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Totally unimodular matrices

Totally unimodular matrices

Definition
A matrix A is totally unimodular (TU) iff every square submatrix of A has
determinant +1, -1, or 0.

The linear program has an integral optimal solution for all integer r.h.s. b
if and only if A is TU.
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Totally unimodular matrices

Totally unimodular matrices

A set of sufficient conditions:

aij ∈ {−1, 0, 1} for all i , j

Each column contains at most two nonzero coefficients, i.e.∑m
i=1 |aij | ≤ 2,

There exists a partitioning M1 ∩M2 = ∅ of the rows 1, . . . ,m such
that each column j containing two nonzero coefficients satisfies∑

i∈M1

aij =
∑
i∈M2

aij .

If A is TU, then AT and (A|I ) are TU.

Martin Branda (KPMS MFF UK) 04-04-2016 4 / 28



Totally unimodular matrices

Minimum cost network flow problem

G = (V ,A) – graph with vertices V and (oriented) arcs A

hij – arc capacity

cij – flow cost

bi – demand, ASS.
∑
i bi = 0

V+(i) = {k : (i , k) ∈ A} – successors of i

V−(i) = {k : (k, i) ∈ A} – predecessors of i

min
xij

∑
(i ,j)∈A

cijxij

s.t.
∑

k∈V+(i)

xik −
∑

k∈V−(i)

xki = bi , i ∈ V ,

0 ≤ xij ≤ hij , (i , j) ∈ A.

Martin Branda (KPMS MFF UK) 04-04-2016 5 / 28



Totally unimodular matrices

Wolsey (1998), Ex. 3.1 (M1 = {1, . . . ,m},M2 = ∅)
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Totally unimodular matrices

Special cases

The shortest path problem

The transportation problem
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Traveling salesman problem

Traveling salesman problem

n town and in one of them there is a traveling salesman.

Traveling salesman must visit all towns and return back.

For each pair of towns he/she knows the traveling costs and he is
looking for the cheapest route.

= Finding a Hamilton cycle in a graph with edge prices.
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Traveling salesman problem

Assignment problem

min
n∑
i=1

n∑
j=1

cijxij (1)

n∑
i=1

xij = 1, j = 1, . . . , n, (2)

n∑
j=1

xij = 1, i = 1, . . . , n, (3)

xij ∈ {0, 1}. (4)

We minimize the traveling costs, we arrive to j from exactly one i , we
leave i to exactly one j .
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Traveling salesman problem

Example – 5 towns – cycle and subcycles (subroute)

Kafka (2013)
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Traveling salesman problem

Subroute elimination conditions I

xii = 0, cii =∞
xij + xji ≤ 1

xij + xjk + xki ≤ 2

. . .∑
i∈S

∑
j∈S xij ≤ |S | − 1, S ⊆ {1, . . . , n}, 2 ≤ |S | ≤ n − 1

Approximately 2n inequalities, it is possible to reduce to |S | ≤ dn/2e.
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Traveling salesman problem

Subroute elimination conditions II

ui − uj + nxij ≤ n − 1, i , j = 2, . . . , n

Eliminate subroutes: There is at least one route which does not go
through vertex 1, denote this route by C and the number of edges by
|E (C )|. If we sum these inequalities over all edges {i , j}, which are in C ,
i.e. the corresponding variables xij = 1, we obtain

n|E (C )| ≤ (n − 1)|E (C )|, (5)

which is a contradiction.
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Traveling salesman problem

Subroute elimination conditions III

ui − uj + nxij ≤ n − 1, i , j = 2, . . . , n

Hamilton cycle is feasible: let the vertices be ordered as v1 = 1, v2, . . . ,
vn. We set ui = l , if vl = i , i.e. ui represent the order. For each edge of
the cycle {i , j} it holds ui − uj = −1, i.e.

ui − uj + nxij = −1 + n ≤ n − 1. (6)

For edges, which are not in the cycle, the inequality holds too:
ui − uj ≤ n − 1 a xij = 0.
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Traveling salesman problem

Traveling Salesman Problem with Time Windows

ti – time when customer i is visited

Tij – time necessary to reach j from i

li , ui – lower and upper bound (time window) for visiting customer i

M – large constant

min
xij ,ti

n∑
i=1

n∑
j=1

cijxij (7)

n∑
i=1

xij = 1, j = 1, . . . , n, (8)

n∑
j=1

xij = 1, i = 1, . . . , n, (9)

ti + Tij − tj ≤ M(1− xij) i , j = 1, . . . , n, (10)

li ≤ ti ≤ ui , i = 1, . . . , n, (11)

xij ∈ {0, 1}.
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Traveling salesman problem

Capacitated Vehicle Routing Problem

Parameters

n – number of customers

0 – depo (starting and finishing point of each vehicle)

K – number of vehicles (homogeneous)

dj ≥ 0 – customer demand, for depo d0 = 0

Q > 0 – vehicle capacity ( KQ ≥
∑n
j=1 dj)

cij – transportation costs from i to j (usually cii = 0)

Decision variables

xij – equal to 1, if j follows after i on the route, 0 otherwise

uj – upper bound on transported amount after visiting customer j
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Traveling salesman problem

