-and-Bound

Basic idea: **DIVIDE AND RULE**

Let $M=M_1\cup M_2\cup \cdots \cup M_r$ be a partitioning of the feasibility set and let

$$f_j = \min_{x \in M_i} f(x).$$

Then

$$\min_{x \in M} f(x) = \min_{j=1,\dots,r} f_j.$$

Introduction to computational complexity

Simplex algorithm

Klee-Minty (1972) example:

$$\max \sum_{j=1}^{n} 10^{n-j} x_{j}$$
s.t. $2 \sum_{j=1}^{i-1} 10^{i-j} x_{j} + x_{i} \le 100^{i-1}, i = 1, ..., n,$

$$x_{j} \ge 0, j = 1, ..., n.$$
(1)

Can be easily reformulated in the standard form. The Simplex algorithm takes $2^n - 1$ **pivot steps**, i.e. it is not polynomial in the worst case.

Martin Branda (KPMS MFF UK)

2021-04-03 11 / 41

Branch-and-Box

Branch-and-Bound

General principles:

- Solve LP problem without integrality only.
- Branch using additional constraints on integrality: $x_i \leq \lfloor x_i^* \rfloor$, $x_i \geq \lfloor x_i^* \rfloor + 1$.
- Cut inperspective branches before solving (using bounds on the optimal value).

Martin Branda (KPMS MFF UK) 2021-04-03 13/41 Martin Branda (KPMS MFF UK)

Branch-and-Bound

Branch-and-Bound

General principles:

- Solve only LP problems with relaxed integrality.
- **Branching**: if an optimal solution is not integral, e.g. \hat{x}_i , create and save two new problems with constraints $x_i \leq |\hat{x}_i|$, $x_i \geq \lceil \hat{x}_i \rceil$.
- Bounding ("different" cutting): save the objective value of the best integral solution and cut all problems in the queue created from the problems with higher optimal values².

Exact algorithm ..

²Branching cannot improve it.

Martin Branda (KPMS MFF UK)

2021-04-03 15 / 41

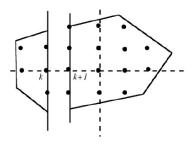
Branch-and-Bound

Branch-and-Bound

- f_{min} = ∞, x_{min} = ·, list of problems P = ∅
 Solve LP-relaxed problem and obtain f*, x*. If the solution is integral, STOP. If
 - the problem is infeasible or unbounded, STOP.
- 1. **BRANCHING**: There is x_i^* basic non-integral variable such that $k < x_i^* < k+1$ for some $k \in \mathbb{N}$:
 - Add constraint $x_i < k$ to previous problem and put it into list P.
 - Add constraint $x_i \ge k + 1$ to previous problem and put it into list P.
- 2. Take problem from P and solve it: f^* , x^* .
- 3. If $f^* < f_{min}$ and x^* is non-integral, GO TO 1.
 - **BOUNDING**: If $f^* < f_{min}$ a x^* is integral, set $f_{min} = f^*$ a $x_{min} = x^*$, GO TO 4
 - **BOUNDING**: If $f^* \ge f_{min}$, GO TO 4.
 - Problem is infeasible, GO TO 4.
- 4. If $P \neq \emptyset$, GO TO 2.
 - If $P = \emptyset$ a $f_{min} = \infty$, integral solution does not exist.
 - If $P = \emptyset$ a $f_{min} < \infty$, optimal value and solution are f_{min} , x_{min} .

Branch-and-Bo

Branch-and-Bound



P. Pedegral (2004)

Martin Branda (KPMS MFF UK) 2021-04-03 16 / 41

Branch-and-Bo

Better ...

2./3. Take problem from list P and solve it: f^* , x^* . If for the optimal value of the current problem holds $f^* \ge f_{min}$, then the branching is not necessary, since by solving the problems with added branching constraints we can only increase the optimal value and obtain the same f_{min} .

