Introduction to integer programming III:

Network Flow, Interval Scheduling, and Vehicle Routing Problems

Martin Branda

Charles University in Prague Faculty of Mathematics and Physics Department of Probability and Mathematical Statistics

COMPUTATIONAL ASPECTS OF OPTIMIZATION

Content

- 1 Totally unimodular matrices and network flows
- 2 Traveling salesman problem
- 3 Heuristic algorithms
- 4 Real VRP

Totally unimodular matrices

Definition

A matrix A is totally unimodular (TU) iff every square submatrix of A has determinant +1, -1, or 0.

The linear program has an integral optimal solution for all integer r.h.s. b if and only if A is TU.

Totally unimodular matrices

A set of sufficient conditions:

- $a_{ij} \in \{-1,0,1\}$ for all i,j
- Each column contains at most two nonzero coefficients, i.e. $\sum_{i=1}^{m} |a_{ij}| \le 2$,
- There exists a partitioning $M_1 \cap M_2 = \emptyset$ of the rows $1, \dots, m$ such that each column j containing two nonzero coefficients satisfies

$$\sum_{i \in M_1} a_{ij} = \sum_{i \in M_2} a_{ij}.$$

If A is TU, then A^T and (A|I) are TU.

Minimum cost network flow problem

- G = (V, A) graph with vertices V and (oriented) arcs A
- h_{ij} − arc capacity
- c_{ij} − flow cost
- b_i demand, ASS. $\sum_i b_i = 0$
- $V^+(i) = \{k : (i, k) \in A\}$ successors of i
- $V^-(i) = \{k : (k, i) \in A\}$ predecessors of i

$$\min_{x_{ij}} \sum_{(i,j)\in A} c_{ij} x_{ij}
s.t. \sum_{k\in V^{+}(i)} x_{ik} - \sum_{k\in V^{-}(i)} x_{ki} = b_{i}, i \in V,
0 \le x_{ij} \le h_{ij}, (i,j) \in A.$$

<ロ > < 部 > < き > < き > ・ き ・ りへの

Wolsey (1998), Ex. 3.1 ($M_1 = \{1, ..., m\}, M_2 = \emptyset$)

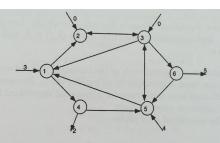


Fig. 3.1 Digraph for minimum cost network flow

equations:

x_{12}	x_{14}	x_{23}	x_{31}	x_{32}	x_{35}	x_{36}	x_{45}	x_{51}	x_{53}	x_{65}		
1	1	0	-1	0	0	0	0	-1	0	0	=	3
-1	0	1	0	-1	0	0	0	0	0	0	=	0
0	0	-1	1	1	1	1	0	0	-1	0	=	0
0	-1	0	0	0	0	0	1	0	0	0	=	-2
0	0	0	0	0	-1	0	-1		1		=	4
0	0	0	0			-1	0	0	0	1	=	-5

◆ロト ◆部 ト ◆ き ト ◆ き ・ か へ (^)

Special cases

- Shortest path problem
- Critical (longest time) path problem in project scheduling (PERT = Program Evaluation and Review Technique)
- Fixed interval scheduling
- Transportation problem

Shortest path problem

Find a minimum cost s - t path given nonnegative arc costs c_{ij} , set

- $b_i = 1$ if i = s,
- $b_i = -1$ if i = t.
- $b_i = 0$ otherwise.

Then the problem can be formulated as

$$\begin{aligned} & \min_{x_{ij}} & \sum_{(i,j) \in A} c_{ij} x_{ij} \\ & \text{s.t.} & \sum_{k \in V^+(i)} x_{ik} - \sum_{k \in V^-(i)} x_{ki} = 1, \ i = s, \\ & \sum_{k \in V^+(i)} x_{ik} - \sum_{k \in V^-(i)} x_{ki} = 0, \ i \in V \setminus \{s, t\}, \\ & \sum_{k \in V^+(i)} x_{ik} - \sum_{k \in V^-(i)} x_{ki} = -1, \ i = t, \\ & 0 \le x_{ij} \le 1, \ (i, j) \in A. \end{aligned}$$

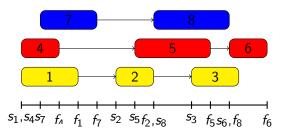
 $\hat{x}_{ii} = 1$ identifies the shortest path.

