
Optimization with application in �nance { exercises

Martin Branda, 10 May 2021

HW: Examples 5.2 (part 1.), 5.7, 5.11.

5 Risk measures and mean{risk models

5.1 Markowitz model

Example 5.1 Formulate the Markowitz model with the following properties

1. short sales not allowed,

2. short sales allowed,

3. short sales allowed with individual restrictions,

4. short sales allowed with margin requirements,

5. proportional and �xed transaction costs included.

Add each restriction/property to the original model.

Solution: Let for the vector of random returns hold ρ ∼ (r, V ), then the basic Markowitz

model is:

min
x

xT V x

rT x ≥ rmin,
1T x = 1,

where 1 is vector of ones and rmin denotes the minimal required expected return.

We add the following constraints to the original formulation:

1. short sales not allowed: xi ≥ 0,

2. short sales allowed: xi ∈ R,

3. short sales allowed with individual restrictions ui > 0:

xi = x+
i − x

−
i , x

+
i ≥ 0, x−i ≥ 0, x−i ≤ ui, ∀i,

i.e. each short position is restricted.

4. short sales allowed with margin requirements, where the overall short position is

bounded by 0.5 of the long position:

xi = x+
i − x

−
i , x

+
i ≥ 0, x−i ≥ 0,

n∑
i=1

x−i ≤ 0.5
n∑
i=1

x+
i , ∀i,
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5. proportional pi and �xed fi transaction costs included:

liyi ≤ xi ≤ uiyi
n∑
i=1

(µi − pi)xi −
n∑
i=1

fi
B
yi ≥ rmin,

yi ∈ {0, 1},

where li, ui are lower and upper bounds on the weights, B denotes the initial budget.

We can see that when the budget is large, the �xed transaction costs are negligible.

Binary variables are used to identify which assets are bought.

Note that the properties introduced above are applicable in mean-risk models in general. �

Example 5.2 Find the e�cient solutions of the Markowitz model using the Karush{
Kuhn{Tucker conditions where ρ1

ρ2

ρ3

 ∼
 12

14
12

 ,

 72 72 −72
72 76 −64
−72 −64 88

 ,

with

1. short sales allowed,

2. short sales not allowed.

Use a suitable parametric programming reformulation.

5.2 Coherent risk measures

Let V ⊆ Lp(Ω), usually p ∈ {1, 2}, be a set of loss random variables.

De�nition 5.3 (Artzner et al. (1999))
We say that R : V → (−∞,∞] is a coherent risk measures if it satis�es:

(R1) shift equivariance1: R(Z + c) = R(Z) + c for all Z ∈ V and constants c,

(R2) positive homogeneity2: R(0) = 0, and R(λZ) = λR(Z) for all Z ∈ V and all λ > 0,

(R3) subadditivity3: R(Z1 + Z2) ≤ R(Z1) +R(Z2) for all Z1, Z2 ∈ V ,

(R4) monotonicity4: R(Z1) ≤ R(Z2) when Z1 ≤ Z2 a.s., Z1, Z2 ∈ V .

Axioms (R2) & (R3) imply convexity: for arbitrary λ ∈ (0, 1) and Z1, Z2 ∈ V :

R(λZ1 + (1− λ)Y ) ≤ R(λZ1) +R((1− λ)Z2) ≤ λR(Z1) + (1− λ)R(Z2).
1Adding sure loss increases risk
2Increasing our position λ−times increases the risk proportionally
3Holding two assets together is never more risky than holding them separately ↔ diversi�cation
4Higher loss (almost sure), higher risk
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5.3 Value at Risk

Value at Risk is de�ned at the quantile of the loss distribution, i.e. the losses lower or

equal to VaR appear with a high probability α and the losses higher than VaR appear

with low probability 1− α. Usually we consider α equal to 0.95, 0.99, 0.995.

De�nition 5.4 Value at Risk (VaR) for a general loss random variable Z de�ned on
probability space (Ω,A, P ), level α ∈ (0, 1):

V aRα(Z) = qα(Z) = min
z
z s.t. P (Z ≤ z) ≥ α.

Upper Value at Risk (upper-VaR)

V aR+
α (Z) = qα(Z) = inf

z
z s.t. P (Z ≤ z) > α.

Please look on the pictures by Rockafellar and Uryasev (2002) which explain the de�-

nition of V aRα and V aR+
α :
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Example 5.5 Show that Value at Risk ful�lls (R1) shift equivariance, (R2) positive ho-
mogeneity, and (R4) monotonicity.

