Chance Constrained Problems and Value at Risk Homework 2

Martin Branda

Charles University in Prague
Faculty of Mathematics and Physics Department of Probability and Mathematical Statistics

Computational Aspects of Optimization

Chance constrained problems - single random constraint

Let $f, g(\cdot, \xi): \mathbb{R}^{n} \rightarrow \mathbb{R}$ be real functions, $X \subseteq \mathbb{R}^{n}, \xi$ be a real random vector, $\varepsilon \in(0,1)$ small:

$$
\begin{gathered}
\min _{x \in X} f(x) \\
\text { s.t. }
\end{gathered} \quad P(g(x, \xi) \leq 0) \geq 1-\varepsilon
$$

INTERPRETATION: for a given $x \in X$, the probability of ξ for which the random constraint is fulfilled must be at least $1-\varepsilon$:

$$
P(g(x, \xi) \leq 0)=P(\{\xi: g(x, \xi) \leq 0\})
$$

Chance constrained problems - single random constraint

Let ξ have a finite discrete distribution with realizations ξ^{1}, \ldots, ξ^{S} and probabilities $p_{s}>0, \sum_{s=1}^{S} p_{s}=1$:

$$
\begin{align*}
\min _{x, y} f(x) & \\
\text { s.t. } & \\
\sum_{s=1}^{S} p_{s} y_{s} & \geq 1-\varepsilon, \tag{1}\\
g\left(x, \xi_{s}\right) & \leq M\left(1-y_{s}\right), s=1, \ldots, S \\
y_{s} & \in\{0,1\}, s=1, \ldots, S, \\
x & \in X,
\end{align*}
$$

where $M \geq \max _{s=1, \ldots, S} \sup _{x \in X} g\left(x, \xi_{s}\right)$.

Value at Risk (VaR)

Value at Risk (VaR) for a general loss random variable Z defined on probability space (Ω, \mathcal{A}, P), level $\alpha \in(0,1)$, usually $0.95,0.99,0.995$:

$$
\operatorname{Va}_{\alpha}(Z)=\min _{z} z \text { s.t. } P(Z \leq z) \geq \alpha
$$

Value at Risk (VaR)

Portfolio optimization problem:

$$
\begin{aligned}
\min _{z, x} z & \\
P\left(-\sum_{i=1}^{n} R_{i} x_{i} \leq z\right) & \geq \alpha, \\
\sum_{i=1}^{n} \mathbb{E}\left[R_{i}\right] \cdot x_{i} & \geq r_{\min }, \\
\sum_{i=1}^{n} x_{i}=1, x_{i} & \geq 0,
\end{aligned}
$$

where R_{i} is random rate of return of $i-$ th asset and minimal expected return $r_{\text {min }}$ is selected in such way that the problem is feasible.

Homework 2

(1) Rewrite the VaR minimization problem under a finite discrete distribution as a mixed-integer LP problem.
(2) Use the same dataset as for the CVaR homework, i.e. at least 6 assets, but the number of scenarios is limited to 50 (if you have free GAMS, otherwise you can use all 100 returns).
(3) Consider $\alpha=0.95$ and run the problem for different 11 values $r_{0} \in\left\{\min _{i} \bar{R}_{i}, \ldots, \max _{i} \bar{R}_{i}\right\}$.
(4) Plot the optimal values $\operatorname{VaR}_{\alpha}$ against the corresponding values of r_{0}.

Joint chance constrained problems

Let $f, g_{j}(\cdot, \xi): \mathbb{R}^{n} \rightarrow \mathbb{R}$ be real functions, ξ be a real random vector, $\varepsilon \in(0,1)$ small:

$$
\begin{gathered}
\min _{x \in X} f(x) \\
\quad \text { s.t. }
\end{gathered} \quad P\left(g_{1}(x, \xi) \leq 0, \ldots, g_{m}(x, \xi) \leq 0\right) \geq 1-\varepsilon
$$

INTERPRETATION: for a given $x \in X$, the probability of ξ for which all (!) random constraints are fulfilled must be at least $1-\varepsilon$.

Joint chance constrained problems

Let ξ have a finite discrete distribution with realizations ξ^{1}, \ldots, ξ^{S} and probabilities $p_{s}>0, \sum_{s=1}^{S} p_{s}=1$:

$$
\begin{align*}
\min _{x, y} f(x) & \\
\text { s.t. } & \\
\sum_{s=1}^{S} p_{s} y_{s} & \geq 1-\varepsilon, \\
g_{1}\left(x, \xi_{s}\right)-M\left(1-y_{s}\right) & \leq 0, s=1, \ldots, S \tag{2}\\
& \vdots \\
g_{m}\left(x, \xi_{s}\right)-M\left(1-y_{s}\right) & \leq 0, s=1, \ldots, S \\
y_{s} & \in\{0,1\}, s=1, \ldots, S, \\
x & \in X,
\end{align*}
$$

where

$$
M \geq \max _{j=1, \ldots, m} \max _{s=1, \ldots, S} \sup _{x \in X} g_{j}\left(x, \xi_{s}\right)
$$

$=$ A large mixed-integer (nonlinear) programming problem, Raike (1970).

Literature

- M. Branda, M.: Solving real-life portfolio problem using stochastic programming and Monte-Carlo techniques. Proceedings of the 28th International Conference on Mathematical Methods in Economics 2010, 67-72.
- W.M. Raike (1970). Dissection Methods for Solutions in Chance Constrained Programming Problems Under Discrete Distributions. Management Science 16 (11), 708-715.
- L.A. Wolsey, G.L. Nemhauser, Integer and Combinatorial Optimization. Wiley, New York, 1999.

