Introduction into Vehicle Routing Problems and other basic mixed-integer problems

Martin Branda

Charles University in Prague Faculty of Mathematics and Physics Department of Probability and Mathematical Statistics

Computational Aspects of Optimization

(日) (同) (三) (三)

Martin Branda (KPMS MFF UK)

04-04-2016 2 / 28

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ○三 のへで

Totally unimodular matrices

Totally unimodular matrices

Definition

A matrix A is totally unimodular (TU) iff every square submatrix of A has determinant +1, -1, or 0.

The linear program has an integral optimal solution for all integer r.h.s. b if and only if A is TU.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Totally unimodular matrices

A set of sufficient conditions:

- $a_{ij} \in \{-1,0,1\}$ for all i,j
- Each column contains at most two nonzero coefficients, i.e. $\sum_{i=1}^{m} |a_{ij}| \leq 2$,
- There exists a partitioning $M_1 \cap M_2 = \emptyset$ of the rows $1, \ldots, m$ such that each column j containing two nonzero coefficients satisfies

$$\sum_{i\in M_1}a_{ij}=\sum_{i\in M_2}a_{ij}.$$

If A is TU, then A^T and (A|I) are TU.

Minimum cost network flow problem

- G = (V, A) graph with vertices V and (oriented) arcs A
- h_{ij} arc capacity
- c_{ij} flow cost

•
$$b_i$$
 – demand, ASS. $\sum_i b_i = 0$

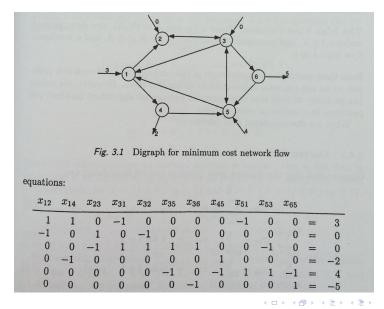
•
$$V^+(i) = \{k : (i,k) \in A\}$$
 – successors of i

•
$$V^{-}(i) = \{k : (k, i) \in A\}$$
 – predecessors of i

$$\begin{split} \min_{x_{ij}} & \sum_{(i,j)\in A} c_{ij} x_{ij} \\ \text{s.t.} & \sum_{k\in V^+(i)} x_{ik} - \sum_{k\in V^-(i)} x_{ki} = b_i, \ i\in V, \\ & 0 \leq x_{ij} \leq h_{ij}, \ (i,j) \in A. \end{split}$$

イロト イポト イヨト イヨト 二日

Wolsey (1998), Ex. 3.1 ($M_1 = \{1, \ldots, m\}, M_2 = \emptyset$)



Special cases

- The shortest path problem
- The transportation problem

< ロ > < 同 > < 回 > <

Traveling salesman problem

- *n* town and in one of them there is a traveling salesman.
- Traveling salesman must visit all towns and return back.
- For each pair of towns he/she knows the traveling costs and he is looking for the cheapest route.
- = Finding a Hamilton cycle in a graph with edge prices.

(日) (同) (三) (三)

Assignment problem

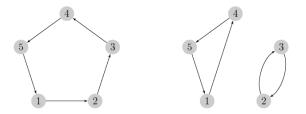
$$\min \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$
(1)
$$\sum_{i=1}^{n} x_{ij} = 1, j = 1, \dots, n,$$
(2)
$$\sum_{j=1}^{n} x_{ij} = 1, i = 1, \dots, n,$$
(3)
$$x_{ij} \in \{0, 1\}.$$
(4)

We minimize the traveling costs, we arrive to j from exactly one i, we leave i to exactly one j.

<ロト <部ト <きト <きト

Traveling salesman problem

Example – 5 towns – cycle and subcycles (subroute)



Kafka (2013)

Martin Branda (KPMS MFF UK)

Image: A mathematical states and a mathem

Traveling salesman problem

Subroute elimination conditions I

- $x_{ii} = 0$, $c_{ii} = \infty$
- $x_{ij} + x_{ji} \leq 1$
- $x_{ij} + x_{jk} + x_{ki} \leq 2$
- . . .
- $\sum_{i \in S} \sum_{j \in S} x_{ij} \le |S| 1$, $S \subseteq \{1, \dots, n\}$, $2 \le |S| \le n 1$

Approximately 2^n inequalities, it is possible to reduce to $|S| \leq \lceil n/2 \rceil$.