Solution:

(R2) positive homogeneity: for λ > 0

V aRα(λZ) = min
z
z s.t. P (λZ ≤ z) ≥ α

= min
z
z s.t. P

(
Z ≤ z

λ

)
≥ α

= min
z̃
λ z̃ s.t. P (Z ≤ z̃) ≥ α

= λ min
z̃
z̃ s.t. P (Z ≤ z̃) ≥ α

= λV aRα(Z).

(R1) shift equivariance: for arbitrary c

V aRα(Z + c) = min
z
z s.t. P (Z + c ≤ z) ≥ α

= min
z̃
z̃ + c s.t. P (Z ≤ z̃) ≥ α

= V aRα(Z) + c.

(R4) monotonicity: It is obvious. �

VaR under discrete distribution: Let Z be concentrated in �nitely many points

z[1] < z[2] < · · · < z[N ] with probabilities P
(
Z = z[k]

)
= p[k] > 0,

∑N
k=1 p

[k] = 1.
Find index kα such that

kα−1∑
k=1

p[k] < α ≤
kα∑
k=1

p[k].
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Then we have

V aRα(x) = z[kα]. (1)

In general, Value at Risk does not ful�ll (R3) subadditivity.

Example 5.6 Consider two independent one-year bonds with nominal value 1 CZK and
the same parameters. No loss with probability 96%, loss 0.7 with probability 4%. Compute
V aR0.95(Z1), V aR0.95(Z2), V aR0.95(Z1 + Z2).

Solution: Value at Risk on the level 95% is equal to 0. If you buy both bonds, then we

have the following losses and probabilities

• 0 with probability 92.16% (= 0.96 * 0.96)

• 0.7 with prob. 7.68% (= 2 * 0.96 * 0.04)

• 1.4 with prob. 0.16% (=0.04 * 0.04)

Thus Value at Risk of Z1 + Z2 is 0.7, i.e.

VaR0.95(Z1 + Z2) > VaR0.95(Z1) + VaR0.95(Z2).

Value at Risk is not subadditive. Even for independent losses (risks) it holds

VaR0.95(Z1 + Z2) 6= VaR0.95(Z1) + VaR0.95(Z2).

�

Example 5.7 Consider two independent loss random variables Z1, Z2 with the following
discrete distributions:

s z1s P (Z1 = z1s) z2s P (Z2 = z2s)

1 0 0.93 0 0.96
2 1 0.04 0.5 0.005
3 2 0.03 2.5 0.035

Compute V aR0.95(Z1), V aR0.95(Z2), V aR0.95(Z1 +Z2). (You can use a software tool.)

5.4 Conditional Value at Risk

For Z ∈ L1(Ω) with cdf G(x) = P (Z ≤ x), Conditional Value at Risk (CVaR) is

de�ned as the mean of losses in the α-tail distribution with the distribution function:

Gα(x) =

{ G(x)−α
1−α , if x ≥ VaRα(Z),

0, otherwise.
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Then

CVaRα(Z) = EGα [Z].

Denote by [x]+ = max{x, 0} the positive part of x. CVaR can be expressed using the

following minimization formula, cf. Rockafellar and Uryasev (2000, 2002):

CVaRα(Z) = min
ξ∈R

{
ξ +

1

1− α
E [Z − ξ]+

}
(2)

with the minimum attained at any α-th quantile, i.e. we have

CVaRα(Z) = VaRα(Z) +
1

1− α
E [Z −VaRα(Z)]+ . (3)

Before showing that CVaR is coherent, we prove an auxiliary lemma.

Lemma 5.8 Let f(ξ, z) be jointly convex real function and de�ne

g(z) = min
ξ∈R

f(ξ, z).

Then g(z) is convex on its domain dom g = {z : g(z) ∈ R}.

Proof : Take λ ∈ (0, 1) and two arbitrary z1, z2 ∈ dom g. Then there are ξ1, ξ2 ∈ R such

that

g(z1) = f(ξ1, z1), g(z2) = f(ξ2, z2).

We have

λ g(z1) + (1− λ) g(z2) = λ f(ξ1, z1) + (1− λ) f(ξ2, z2)

≥ f
(
λ ξ1 + (1− λ) ξ2, λ z1 + (1− λ) z2

)
≥ g
(
λ z1 + (1− λ) z2

)
,

where the �rst inequality follows from the joint convexity of f and the second one from

that g is minimal over all z ∈ R. �

Example 5.9 Show that CVaR is a coherent risk measure.

Proof :

(R1) shift equivariance: We can use formula (3) together with the properties of VaR showed

in Example 5.5. We have

CVaRα(Z + c) = VaRα(Z + c) +
1

1− α
E [Z + c−VaRα(Z + c)]+

= VaRα(Z) + c+
1

1− α
E [Z + c−VaRα(Z)− c]+

= c+ VaRα(Z) +
1

1− α
E [Z −VaRα(Z)]+

= c+ CVaRα(Z).