Martin Branda (KPMS MFF UK) 2021-04-03 17/41 Martin Branda (KPMS MFF UK) 2021-04-03 18/41

Branch-and-Bound

Branch-and-Bound

Algorithmic issues:

- Problem selection from the list P: FIFO, LIFO (depth-first search), problem with the smallest f*.
- **Selection of the branching variable** x_i^* : the highest/smallest violation of integrality OR the highest/smallest coefficient in the objective function.

Martin Branda (KPMS MFF UK)

2021-04-03 19 / 41

Branch-and-Bound

B&B - Example I

Branching means adding a cut of the form $x_1 \le 1$, i.e.

$$x_1 + x_5 = 1$$
, $x_5 > 0$.

$$(\alpha = (1, 0, 0, 0, 1), \alpha_B = (1, 0))$$

			4	5	0	0	0
			x_1	<i>x</i> ₂	<i>x</i> ₃	<i>X</i> ₄	<i>x</i> ₅
5	<i>x</i> ₂	8/10	0	1	-3/10	1/10	0
4	x_1	18/10	1	0	2/10	-4/10	0
0	<i>X</i> 5	-8/10	0	0	- 2/10	4/10	1
		112/10	0	0	-7/10	-11/10	0

Dual feasible, primal infeasible – run the dual simplex ...

Martin Branda (KPMS MFF UK) 2021-04-03 21/41

Branch-and-Bound

B&B - Example I

$$\begin{array}{rcl} \min 4x_1 + 5x_2 & & \\ x_1 + 4x_2 & \geq & 5, \\ 3x_1 + 2x_2 & \geq & 7, \\ x_1, x_2 & \in & \mathbb{Z}_+. \end{array}$$

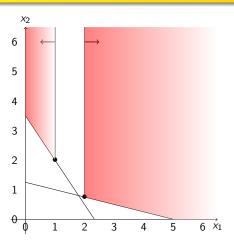
After two iterations of the dual SIMPLEX algorithm ...

			4	5	0	0
			<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4
5	<i>X</i> ₂	8/10	0	1	-3/10	1/10
4	<i>x</i> ₁	18/10	1	0	2/10	-4/10
		112/10	0	0	-7/10	-11/10

Martin Branda (KPMS MFF UK) 2021-04-03 20 / 41

Branch-and-Bo

Branch-and-Bound

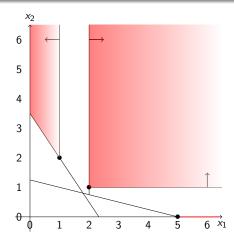


Martin Branda (KPMS MFF UK) 2021-04-03 22/41 6 ←

5

Branch-and-Bound

Branch-and-Bound



Martin Branda (KPMS MFF UK)

2021-04-03 23 / 41

Branch-and-Bound

B&B – Example II

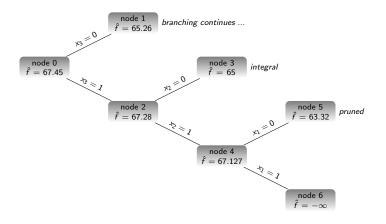
$$\begin{aligned} & \max 23x_1 + 19x_2 + 28x_3 + 14x_4 + 44x_5 \\ & \mathrm{s.t.} \ 8x_1 + 7x_2 + 11x_3 + 6x_4 + 19x_5 \leq 25, \\ & x_1, x_2, x_3, x_4, x_5 \in \{0, 1\}. \end{aligned}$$

node 0 $x_1^* = 1.8$ $x_2^* = 0.8$ $\hat{f} = 11.2$ node 2 $x_1^* = 2$ $x_2^* = 0.75$ $\hat{f} = 11.75$ node 4 $x_1^* = 2$ $x_2^* = 1$ $\hat{f} = 13$

2021-04-03 24 / 41

B&B – Example II

Martin Branda (KPMS MFF UK)



Branch-and-Bound - remarks

- If you are able to get a **feasible solution** quickly, deliver it to the software (solver).
- Branch-and-Cut: add cuts at the beginning/during B&B.
- Algorithm termination: (Relative) difference between a lower and an upper bound – construct the upper bound (for minimization) using a feasible solution. lower bound ...