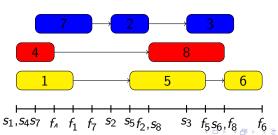
(ロ) (部) (注) (注) 注 り(0)

Fixed interval scheduling

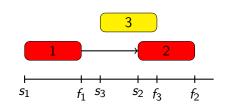
Basic **Fixed interval scheduling** (FIS) problem: given J jobs with prescribed starting s_j and finishing f_j times, find a minimal number of identical machines that can process all jobs such that no processing intervals intersect.

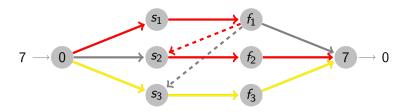
Fixed interval scheduling





FIS – network flow reformulation





FIS – network flow reformulation

Network structure:

- **1** 2J + 2 **vertices** \mathcal{V} : $\{0, s_1, f_1, \dots s_J, f_J, 2J + 1\}$; vertices 0, 2J + 1 correspond to the source and sink,
- **② oriented edges** $E: \{0, s_j\}, \{s_j, f_j\}, j \in \mathcal{J}, \{f_i, s_j\} \text{ if } f_i \leq s_j, \{f_j, 2J+1\}, j \in \mathcal{J}, (2J+1, 0)$
- **3** demands: $d_0 = d_{2J+1} = 0$, $d_{\mathbf{s}_j} = -1$, $d_{f_j} = 1$, $j \in \mathcal{J}$,
- ① return edge (2J+1,0): capacity $u_{2J+1,0} = M$, $c_{2J+1,0} = 1$,
- **3** edge capacities $u_{uv} = 1$, and costs $c_{uv} = 0$, $(u, v) \in E \setminus (2J + 1, 0)$.

Solve the min-cost network flow problem.

Content

- 1 Totally unimodular matrices and network flows
- Traveling salesman problem
- Heuristic algorithms
- 4 Real VRP

Traveling salesman problem

- Consider *n* towns and in one of them there is a traveling salesman.
- Traveling salesman must visit all towns and return back.
- For each pair of towns the traveling costs are known and the traveling salesman is looking for the cheapest route.
- = Finding a Hamilton cycle in a graph with edge prices.

Assignment problem

$$\min \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij} \tag{1}$$

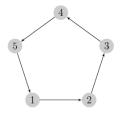
$$\sum_{i=1}^{n} x_{ij} = 1, j = 1, \dots, n,$$
 (2)

$$\sum_{i=1}^{n} x_{ij} = 1, i = 1, \dots, n,$$
(3)

$$x_{ij} \in \{0,1\}. \tag{4}$$

We minimize the traveling costs, we arrive to j from exactly one i, we leave i to exactly one j.

Example – 5 towns – cycle and subcycles (subroute)



Kafka (2013)

Subroute elimination conditions I

- $x_{ii} = 0$, $c_{ii} = \infty$
- $x_{ij} + x_{ji} \leq 1$
- $x_{ij} + x_{jk} + x_{ki} \le 2$
- . . .
- $\sum_{i \in S} \sum_{j \in S} x_{ij} \le |S| 1$, $S \subseteq \{1, ..., n\}$, $2 \le |S| \le n 1$

Approximately 2^n inequalities, it is possible to reduce to $|S| \leq \lceil n/2 \rceil$.

Subroute elimination conditions II

Other valid inequalities:

$$u_i - u_j + nx_{ij} \le n - 1, i, j = 2, ..., n.$$

Eliminate subroutes: There is at least one route which does not go through vertex 1, denote this route by C and the number of edges by |E(C)|. If we sum all these inequalities over all edges $\{i,j\}$, which are in C, i.e. the corresponding variables $x_{ij}=1$, we obtain

$$n|E(C)| \le (n-1)|E(C)|,$$
 (5)

which is a contradiction.

