Introduction to integer programming III:
Network Flow, Interval Scheduling, and Vehicle Routing Problems

Martin Branda

Charles University
Faculty of Mathematics and Physics
Department of Probability and Mathematical Statistics
Computational Aspects of Optimization

Totally unimodular matrices

.. based on Laplace expansion for the determinant of a basic matrix and the Cramer rule.

Definition

A matrix A is totally unimodular (TU) iff every square submatrix of A has determinant $+1,-1$, or 0 .

The linear program has an integral optimal solution for all integer r.h.s. b if and only if A is TU

Totally unimodular matrices

A set of sufficient conditions

- $a_{i j} \in\{-1,0,1\}$ for all i, j
- Each column contains at most two nonzero coefficients, i.e. $\sum_{i=1}^{m}\left|a_{i j}\right| \leq 2$,
- There exists a partitioning $M_{1} \cap M_{2}=\emptyset$ of the rows $1, \ldots, m$ such that each column j containing two nonzero coefficients satisfies

$$
\sum_{i \in M_{1}} a_{i j}=\sum_{i \in M_{2}} a_{i j} .
$$

If A is TU, then A^{T} and $(A \mid I)$ are TU

- $G=(V, A)$ - graph with vertices V and (oriented) arcs A
- $h_{i j}$ - arc capacity
- $c_{i j}$ - flow cost
- b_{i} - demand, ASS. $\sum_{i} b_{i}=0$
- $V^{+}(i)=\{k:(i, k) \in A\}$ - successors of i
- $V^{-}(i)=\{k:(k, i) \in A\}-$ predecessors of i

$$
\begin{array}{ll}
\min _{x_{i j}} & \sum_{(i, j) \in A} c_{i j} x_{i j} \\
\text { s.t. } & \sum_{k \in V^{+}(i)} x_{i k}-\sum_{k \in V^{-}(i)} x_{k i}=b_{i}, \quad i \in V, \\
& 0 \leq x_{i j} \leq h_{i j}, \quad(i, j) \in A .
\end{array}
$$

Wolsey (1998), Ex. $3.1\left(M_{1}=\{1, \ldots, m\}, M_{2}=\emptyset\right)$

Totally unimodular matrices and network flows

Special cases

- Shortest path problem
- Critical (longest time) path problem in project scheduling (PERT $=$ Program Evaluation and Review Technique)
- Fixed interval scheduling
- Transportation problem

Totally unimodular matrices and network flows

Shortest path problem

Find a minimum cost $s-t$ path given nonnegative arc costs $c_{i j}$, set

- $b_{i}=1$ if $i=s$,
- $b_{i}=-1$ if $i=t$
- $b_{i}=0$ otherwise

Then the problem can be formulated as

$$
\begin{array}{ll}
\min _{x_{i j}} & \sum_{(i, j) \in A} c_{i j} x_{i j} \\
\text { s.t. } & \sum_{k \in V+(i)} x_{i k}-\sum_{k \in V-(i)} x_{k i}=1, i=s, \\
& \sum_{k \in V+(i)} x_{i k}-\sum_{k \in V-(i)} x_{k i}=0, i \in V \backslash\{s, t\}, \\
& \sum_{k \in V^{+}(i)} x_{i k}-\sum_{k \in V-(i)} x_{k i}=-1, i=t, \\
& 0 \leq x_{i j} \leq 1,(i, j) \in A .
\end{array}
$$

$\hat{x}_{i j}=1$ identifies the shortest path.

Basic Fixed interval scheduling (FIS) problem: given J jobs with prescribed starting s_{j} and finishing f_{j} times, find a minimal number of identical machines that can process all jobs such that no processing intervals intersect.

FIS - network flow reformulation

$$
\begin{align*}
\min \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i j} & \tag{1}\\
\sum_{i=1}^{n} x_{i j} & =1, j=1, \ldots, n, \tag{2}\\
\sum_{j=1}^{n} x_{i j} & =1, i=1, \ldots, n, \tag{3}\\
x_{i j} & \in\{0,1\} . \tag{4}
\end{align*}
$$

We minimize the traveling costs, we arrive to j from exactly one i, we leave i to exactly one j.

Traveling salesman problem

Example - 5 towns - cycle and subcycles (subroute)

Kafka (2013)

- $x_{i i}=0, c_{i i}=\infty$
- $x_{i j}+x_{j i} \leq 1$
- $x_{i j}+x_{j k}+x_{k i} \leq 2$
- ..
- $\sum_{i \in S} \sum_{j \in S} x_{i j} \leq|S|-1, S \subseteq\{1, \ldots, n\}, 2 \leq|S| \leq n-1$

Approximately 2^{n} inequalities, it is possible to reduce to $|S| \leq\lceil n / 2\rceil$.

