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Software tools for optimization

Software

General mathematical and statistical software:

Matlab and (free) OPTI toolbox:
http://www.i2c2.aut.ac.nz/Wiki/OPTI/index.php/Main/HomePage

SAS: OR package

R: suitable packages

Mathematica: findminimum, minimize, . . .

. . .

Martin Branda (KPMS MFF UK) 28-03-2016 2 / 14



Software tools for optimization

Software

Modelling tools for optimization:

GAMS: http://www.gams.com

AIMMS: http://www.aimms.com

Gurobi: http://www.gurobi.com

AMPL: http://ampl.com

CPlex Studio:
http://www-03.ibm.com/software/products/cs/ibmilogcpleoptistud

MPL: http://www.maximalsoftware.com/mpl

. . .
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Software tools for optimization

Software

Open Source libraries

COIN-OR: http://www.coin-or.org/
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Software tools for optimization

Software

Solvers

Baron (LP, NLP, MIP, MINLP, . . .)

Bonmin (NLP, MIP, MINLP, . . .)

Conopt (LP, NLP, . . .)

CPlex (LP, MIP, MIQCP, . . .)

Dicopt (MIQCP, MINLP, . . .)

Gurobi

Knitro (LP, MINLP, MIQCP, NLP, . . .)

Lindo (LP, MINLP, MIP, MIQCP, NLP, . . .)

Minos (LP, NLP, . . . )

Mosek (LP, MIP, MIQCP, NLP, . . .)

Xpress (LP, MIP, MIQCP, . . .)

. . .
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Introduction to complexity theory

Wolsey (1998): Consider decision problems having YES–NO answers.
Optimization problem

max
x∈M
cT x

can be replaced by (for some k integral)

Is there an x ∈ M with value cT x ≥ k?

For a problem instance X , the length of the input L(X ) is the length of
the binary representation of a standard representation of the instance.
Instance X = {c,M}, X = {c ,M, k}
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Example: Knapsack decision problem

For an instance

X =

{
n∑
i=1

cixi ≥ k,
n∑
i=1

aixi ≤ b, x ∈ {0, 1}n
}
,

the length of the input is

L(X ) =
n∑
i=1

dlog cie+
n∑
i=1

dlog aie+ dlog be+ dlog ke
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Running time

Definition
fA(X ) is the number of elementary calculations required to run the
algorithm A on the instance X ∈ P.

Running time of the algorithm A

f ∗A (l) = sup
X
{fA(X ) : L(X ) = l}.

An algorithm A is polynomial for a problem P if f ∗A (l) = O(l
p) for

some p ∈ N.
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Classes NP and P

Definition
NP (Nondeterministic Polynomial) is the class of decision problems
with the property that: for any instance for which the answer is YES,
there is a polynomial proof of the YES.

P is the class of decision problems in NP for which there exists a
polynomial algorithm.

NP may be equivalently defined as the set of decision problems that can
be solved in polynomial time on a non-deterministic Turing machine1.

1NTM writes symbols one at a time on an endless tape by strictly following a set of
rules. It determines what action it should perform next according to its internal state
and what symbol it currently sees. It may have a set of rules that prescribes more than
one action for a given situation. The machine ”branches” into many copies, each of
which follows one of the possible transitions leading to a ”computation tree”.
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Alan Turing

The Imitation Game (2014)
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Polynomial reduction and the class NPC

Definition
If problems P,Q ∈ NP, and if an instance of P can be converted in
polynomial time to an instance of Q, then P is polynomially
reducible to Q.

NPC, the class of NP-complete problems, is the subset of problems
P ∈ NP such that for all Q ∈ NP, Q is polynomially reducible to P.

Proposition: Suppose that problems P,Q ∈ NP.

If Q ∈ P and P is polynomially reducible to Q, then P ∈ P.

If P ∈ NPC and P is polynomially reducible to Q, then Q ∈ NPC.

Proposition: If P ∩NPC 6= ∅, then P = NPC.
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Open question & Euler diagram

Is P = NP?
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NP-hard optimization problems

Definition
An optimization problem for which the decision problem lies in NPC is
called NP-hard.
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