Subroute elimination conditions II

$$u_i - u_j + nx_{ij} \le n - 1, i, j = 2, ..., n.$$

Hamilton cycle is feasible: let the vertices be ordered as $v_1 = 1, v_2, ..., v_n$. We set $u_i = l$, if $v_l = i$, i.e. u_i represent the order. For each edge of the cycle $\{i,j\}$ it holds $u_i - u_i = -1$, i.e.

$$u_i - u_j + nx_{ij} = -1 + n \le n - 1.$$
 (6)

For edges, which are not in the cycle, the inequality holds too: $u_i - u_j \le n - 1$ a $x_{ij} = 0$.

Subroute elimination conditions – example

Consider subroutes: 1-4-5, 2-3

Add inequalities

$$u_2 - u_3 + 5x_{23} \le 4$$
,
 $u_3 - u_2 + 5x_{32} \le 4$,

or

$$x_{23} + x_{32} \le 1$$
.

TSP - computational complexity

 \mathcal{NP} (Nondeterministic Polynomial) is the class of decision problems with the property that: for any instance for which the answer is YES, there is a polynomial proof of the YES.

Traveling Salesman Problem with Time Windows

- t_i time when customer i is visited
- T_{ij} time necessary to reach j from i
- l_i , u_i lower and upper bound (time window) for visiting customer i
- M − a large constant

$$\min_{x_{ij}, t_i} \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij} \tag{7}$$

$$\sum_{i=1}^{n} x_{ij} = 1, j = 1, \dots, n,$$
 (8)

$$\sum_{j=1}^{n} x_{ij} = 1, i = 1, ..., n,$$
 (9)

$$t_i + T_{ij} - t_j \leq M(1 - x_{ij}) \ i, j = 1, ..., n,$$
 (10)

$$I_i \leq t_i \leq u_i, \ i = 1, \ldots, n, \tag{11}$$

$$x_{ij} \in \{0,1\}.$$

Capacitated Vehicle Routing Problem

Parameters

- n number of customers
- 0 depo (starting and finishing point of each vehicle)
- K number of vehicles (homogeneous)
- $d_i \ge 0$ customer demand, for depo $d_0 = 0$
- Q > 0 vehicle capacity ($KQ \ge \sum_{i=1}^n d_i$)
- c_{ij} transportation costs from i to j (usually $c_{ii} = 0$)

Decision variables

- x_{ij} equal to 1, if j follows after i on the route, 0 otherwise
- u_i upper bound on transported amount after visiting customer j

Capacitated Vehicle Routing Problem

$$\min_{x_{ij}, u_i} \sum_{i=0}^{n} \sum_{j=0}^{n} c_{ij} x_{ij}$$
 (12)

$$\sum_{i=0}^{n} x_{ij} = 1, j = 1, \dots, n,$$
(13)

$$\sum_{j=0}^{n} x_{ij} = 1, i = 1, \dots, n,$$
 (14)

$$\sum_{i=1}^{n} x_{i0} = K, \tag{15}$$

$$\sum_{j=1}^{n} x_{0j} = K, \tag{16}$$

$$u_i - u_j + d_j \leq Q(1 - x_{ij}) \ i, j = 1, \dots, n,$$
 (17)

$$d_i \leq u_i \quad \leq \quad Q, \ i = 1, \dots, n, \tag{18}$$

 $x_{ii} \in \{0,1\}.$

Capacitated Vehicle Routing Problem

- (12) minimization of transportation costs
- (13) exactly one vehicle arrives to customer j
- (14) exactly one vehicle leaves customer i
- (15) exactly K vehicles return to depot 0
- (16) exactly K vehicles leave depot 0
- (17) balance conditions of transported amount (serve also as subroute elimination conditions)
- (18) bounds on the vehicle capacity
- (All vehicles are employed.)

Content

- 1 Totally unimodular matrices and network flows
- 2 Traveling salesman problem
- 3 Heuristic algorithms
- 4 Real VRP

Greedy heuristic

Start with an empty set (solution) and choose the item with **the best immediate reward** at each step.