Martin Branda (KPMS MFF UK)

2021-04-03 27 / 41

Duality

Set $S(b) = \{x \in \mathbb{Z}_+^n : Ax = b\}$ and define the **value function**

$$z(b) = \min_{x \in S(b)} c^{T} x. \tag{2}$$

A dual function $F: \mathbb{R}^m \to \overline{\mathbb{R}}$

$$F(b) \le z(b), \ \forall b \in \mathbb{R}^m.$$
 (3)

A general form of dual problem

$$\max_{F} \{ F(b) : \text{ s.t. } F(b) \le z(b), \ b \in \mathbb{R}^m, \ F : \mathbb{R}^m \to \mathbb{R} \}.$$
 (4)

We call F a weak dual function if it is feasible, and strong dual if moreover F(b) = z(b).

Branch-and-Bound

Lower bound

Construction of the lower bound:

Let $M = M_1 \cup M_2 \cup \cdots \cup M_r$ be a partitioning of the feasibility set and let

$$\underline{f}_j = \min_{x \in M_i} f(x)$$

be a lower bound for each subproblem. Then

$$\min_{x \in M} f(x) \ge \min_{j=1,\dots,r} \underline{f}_j$$

is a lower bound for the optimal value.

Martin Branda (KPMS MFF UK)

2021-04-03 28 / 41

Duality

A function F is **subadditive** over a domain Θ if

$$F(\theta_1 + \theta_2) \leq F(\theta_1) + F(\theta_2)$$

for all $\theta_1 + \theta_2, \theta_1, \theta_2 \in \Theta$.

The value function z is subadditive over $\{b: S(b) \neq \emptyset\}$, since the sum of optimal x's is feasible for the problem with $b_1 + b_2$ r.h.s., i.e. $\hat{x}_1 + \hat{x}_2 \in S(b_1 + b_2).$

Duality

Duality

If F is subadditive, then condition $F(Ax) \leq c^T x$ for $x \in \mathbb{Z}_+^n$ is equivalent to $F(a_{ij}) \leq c_i$, $j = 1, \dots, m$.

This is true since $F(Ae_j) \le c^T e_j$ is the same as $F(a.j) \le c_j$.

On the other hand, if F is subadditive and $F(a_i) \le c_j$, j = 1, ..., m imply

$$F(Ax) \leq \sum_{j=1}^{m} F(a.j)x_j \leq \sum_{j=1}^{m} c_j x_j = c^T x.$$

Martin Branda (KPMS MFF UK)

2021-04-03 32 / 41

Duality

Duality

Complementary slackness condition: if \hat{x} is an optimal solution for IP, and \hat{F} is an optimal subadditive dual solution, then

$$(\hat{F}(a_{ij}) - c_{ij})\hat{x}_{ij} = 0, \ j = 1, \dots, m.$$

Dualit

Duality

If we set

$$\Gamma^m = \{F : \mathbb{R}^m \to \mathbb{R}, F(0) = 0, F \text{ subadditive}\},$$

then we can write a **subadditive dual** independent of *x*:

$$\max_{F} \left\{ F(b) : \text{ s.t. } F(a_{j}) \le c_{j}, F \in \Gamma^{m} \right\}. \tag{5}$$

Weak and strong duality holds.

An easy feasible solution based on LP duality (= weak dual)

$$F_{LP}(b) = \max_{y} b^{T} y \text{ s.t. } A^{T} y \le c.$$
 (6)

Martin Branda (KPMS MFF UK)

2021-04-03 33 / 41

Dynamic programmi

Knapsack problem

$$\max \sum_{i=1}^{n} c_i x_i$$
s.t.
$$\sum_{i=1}^{n} a_i x_i \le b,$$

$$x_i \in \{0, 1\}.$$

Dynamic programming

Dynamic programming

Let a_i , b be positive integers.

$$f_r(\lambda) = \max \sum_{i=1}^r c_i x_i$$

s.t. $\sum_{i=1}^r a_i x_i \le \lambda$, $x_i \in \{0, 1\}$.

lf

- $\hat{x}_r = 0$, then $f_r(\lambda) = f_{r-1}(\lambda)$,
- $\hat{x}_r = 1$ then $f_r(\lambda) = c_r + f_{r-1}(\lambda a_r)$.