Other valid inequalities (using additional real decision variables u_{i}):

$$
u_{i}-u_{j}+n x_{i j} \leq n-1, i, j=2, \ldots, n
$$

Eliminate subroutes: There is at least one route which does not go through vertex 1 , denote this route by C and the number of edges by $|E(C)|$. If we sum all these inequalities over all edges $\{i, j\}$, which are in C, i.e. the corresponding variables $x_{i j}=1$, we obtain

$$
\begin{equation*}
n|E(C)| \leq(n-1)|E(C)| \tag{5}
\end{equation*}
$$

which is a contradiction

Subroute elimination conditions - example

$$
u_{i}-u_{j}+n x_{i j} \leq n-1, i, j=2, \ldots, n
$$

Hamilton cycle is feasible: let the vertices be ordered as $v_{1}=1, v_{2}$,. v_{n}. We set $u_{i}=l$, if $v_{l}=i$, i.e. u_{i} represent the order. For each edge of the cycle $\{i, j\}$ it holds $u_{i}-u_{j}=-1$, i.e.

$$
\begin{equation*}
u_{i}-u_{j}+n x_{i j}=-1+n \leq n-1 \tag{6}
\end{equation*}
$$

For edges, which are not in the cycle, the inequality holds too: $u_{i}-u_{j} \leq n-1$ and $x_{i j}=0$.

[^0]
Consider subroutes: 1-4-5, 2-3

Add inequalities

$$
\begin{array}{r}
u_{2}-u_{3}+5 x_{23} \leq 4 \\
u_{3}-u_{2}+5 x_{32} \leq 4
\end{array}
$$

or

$$
x_{23}+x_{32} \leq 1
$$

$\mathcal{N P}$ (Nondeterministic Polynomial) is the class of decision problems with the property that: for any instance for which the answer is YES, there is a polynomial proof of the YES.

- t_{i} - time when customer i is visited
- $T_{i j}$ - time necessary to reach j from i
- l_{i}, u_{i} - lower and upper bound (time window) for visiting customer i
- M - a large constant

$$
\begin{aligned}
\min _{x_{i j}, t_{i}} \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i j} & \\
\sum_{i=1}^{n} x_{i j} & =1, j=1, \ldots, n \\
\sum_{j=1}^{n} x_{i j} & =1, i=1, \ldots, n \\
t_{i}+T_{i j}-t_{j} & \leq M\left(1-x_{i j}\right) i, j=1, \ldots, n \\
I_{i} \leq t_{i} & \leq u_{i}, i=1, \ldots, n \\
x_{i j} & \in\{0,1\}
\end{aligned}
$$

Traveling salesman problem

Capacitated Vehicle Routing Problem

$$
\begin{align*}
\min _{x_{i j}, u_{i}} \sum_{i=0}^{n} \sum_{j=0}^{n} c_{i j} x_{i j} & \tag{12}\\
\sum_{i=0}^{n} x_{i j} & =1, j=1, \ldots, n, \tag{13}\\
\sum_{j=0}^{n} x_{i j} & =1, i=1, \ldots, n, \tag{14}\\
\sum_{i=1}^{n} x_{i 0} & =K, \tag{15}\\
\sum_{j=1}^{n} x_{0 j} & =K, \tag{6}\\
u_{i}-u_{j}+d_{j} & \leq Q\left(1-x_{i j}\right) i, j=1, \ldots, n, \\
d_{i} \leq u_{i} & \leq Q, i=1, \ldots, n, \tag{18}\\
x_{i j} & \in\{0,1\} .
\end{align*}
$$

Parameters

- n - number of customers
- 0 - depo (starting and finishing point of each vehicle)
- K - number of vehicles (homogeneous)
- $d_{j} \geq 0$ - customer demand, for depo $d_{0}=0$
- $Q>0$ - vehicle capacity $\left(K Q \geq \sum_{j=1}^{n} d_{j}\right)$
- $c_{i j}$ - transportation costs from i to j (usually $\left.c_{i i}=0\right)$

Decision variables

- $x_{i j}$ - equal to 1 , if j follows after i on the route, 0 otherwise
- u_{j} - upper bound on transported amount after visiting customer j

Traveling salesman problem

Capacitated Vehicle Routing Problem
(12) minimization of transportation costs
(13) exactly one vehicle arrives to customer j
14) exactly one vehicle leaves customer
(15) exactly K vehicles return to depot 0
(16) exactly K vehicles leave depot 0
17) balance conditions of transported amount (serve also as subroute elimination conditions)
18) bounds on the vehicle capacity
(All vehicles are employed.)