Capacitated Vehicle Routing Problem

min
xij ,ui

n∑
i=0

n∑
j=0

cijxij (12)

n∑
i=0

xij = 1, j = 1, . . . , n, (13)

n∑
j=0

xij = 1, i = 1, . . . , n, (14)

n∑
i=1

xi0 = K , (15)

n∑
j=1

x0j = K , (16)

ui − uj + dj ≤ Q(1− xij) i , j = 1, . . . , n, (17)

di ≤ ui ≤ Q, i = 1, . . . , n, (18)

xij ∈ {0, 1}.
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Traveling salesman problem

Capacitated Vehicle Routing Problem

(12) minimization of transportation costs

(13) exactly one vehicle arrives to customer j

(14) exactly one vehicle leaves customer i

(15) exactly K vehicles return to depot 0

(16) exactly K vehicles leave depot 0

(17) balance conditions of transported amount (subroute elimination
conditions)

(18) bounds on the vehicle capacity

(All vehicles are employed.)
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Traveling salesman problem

Basic heuristics for VRP

Insertion heuristic:

Start with empty routes.

FOR all customers DO: Insert the customer to the place in a route
where it causes the lowest increase of the traveled distance.

Clustering:

Cluster the customers according to their geographic positions
(“angles”).

Solve1 the traveling salesman problem in each cluster.

Possible difficulties: time windows, vehicle capacities, . . .

1. .exactly, if the clusters are not large.
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Traveling salesman problem

Tabu search for VRP

For a given number of iteration, run the following steps:

Find the best solution in a neighborhood of the current solution. Such
solution can be worse than the current one or even infeasible (use
penalty function).

Forbid moving back for a random number of steps by actualizing the
tabu list.

Remember the best solution.

The tabu search algorithm enables moving from local solutions (compared
with a simple “hill climbing alg.”).
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Real problem

Norway . . .
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Real problem

Rich Vehicle Routing Problems

Goal – maximization of the ship filling rate (operational planning),
optimization of fleet composition, i.e. number and capacity of the
ships (strategic planning)
Rich Vehicle Routing Problem

time windows
heterogeneous fleet (vehicles with different capacities and speed)
several depots with inter-depot trips
several routes during the planning horizon
non-Euclidean distances (fjords)

Mixed-integer programming :-(, constructive heuristics for getting an
initial feasible solution and tabu search

M. Branda, K. Haugen, J. Novotný, A. Olstad, Downstream logistics optimization at
EWOS Norway. Research report.
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Real problem

Rich Vehicle Routing Problems

Our approach

Mathematical formulation

GAMS implementation

Heuristic (insertion, tabu search) implementation

Decision Support System (DSS)
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Other applications of MIP

Facility Location Problem

i warehouses (facilities), j customers

xij – sent quantity

yi – a warehouse is built

cij – unit supplying costs

fi – fixed costs

Ki – warehouse capacity

Dj – demand

min
xij ,yi

n∑
i=1

m∑
j=1

cijxij +
∑
i

fiyi

s.t.
m∑
j=1

xij ≤ Kiyi , i = 1, . . . , n,

n∑
i=1

xij = Dj , j = 1, . . . ,m,

xij ≥ 0, yi ∈ {0, 1}.
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Other applications of MIP

Scheduling to Minimize the Makespan

i machines, j jobs,

y – machine makespan,

xij – assignment variable

tij – time necessary to process job j on machine i ,

min
xij ,y

y

s.t.
m∑
i=1

xij = 1, j = 1, . . . , n,

n∑
j=1

xij tij ≤ y , i = 1, . . . ,m.

(19)
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Other applications of MIP

Lot Sizing Problem
Uncapacitated single item LSP

xt – production at period t

yt – on/off decision at period t

st – inventory at the end of period t (s0 ≥ 0 fixed)

Dt – (predicted) expected demand at period t

pt – unit production costs at period t

ft – setup cost at period t

ht – inventory cost at period t

M – large constant

min
xt ,yt ,st

T∑
t=1

(ptxt + ftyt + htst)

s.t. st−1 + xt − Dt = st , t = 1, . . . ,T ,

xt ≤ Myt ,
xt , st ≥ 0, yt ∈ {0, 1}.

(20)

ASS. Wagner-Whitin costs pt+1 ≤ pt + ht .
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Other applications of MIP

Lot Sizing Problem
Capacitated single item LSP

xt – production at period t

yt – on/off decision at period t

st – inventory at the end of period t (s0 ≥ 0 fixed)

Dt – (predicted) expected demand at period t

pt – unit production costs at period t

ft – setup cost at period t

ht – inventory cost at period t

Ct – production capacity at period t

min
xt ,yt ,st

T∑
t=1

(ptxt + ftyt + htst)

s.t. st−1 + xt − Dt = st , t = 1, . . . ,T ,

xt ≤ Ctyt ,
xt , st ≥ 0, yt ∈ {0, 1}.

(21)

ASS. Wagner-Whitin costs pt+1 ≤ pt + ht .
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Other applications of MIP

Unit Commitment Problem

yit – on/off decision for unit i at period t

xit – production level for unit i at period t

Dt – (predicted) expected demand at period t

pmini , pmaxi – minimal/maximal production capacity of unit i

cit – (fixed) start-up costs

fit – variable production costs

min
xit ,yit

n∑
i=1

T∑
t=1

(citxit + fityit)

s.t.
n∑
i=1

xit ≥ Dt , t = 1, . . . ,T ,

pmini yit ≤ xit ≤ pmaxi yit ,

xit ≥ 0, yit ∈ {0, 1}.

(22)
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Other applications of MIP
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