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Totally unimodular matrices and network flows

Totally unimodular matrices

Definition

A matrix A is totally unimodular (TU) iff every square submatrix of A has
determinant +1, -1, or 0.

The linear program has an integral optimal solution for all integer r.h.s. b
if and only if A is TU.
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Totally unimodular matrices and network flows

Totally unimodular matrices

... based on Laplace expansion for the determinant of a basic matrix and
the Cramer rule.
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Totally unimodular matrices and network flows

Totally unimodular matrices

A set of sufficient conditions:

aij ∈ {−1, 0, 1} for all i , j

Each column contains at most two nonzero coefficients, i.e.∑m
i=1 |aij | ≤ 2,

There exists a partitioning M1 ∩M2 = ∅ of the rows 1, . . . ,m such
that each column j containing two nonzero coefficients satisfies∑

i∈M1

aij =
∑
i∈M2

aij .

If A is TU, then AT and (A|I ) are TU.
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Totally unimodular matrices and network flows

Minimum cost network flow problem

G = (V ,A) – graph with vertices V and (oriented) arcs A

hij – arc capacity

cij – flow cost

bi – demand, ASS.
∑

i bi = 0

V+(i) = {k : (i , k) ∈ A} – successors of i

V−(i) = {k : (k, i) ∈ A} – predecessors of i

min
xij

∑
(i ,j)∈A

cijxij

s.t.
∑

k∈V+(i)

xik −
∑

k∈V−(i)

xki = bi , i ∈ V ,

0 ≤ xij ≤ hij , (i , j) ∈ A.
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Totally unimodular matrices and network flows

Wolsey (1998), Ex. 3.1 (M1 = {1, . . . ,m},M2 = ∅)
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Totally unimodular matrices and network flows

Special cases

Shortest path problem

Critical (longest time) path problem in project scheduling (PERT =
Program Evaluation and Review Technique)

Fixed interval scheduling

Transportation problem
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Totally unimodular matrices and network flows

Shortest path problem

Find a minimum cost s − t path given nonnegative arc costs cij , set

bi = 1 if i = s,

bi = −1 if i = t,

bi = 0 otherwise.

Then the problem can be formulated as

min
xij

∑
(i,j)∈A

cijxij

s.t.
∑

k∈V+(i)

xik −
∑

k∈V−(i)

xki = 1, i = s,

∑
k∈V+(i)

xik −
∑

k∈V−(i)

xki = 0, i ∈ V \ {s, t},

∑
k∈V+(i)

xik −
∑

k∈V−(i)

xki = −1, i = t,

0 ≤ xij ≤ 1, (i , j) ∈ A.

x̂ij = 1 identifies the shortest path.
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Totally unimodular matrices and network flows

Fixed interval scheduling

Basic Fixed interval scheduling (FIS) problem: given J jobs with
prescribed starting sj and finishing fj times, find a minimal number of
identical machines that can process all jobs such that no processing
intervals intersect.
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Totally unimodular matrices and network flows

Fixed interval scheduling
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Totally unimodular matrices and network flows

FIS – network flow reformulation
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Totally unimodular matrices and network flows

FIS – network flow reformulation

Network structure:

1 2J + 2 vertices V: {0, s1, f1, . . . sJ , fJ , 2J + 1}; vertices 0, 2J + 1
correspond to the source and sink,

2 oriented edges E : {0, sj}, {sj , fj}, j ∈ J , {fi , sj} if fi ≤ sj ,
{fj , 2J + 1}, j ∈ J , (2J + 1, 0)

3 demands: d0 = d2J+1 = 0, dsj = −1, dfj = 1, j ∈ J ,

4 return edge (2J + 1, 0): capacity u2J+1,0 = M, c2J+1,0 = 1,

5 edge capacities uuv = 1, and costs cuv = 0, (u, v) ∈ E \ (2J + 1, 0).

Solve the min-cost network flow problem.
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Traveling salesman problem

Traveling salesman problem

Consider n towns and in one of them there is a traveling salesman.

Traveling salesman must visit all towns and return back.