Example: Traveling Salesman Problem with the (symmetric) distance matrix

$$\begin{pmatrix}
-9 & 2 & 8 & 12 & 11 \\
-7 & 19 & 10 & 32 \\
-29 & 18 & 6 \\
-24 & 3 \\
-19 \\
-
\end{pmatrix}$$

Greedy steps: 1-3 (2), 3-6 (6), 6-4 (3), 4-5 (24), 5-2 (10), 2-1 (9), i.e. the route length is 54.

Local search heuristic

Choose an initial solution x and search its neighborhood U(x). Repeat until you are able to find a better solution, i.e. if $y \in U(x)$, f(y) < f(x), set x = y.

Example: Traveling Salesman Problem, define the neighborhood U(x) as **2-exchange**, i.e. if $S = \{(i,j) \in A : x_{ij} = 1\}$ is a feasible solution, then

$$U(x) = \{S' : |S \cap S'| = n - 2\},\$$

in other words: **replace edges** (i,j), (i',j') by (i,i'), (j,j').

Greedy steps: 1-3 (2), 3-6 (6), 6-4 (3), 4-5 (24), 5-2 (10), 2-1 (9), i.e. the route length is 54.

2-exchange: 1-3 (2), 3-4 (29), 4-6 (3), 6-5 (19), 5-2 (10), 2-1 (9), i.e. the route length is 72.

Basic heuristics for VRP

Insertion heuristic:

- Start with empty routes.
- FOR all customers DO: Insert the customer to the place in a route where it causes the lowest increase of the traveled distance.

Clustering:

- Cluster the customers according to their geographic positions ("angles").
- Solve¹ the traveling salesman problem in each cluster.

Possible difficulties: time windows, vehicle capacities, ...

¹..exactly, if the clusters are not large.

Tabu search for VRP

For a given number of iteration, run the following steps:

- Find the best solution in a neighborhood of the current solution.
 Such solution can be worse than the current one or even infeasible (use a penalty function).
- Forbid moving back for a random number of steps by actualizing the tabu list.
- Remember the best solution.

The tabu search algorithm enables moving from local solutions (compared with a simple "hill climbing alg.").

Genetic algorithms

Iterative procedure:

- Population finite set of individuals with genes
- Generation
- Evaluation fitness
- Parent selection
- Crossover produces one or two new solutions (offspring).
- Mutation
- Population selection

Content

- Totally unimodular matrices and network flows
- 2 Traveling salesman problem
- 3 Heuristic algorithms
- 4 Real VRP

Norway ...

Rich Vehicle Routing Problems

- Goal maximization of the ship filling rate (operational planning), optimization of fleet composition, i.e. number and capacity of the ships (strategic planning)
- Rich Vehicle Routing Problem
 - time windows
 - heterogeneous fleet (vehicles with different capacities and speed)
 - several depots with inter-depot trips
 - several routes during the planning horizon
 - non-Euclidean distances (fjords)
- Mixed-integer programming :-(, constructive heuristics for getting an initial feasible solution and tabu search
- M. Branda, K. Haugen, J. Novotný, A. Olstad, Downstream logistics optimization at EWOS Norway. Research report.

Rich Vehicle Routing Problems

Our approach

- Mathematical formulation
- GAMS implementation
- Heuristic (insertion heuristic, tabu search) implementation
- Decision Support System (DSS)

Literature

- M. Branda, J. Novotný, A. Olstad: Fixed interval scheduling under uncertainty

 a tabu search algorithm for an extended robust coloring formulation.

 Computers & Industrial Engineering 93, 45–54.
- O. Kafka: Optimální plánování rozvozu pomocí dopravních prostředků, Diploma thesis MFF UK, 2013. (IN CZECH)
- P. Toth, D. Vigo (2002). The vehicle routing problem, SIAM, Philadelphia.
- L.A. Wolsey (1998). Integer Programming. Wiley, New York.
- L.A. Wolsey, G.L. Nemhauser (1999). Integer and combinatorial optimization.
 Wiley, New York.