・ロト ・同ト ・ヨト ・ヨー うのつ

Subroute elimination conditions II

$$u_i - u_j + nx_{ij} \le n - 1, i, j = 2, \ldots, n$$

Eliminate subroutes: There is at least one route which does not go through vertex 1, denote this route by *C* and the number of edges by |E(C)|. If we sum these inequalities over all edges $\{i, j\}$, which are in *C*, i.e. the corresponding variables $x_{ij} = 1$, we obtain

$$|E(C)| \le (n-1)|E(C)|,$$
 (5)

which is a contradiction.

Subroute elimination conditions III

$$u_i - u_j + nx_{ij} \leq n - 1, i, j = 2, \ldots, n$$

Hamilton cycle is feasible: let the vertices be ordered as $v_1 = 1, v_2, ..., v_n$. We set $u_i = l$, if $v_l = i$, i.e. u_i represent the order. For each edge of the cycle $\{i, j\}$ it holds $u_i - u_j = -1$, i.e.

$$u_i - u_j + nx_{ij} = -1 + n \le n - 1.$$
 (6)

For edges, which are not in the cycle, the inequality holds too: $u_i - u_j \le n - 1$ a $x_{ij} = 0$.

イロト 不得 とうせい かほとう ほ

Traveling salesman problem

Traveling Salesman Problem with Time Windows

- t_i time when customer i is visited
- T_{ij} time necessary to reach j from i
- I_i , u_i lower and upper bound (time window) for visiting customer i
- *M* large constant

$$\min_{x_{ij}, t_{i}} \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$
(7)
$$\sum_{i=1}^{n} x_{ij} = 1, j = 1, ..., n,$$
(8)
$$\sum_{j=1}^{n} x_{ij} = 1, i = 1, ..., n,$$
(9)
$$t_{i} + T_{ij} - t_{j} \leq M(1 - x_{ij}) i, j = 1, ..., n,$$
(10)
$$l_{i} \leq t_{i} \leq u_{i}, i = 1, ..., n,$$
(11)
$$x_{ii} \in \{0, 1\}.$$

イロト 不得 トイヨト イヨト 二日

Capacitated Vehicle Routing Problem

Parameters

- *n* number of customers
- 0 depo (starting and finishing point of each vehicle)
- *K* number of vehicles (homogeneous)
- $d_j \ge 0$ customer demand, for depo $d_0 = 0$
- Q>0 vehicle capacity ($\mathit{KQ} \geq \sum_{j=1}^n d_j$)
- c_{ij} transportation costs from *i* to *j* (usually $c_{ii} = 0$)

Decision variables

- x_{ij} equal to 1, if j follows after i on the route, 0 otherwise
- u_j upper bound on transported amount after visiting customer j

Traveling salesman problem

Capacitated Vehicle Routing Problem

$$\min_{x_{ij},u_i} \sum_{i=0}^{n} \sum_{j=0}^{n} c_{ij} x_{ij}$$
(12)

$$\sum_{i=0}^{n} x_{ij} = 1, j = 1, \dots, n,$$
(13)

$$\sum_{j=0}^{n} x_{ij} = 1, \ i = 1, \dots, n,$$
(14)

$$\sum_{i=1}^{n} x_{i0} = K,$$
(15)

$$\sum_{j=1}^{n} x_{0j} = K, \qquad (16)$$

$$u_i - u_j + d_j \leq Q(1 - x_{ij}) \ i, j = 1, \dots, n,$$
 (17)

$$d_i \leq u_i \leq Q, \ i = 1, \dots, n, \tag{18}$$

 $x_{ij} \quad \in \quad \{0,1\}.$

Capacitated Vehicle Routing Problem

- (12) minimization of transportation costs
- (13) exactly one vehicle arrives to customer j
- (14) exactly one vehicle leaves customer i
- (15) exactly K vehicles return to depot 0
- (16) exactly K vehicles leave depot 0
- (17) balance conditions of transported amount (subroute elimination conditions)
- (18) bounds on the vehicle capacity

(All vehicles are employed.)

Basic heuristics for VRP

Insertion heuristic:

- Start with empty routes.
- FOR all customers DO: Insert the customer to the place in a route where it causes the lowest increase of the traveled distance.

Clustering:

- Cluster the customers according to their geographic positions ("angles").
- Solve¹ the traveling salesman problem in each cluster.

Possible difficulties: time windows, vehicle capacities, ...

¹..exactly, if the clusters are not large.

Tabu search for VRP

For a given number of iteration, run the following steps:

- Find the best solution in a *neighborhood* of the current solution. Such solution can be worse than the current one or even infeasible (use penalty function).
- Forbid moving back for a random number of steps by actualizing the **tabu list**.
- Remember the best solution.