For each pair of towns the traveling costs are known and the traveling
salesman is looking for the cheapest route.

= Finding a Hamilton cycle in a graph with edge prices.
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Traveling salesman problem

Assignment problem

min
n∑

i=1

n∑
j=1

cijxij (1)

n∑
i=1

xij = 1, j = 1, . . . , n, (2)

n∑
j=1

xij = 1, i = 1, . . . , n, (3)

xij ∈ {0, 1}. (4)

We minimize the traveling costs, we arrive to j from exactly one i , we
leave i to exactly one j .
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Traveling salesman problem

Example – 5 towns – cycle and subcycles (subroute)

Kafka (2013)
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Traveling salesman problem

Subroute elimination conditions I

xii = 0, cii =∞
xij + xji ≤ 1

xij + xjk + xki ≤ 2

. . .∑
i∈S

∑
j∈S xij ≤ |S | − 1, S ⊆ {1, . . . , n}, 2 ≤ |S | ≤ n − 1

Approximately 2n inequalities, it is possible to reduce to |S | ≤ dn/2e.
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Traveling salesman problem

Subroute elimination conditions II

Other valid inequalities (using additional real decision variables ui ):

ui − uj + nxij ≤ n − 1, i , j = 2, . . . , n.

Eliminate subroutes: There is at least one route which does not go
through vertex 1, denote this route by C and the number of edges by
|E (C )|. If we sum all these inequalities over all edges {i , j}, which are in
C , i.e. the corresponding variables xij = 1, we obtain

n|E (C )| ≤ (n − 1)|E (C )|, (5)

which is a contradiction.
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Traveling salesman problem

Subroute elimination conditions II

ui − uj + nxij ≤ n − 1, i , j = 2, . . . , n.

Hamilton cycle is feasible: let the vertices be ordered as v1 = 1, v2, . . . ,
vn. We set ui = l , if vl = i , i.e. ui represent the order. For each edge of
the cycle {i , j} it holds ui − uj = −1, i.e.

ui − uj + nxij = −1 + n ≤ n − 1. (6)

For edges, which are not in the cycle, the inequality holds too:
ui − uj ≤ n − 1 and xij = 0.
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Traveling salesman problem

Subroute elimination conditions – example

Consider subroutes: 1–4–5, 2–3

Add inequalities

u2 − u3 + 5x23 ≤ 4,

u3 − u2 + 5x32 ≤ 4,

or

x23 + x32 ≤ 1.

Martin Branda (KPMS MFF UK) 2019-10-20 21 / 36

Traveling salesman problem

TSP – computational complexity

NP (Nondeterministic Polynomial) is the class of decision problems with
the property that: for any instance for which the answer is YES, there is a
polynomial proof of the YES.
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Traveling salesman problem

Traveling Salesman Problem with Time Windows

ti – time when customer i is visited

Tij – time necessary to reach j from i

li , ui – lower and upper bound (time window) for visiting customer i

M – a large constant

min
xij ,ti

n∑
i=1

n∑
j=1

cijxij (7)

n∑
i=1

xij = 1, j = 1, . . . , n, (8)

n∑
j=1

xij = 1, i = 1, . . . , n, (9)

ti + Tij − tj ≤ M(1− xij) i , j = 1, . . . , n, (10)

li ≤ ti ≤ ui , i = 1, . . . , n, (11)

xij ∈ {0, 1}.
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Traveling salesman problem

Capacitated Vehicle Routing Problem

Parameters

n – number of customers

0 – depo (starting and finishing point of each vehicle)

K – number of vehicles (homogeneous)

dj ≥ 0 – customer demand, for depo d0 = 0

Q > 0 – vehicle capacity ( KQ ≥
∑n

j=1 dj)

cij – transportation costs from i to j (usually cii = 0)

Decision variables

xij – equal to 1, if j follows after i on the route, 0 otherwise

uj – upper bound on transported amount after visiting customer j
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Traveling salesman problem