(4)
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(R2) positive homogeneity: Similar approach can be used here, for λ > 0

CVaRα(λZ) = VaRα(λZ) +
1

1− α
E [λZ −VaRα(λZ)]+

= λVaRα(Z) +
1

1− α
E [λZ − λVaRα(Z)]+

= λVaRα(Z) +
λ

1− α
E [Z −VaRα(Z)]+

= λCVaRα(Z).

(5)

(R3) subadditivity: First, we show that CVaR is convex. This together with positive ho-

mogeneity implies subadditivity. We can use Lemma 5.8 and the auxiliary function from

the minimization formula (2), and set

f(ξ, Z) := ξ +
1

1− α
E [Z − ξ]+ .

This function is obviously convex5 jointly in (ξ, Z). Lemma 5.8 implied that CVaRα is

convex.

(R4) monotonicity: It is obvious.

�

CVaR under discrete distribution: Let Z be concentrated in �nitely many points

z[1] < z[2] < · · · < z[N ] with probabilities P
(
Z = z[k]

)
= p[k] > 0,

∑N
k=1 p

[k] = 1.
Find index kα such that

kα−1∑
k=1

p[k] < α ≤
kα∑
k=1

p[k].

Then we have

V aRα(x) = z[kα] (6)

and if α > 1− p[N ], then

V aRα(x) = CV aRα(x) = z[N ], (7)

else

CV aRα(x) =
1

1− α

[( kα∑
k=1

p[k] − α
)
z[kα] +

N∑
k=kα+1

p[k]z[k]

]
. (8)

Sometimes, we are faced with some misunderstandings with upper and lower CVaR

(called also Conditional Tail Expectations) which are de�ned as:

CVaR+
α (Z) = CTEα(Z) = E[Z|Z > VaRα(Z)],

CVaR−α (Z) = CTEα(Z) = E[Z|Z ≥ VaRα(Z)].

5It is a sum of two convex functions where the second function is a composition of linear function Z− ξ
and convex function [·]+ multiplied by positive constant 1

1−α
.
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It can be shown that these measures are not always equal to CVaR.

Example 5.10 Consider one-year bonds with nominal value 1 CZK and the parameters

• no loss with probability 96%,

• loss 0.7 with probability 4%.

Compute and compare CVaR0.95, CVaR−0.95, CVaR+
0.95.

Solution: From Example 5.6 we know that Value at Risk on the level 95% is equal to 0.

Then

CVaR+
0.95(Z) = E[Z|Z > VaR0.95(Z)]

=
1

0.04
(0.04 · 0.7) = 0.7,

CVaR−0.95(Z) = E[Z|Z ≥ VaR0.95(Z)]

=
1

0.96 + 0.04
(0.96 · 0 + 0.04 · 0.7) = 0.028.

Using the formula (8) for CVaR under �nite discrete distribution, we obtain

CVaR0.95(Z) =
1

1− 0.95

(
(0.96− 0.95) · 0 + 0.04 · 0.7

)
= 0.56

Obviously, it holds

CVaR−0.95(Z) < CVaR0.95(Z) < CVaR+
0.95(Z).

�

Example 5.11 Consider two independent loss random variables Z1, Z2 with the discrete
distributions from Example 5.7. Compute CVaR0.95(Z1 + Z2), CVaR−0.95(Z1 + Z2), and
CVaR+

0.95(Z1 + Z2). (You can use a software tool.)

Example 5.12 (VaR and CVaR under normal distribution)
Let Z ∼ N(µ, σ2), then

VaRα(Z) = µ+ zασ, (9)

CVaRα(Z) = µ+ ηασ, (10)

where zα = Φ−1(α) is a quantile of a standard normal distribution (with pdf φ and cdf Φ)
and

ηα =

∫∞
Φ−1(α) tφ (t) dt

1− α
.
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Solution: For Value at Risk

P (Z ≤ V aRα) = P

(
Z − µ
σ
≤ V aRα − µ

σ

)
= Φ

(
V aRα − µ

σ

)
= α.

For Conditional Value at Risk

CVaRα(Z) =
1

1− α

∫ ∞
µ+Φ−1(α)σ

z

σ
φ

(
z − µ
σ

)
dz

=
1

1− α

∫ ∞
Φ−1(α)

µ+ tσ

σ
φ (t)σdt

=
1

1− α

(
µ

∫ ∞
Φ−1(α)

φ (t) dt+ σ

∫ ∞
Φ−1(α)

tφ (t) dt

)
,

where ∫ ∞
Φ−1(α)

φ (t) dt = 1− α.

�
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