Thus we arrive at the recursion

$$f_r(\lambda) = \max\{f_{r-1}(\lambda), c_r + f_{r-1}(\lambda - a_r)\}.$$

Martin Branda (KPMS MFF UK)

2021-04-03 37 / 41

Dynamic programming

Knapsack problem

Values $a_1=4$, $a_2=6$, $a_3=7$, costs $c_1=4$, $c_2=5$, $c_3=11$, budget b=10:

$$\max \sum_{i=1}^{3} c_i x_i$$

$$\text{s.t. } \sum_{i=1}^{3} a_i x_i \le 10,$$

$$x_i \in \{0,1\}.$$

Dynamic programming

Dynamic programming

- 0. Start with $f_1(\lambda)=0$ for $0\leq \lambda < a_1$ and $f_1(\lambda)=\max\{0,c_1\}$ for $\lambda\geq a_1.$
- 1. Use the forward recursion

$$f_r(\lambda) = \max\{f_{r-1}(\lambda), c_r + f_{r-1}(\lambda - a_r)\}.$$

to successively calculate f_2, \ldots, f_n for all $\lambda \in \{0, 1, \ldots, b\}$; $f_n(b)$ is the optimal value.

- 2. Keep indicator $p_r(\lambda) = 0$ if $f_r(\lambda) = f_{r-1}(\lambda)$, and $p_r(\lambda) = 1$ otherwise.
- 3. Obtain the optimal solution by a **backward recursion**: if $p_n(b) = 0$ then set $\hat{x}_n = 0$ and continue with $p_{n-1}(b)$, else (if $p_n(b) = 1$) set $\hat{x}_n = 1$ and continue with $p_{n-1}(b-a_n)$...

Martin Branda (KPMS MFF UK)

2021-04-03 38 / 41

2021-04-03 40 / 41

Knapsack problem - Dynamic programming

$$a_1 = 4$$
, $a_2 = 6$, $a_3 = 7$, $c_1 = 4$, $c_2 = 5$, $c_3 = 11$

	r/ λ											
	1	0	0	0	0	4	4	4	4	4	4	4
f_r	2	0	0	0	0	4	4	5	5	5	5	9
	1 2 3	0	0	0	0	4	4	5	11	11	11	11
	1 2 3	0	0	0	0	1	1	1	1	1	1	1
p_r	2	0	0	0	0	0	0	1	1	1	1	1
	3	0	0	0	0	0	0	0	1	1	1	1

Other successful applications: Uncapacitated lot-sizing problem, Shortest path problem.

Dynamic programming

Literature

- V. Klee, G.J. Minty, (1972). How good is the simplex algorithm?. In Shisha, Oved. Inequalities III (Proceedings of the Third Symposium on Inequalities held at the University of California, Los Angeles, Calif., September 1–9, 1969). New York-London: Academic Press, 159–175.
- G.L. Nemhauser, L.A. Wolsey (1989). Integer Programming. Chapter VI in Handbooks in OR & MS, Vol. 1, G.L. Nemhauser et al. Eds.
- P. Pedegral (2004). Introduction to optimization, Springer-Verlag, New York.
- L.A. Wolsey (1998). Integer Programming. Wiley, New York.
- L.A. Wolsey, G.L. Nemhauser (1999). Integer and Combinatorial Optimization.
 Wiley, New York.
- Northwestern University Open Text Book on Process Optimization, available online: https://optimization.mccormick.northwestern.edu [2017-03-19]

Martin Branda (KPMS MFF UK)

2021-04-03 41 / 41