Capacitated Vehicle Routing Problem

min
xij ,ui

n∑
i=0

n∑
j=0

cijxij (12)

n∑
i=0

xij = 1, j = 1, . . . , n, (13)

n∑
j=0

xij = 1, i = 1, . . . , n, (14)

n∑
i=1

xi0 = K , (15)

n∑
j=1

x0j = K , (16)

ui − uj + dj ≤ Q(1− xij) i , j = 1, . . . , n, (17)

di ≤ ui ≤ Q, i = 1, . . . , n, (18)

xij ∈ {0, 1}.
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Traveling salesman problem

Capacitated Vehicle Routing Problem

(12) minimization of transportation costs

(13) exactly one vehicle arrives to customer j

(14) exactly one vehicle leaves customer i

(15) exactly K vehicles return to depot 0

(16) exactly K vehicles leave depot 0

(17) balance conditions of transported amount (serve also as subroute
elimination conditions)

(18) bounds on the vehicle capacity

(All vehicles are employed.)
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Heuristic algorithms

Greedy heuristic

Start with an empty set (solution) and choose the item with the best
immediate reward at each step.

Example: Traveling Salesman Problem with the (symmetric) distance
matrix 

− 9 2 8 12 11
− 7 19 10 32
− 29 18 6
− 24 3
− 19
−


Greedy steps: 1–3 (2), 3–6 (6), 6–4 (3), 4–2 (19), 2–5 (10), 5–1 (12), i.e.
the route length is 52.
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Heuristic algorithms

Local search heuristic

Choose an initial solution x and search its neighborhood U(x). Repeat
until you are able to find a better solution, i.e. if y ∈ U(x), f (y) < f (x),
set x = y .

Example: Traveling Salesman Problem, define the neighborhood U(x) as
2-exchange, i.e. if S = {(i , j) ∈ A : xij = 1} is a feasible solution, then

U(x) = {S ′ : |S ∩ S ′| = n − 2},

in other words: replace edges (i , j), (i ′, j ′) by (i , i ′), (j , j ′).

Greedy steps: 1–3 (2), 3–6 (6), 6–4 (3), 4–2 (19), 2–5 (10), 5–1 (12), i.e.
the route length is 52.

2-exchange: 1–3 (2), 3–4 (29), 4–6 (3), 6–2 (32), 2–5 (10), 5–1 (12), i.e.
the route length is 88.
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Heuristic algorithms

Basic heuristics for VRP

Insertion heuristic:

Start with empty routes.

FOR all customers DO: Insert the customer to the place in a route
where it causes the lowest increase of the traveled distance.

Clustering:

Cluster the customers according to their geographic positions
(“angles”).

Solve1 the traveling salesman problem in each cluster.

Possible difficulties: time windows, vehicle capacities, ...

1..exactly, if the clusters are not large.
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Heuristic algorithms

Tabu search for VRP

For a given number of iteration, run the following steps:

Find the best solution in a neighborhood of the current solution.
Such solution can be worse than the current one or even infeasible
(use a penalty function).

Forbid moving back for a random number of steps by actualizing the
tabu list.

Remember the best solution.

The tabu search algorithm enables moving from local solutions (compared
with a simple “hill climbing alg.”).
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Heuristic algorithms

Genetic algorithms

Iterative procedure:

Population – finite set of individuals with genes

Generation

Evaluation – fitness

Parent selection

Crossover produces one or two new solutions (offspring).

Mutation

Population selection
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Real VRP

Rich Vehicle Routing Problems

Goal – maximization of the ship filling rate (operational planning),
optimization of fleet composition, i.e. number and capacity of the
ships (strategic planning)

Rich Vehicle Routing Problem
time windows
heterogeneous fleet (vehicles with different capacities and speed)
several depots with inter-depot trips
several routes during the planning horizon
non-Euclidean distances (fjords)

Mixed-integer programming :-(, constructive heuristics for getting an
initial feasible solution and tabu search

M. Branda, K. Haugen, J. Novotný, A. Olstad, Downstream logistics optimization at
EWOS Norway. Research report.
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Real VRP

Rich Vehicle Routing Problems

Our approach

Mathematical formulation

GAMS implementation

Heuristic (insertion heuristic, tabu search) implementation

Decision Support System (DSS)
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Real VRP
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