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Problems with chance (probabilistic) constraints

Chance constrained problems – single random constraint

Let f , g(·, ξ) : Rn → R be real functions, X ⊆ Rn , ξ be a real random
vector, ε ∈ (0, 1) small:

minx∈X f (x)

s.t. P (g(x , ξ) ≤ 0) ≥ 1− ε.

INTERPRETATION: for a given x ∈ X , the probability of ξ for which the
random constraint is fulfilled must be at least 1− ε:

P (g(x , ξ) ≤ 0) = P ({ξ : g(x , ξ) ≤ 0}) .
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Problems with chance (probabilistic) constraints

Chance constrained problems – single random constraint

Let ξ have a finite discrete distribution with realizations ξ1, . . . , ξS and
probabilities ps > 0,

∑S
s=1 ps = 1:

minx ,y f (x)
s.t.∑S

s=1 psys ≥ 1− ε,
g(x , ξs) ≤ M(1− ys), s = 1, . . . ,S

ys ∈ {0, 1}, s = 1, . . . ,S ,
x ∈ X ,

(1)

where M ≥ maxs=1,...,S supx∈X g(x , ξs).
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Problems with chance (probabilistic) constraints

Value at Risk (VaR)

Value at Risk (VaR) for a general loss random variable Z defined on
probability space (Ω,A,P), level α ∈ (0, 1), usually 0.95, 0.99, 0.995:

VaRα(Z ) = min
z
z s.t. P(Z ≤ z) ≥ α.
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Problems with chance (probabilistic) constraints

Value at Risk (VaR)

Portfolio optimization problem:

min
z,x
z

P

(
−
n∑
i=1

Rixi ≤ z

)
≥ α,

n∑
i=1

E[Ri ] · xi ≥ rmin,

n∑
i=1

xi = 1, xi ≥ 0,

where Ri is random rate of return of i−th asset and minimal expected
return rmin is selected in such way that the problem is feasible.
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Problems with chance (probabilistic) constraints

Homework 2

1 Rewrite the VaR minimization problem under a finite discrete
distribution as a mixed-integer LP problem.

2 Use the same dataset as for the CVaR homework, i.e. at least 6
assets, but the number of scenarios is limited to 50 (if you have free
GAMS, otherwise you can use all 100 returns).

3 Consider α = 0.95 and run the problem for different 11 values
r0 ∈ {mini R i , . . . ,maxi R i}.

4 Plot the optimal values VaRα against the corresponding values of r0.
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Problems with chance (probabilistic) constraints

Joint chance constrained problems

Let f , gj(·, ξ) : Rn → R be real functions, ξ be a real random vector,
ε ∈ (0, 1) small:

minx∈X f (x)

s.t. P (g1(x , ξ) ≤ 0, . . . , gm(x , ξ) ≤ 0) ≥ 1− ε.

INTERPRETATION: for a given x ∈ X , the probability of ξ for which all
(!) random constraints are fulfilled must be at least 1− ε.
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Problems with chance (probabilistic) constraints

Joint chance constrained problems

Let ξ have a finite discrete distribution with realizations ξ1, . . . , ξS and
probabilities ps > 0,

∑S
s=1 ps = 1:

minx ,y f (x)
s.t.∑S

s=1 psys ≥ 1− ε,

g1(x , ξs)−M(1− ys) ≤ 0, s = 1, . . . ,S
...

gm(x , ξs)−M(1− ys) ≤ 0, s = 1, . . . ,S ,
ys ∈ {0, 1}, s = 1, . . . ,S ,
x ∈ X ,

(2)

where
M ≥ max

j=1,...,m
max
s=1,...,S

sup
x∈X
gj(x , ξs).

= A large mixed-integer (nonlinear) programming problem, Raike (1970).
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