2019-10-20 $26 / 36$

Greedy heuristic

Start with an empty set (solution) and choose the item with the best immediate reward at each step.

Example: Traveling Salesman Problem with the (symmetric) distance matrix

$$
\left(\begin{array}{cccccc}
- & 9 & 2 & 8 & 12 & 11 \\
& - & 7 & 19 & 10 & 32 \\
& & - & 29 & 18 & 6 \\
& & - & 24 & 3 \\
& & & & - & 19 \\
& & & & & -
\end{array}\right)
$$

Greedy steps: 1-3 (2), 3-6 (6), 6-4 (3), 4-2 (19), 2-5 (10), 5-1 (12), i.e. the route length is 52 .

Heuristic algorithm

Basic heuristics for VRP

Insertion heuristic:

- Start with empty routes
- FOR all customers DO: Insert the customer to the place in a route where it causes the lowest increase of the traveled distance.

Clustering:

- Cluster the customers according to their geographic positions ("angles").
- Solve ${ }^{1}$ the traveling salesman problem in each cluster.

Possible difficulties: time windows, vehicle capacities, ..

Local search heuristic

Choose an initial solution x and search its neighborhood $U(x)$. Repeat until you are able to find a better solution, i.e. if $y \in U(x), f(y)<f(x)$, set $x=y$

Example: Traveling Salesman Problem, define the neighborhood $U(x)$ as 2-exchange, i.e. if $S=\left\{(i, j) \in A: x_{i j}=1\right\}$ is a feasible solution, then

$$
U(x)=\left\{S^{\prime}:\left|S \cap S^{\prime}\right|=n-2\right\},
$$

in other words: replace edges $(i, j),\left(i^{\prime}, j^{\prime}\right)$ by $\left(i, i^{\prime}\right),\left(j, j^{\prime}\right)$.
Greedy steps: 1-3 (2), 3-6 (6), 6-4 (3), 4-2 (19), 2-5 (10), 5-1 (12), i.e the route length is 52 .

2-exchange: 1-3 (2), 3-4 (29), 4-6 (3), 6-2 (32), 2-5 (10), 5-1 (12), i.e. the route length is 88 .

Tabu search for VRP

For a given number of iteration, run the following steps:

- Find the best solution in a neighborhood of the current solution. Such solution can be worse than the current one or even infeasible (use a penalty function)
- Forbid moving back for a random number of steps by actualizing the tabu list.
- Remember the best solution.

The tabu search algorithm enables moving from local solutions (compared with a simple "hill climbing alg.")

Iterative procedure

- Population - finite set of individuals with genes
- Generation
- Evaluation - fitness
- Parent selection
- Crossover produces one or two new solutions (offspring)
- Mutation
- Population selection

Our approach

- Mathematical formulation
- GAMS implementation
- Heuristic (insertion heuristic, tabu search) implementation
- Decision Support System (DSS)
- Goal - maximization of the ship filling rate (operational planning), optimization of fleet composition, i.e. number and capacity of the ships (strategic planning)
- Rich Vehicle Routing Problem
- time windows
- heterogeneous fleet (vehicles with different capacities and speed)
- several depots with inter-depot trips
- several routes during the planning horizon
- non-Euclidean distances (fjords)
- Mixed-integer programming :-(, constructive heuristics for getting an initial feasible solution and tabu search
M. Branda, K. Haugen, J. Novotný, A. Olstad, Downstream logistics optimization at EWOS Norway. Research report Computers \& Industrial Engineering 93, 45-54
- M. Branda, K. Haugen, J. Novotný, A. Olstad: Downstream logistic optimization at EWOS Norway. Mathematics for Applications 6 (2), 127-141.
O. Kafka: Optimální plánování rozvozu pomocí dopravních prostředků

Diploma thesis MFF UK, 2013. (IN CZECH)

- P. Toth, D. Vigo (2002). The vehicle routing problem, SIAM, Philadelphia.
L.A. Wolsey (1998). Integer Programming. Wiley, New York
- L.A. Wolsey, G.L. Nemhauser (1999). Integer and combinatorial optimization Wiley, New York.

Literature

- a tabu search algorithm for an extended robust coloring formulation
- M. Branda, J. Novotný, A. Olstad: Fixed interval scheduling under uncertainty

[^0]: TSP - computational complexity