The tabu search algorithm enables moving from local solutions (compared with a simple "hill climbing alg.").

< ロ > < 同 > < 回 > < 回 > < □ > <

Norway ...

Rich Vehicle Routing Problems

 Goal – maximization of the ship *filling rate* (operational planning), optimization of fleet composition, i.e. number and capacity of the ships (strategic planning)

• Rich Vehicle Routing Problem

- time windows
- heterogeneous fleet (vehicles with different capacities and speed)
- several depots with inter-depot trips
- several routes during the planning horizon
- non-Euclidean distances (fjords)
- Mixed-integer programming :-(, constructive heuristics for getting an initial feasible solution and tabu search
- M. Branda, K. Haugen, J. Novotný, A. Olstad, Downstream logistics optimization at EWOS Norway. Research report.

イロト 不得 とうせい かほとう ほ

Rich Vehicle Routing Problems

Our approach

- Mathematical formulation
- GAMS implementation
- Heuristic (insertion, tabu search) implementation
- Decision Support System (DSS)

▲ □ ▶ ▲ □ ▶ ▲

Facility Location Problem

- *i* warehouses (facilities), *j* customers
- x_{ij} sent quantity
- y_i a warehouse is built
- c_{ij} unit supplying costs
- *f_i* fixed costs
- *K_i* warehouse capacity
- D_j demand

$$\begin{split} \min_{X_{ij}, Y_i} & \sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} x_{ij} + \sum_{i} f_i y_i \\ \text{s.t.} & \sum_{j=1}^{m} x_{ij} \leq \mathcal{K}_i y_i, \ i = 1, \dots, n, \\ & \sum_{i=1}^{n} x_{ij} = D_j, \ j = 1, \dots, m, \\ & x_{ij} \geq 0, \ y_i \in \{0, 1\}. \end{split}$$

Scheduling to Minimize the Makespan

- *i* machines, *j* jobs,
- y machine makespan,
- x_{ij} assignment variable
- t_{ij} time necessary to process job j on machine i,

$$\min_{x_{ij},y} y$$
s.t. $\sum_{i=1}^{m} x_{ij} = 1, j = 1, ..., n,$

$$\sum_{j=1}^{n} x_{ij} t_{ij} \le y, i = 1, ..., m.$$
(19)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lot Sizing Problem Uncapacitated single item LSP

- x_t production at period t
- y_t on/off decision at period t
- s_t inventory at the end of period t ($s_0 \ge 0$ fixed)
- D_t (predicted) expected demand at period t
- p_t unit production costs at period t
- f_t setup cost at period t
- *h_t* inventory cost at period *t*
- M large constant

$$\min_{\substack{x_t, y_t, s_t \\ t = 1}} \sum_{t=1}^{T} (p_t x_t + f_t y_t + h_t s_t)$$
s.t. $s_{t-1} + x_t - D_t = s_t, t = 1, ..., T,$
 $x_t \le M y_t,$
 $x_t, s_t \ge 0, y_t \in \{0, 1\}.$
(20)

ASS. Wagner-Whitin costs $p_{t+1} \leq p_t + h_t$.

Martin Branda (KPMS MFF UK)

イロト イポト イヨト ・ヨ

Lot Sizing Problem Capacitated single item LSP

- x_t production at period t
- y_t on/off decision at period t
- s_t inventory at the end of period t ($s_0 \ge 0$ fixed)
- D_t (predicted) expected demand at period t
- p_t unit production costs at period t
- f_t setup cost at period t
- *h_t* inventory cost at period *t*
- C_t production capacity at period t

$$\min_{x_{t}, y_{t}, s_{t}} \sum_{t=1}^{T} (p_{t}x_{t} + f_{t}y_{t} + h_{t}s_{t})$$
s.t. $s_{t-1} + x_{t} - D_{t} = s_{t}, t = 1, ..., T,$
 $x_{t} \leq C_{t}y_{t},$
 $x_{t}, s_{t} \geq 0, y_{t} \in \{0, 1\}.$
(21)

ASS. Wagner-Whitin costs $p_{t+1} \leq p_t + h_t$.

Martin Branda (KPMS MFF UK)

イロト イポト イヨト ・ヨ

Unit Commitment Problem

- y_{it} on/off decision for unit *i* at period *t*
- x_{it} production level for unit *i* at period *t*
- D_t (predicted) expected demand at period t
- *p_i^{min}*, *p_i^{max}* minimal/maximal production capacity of unit *i*
- c_{it} (fixed) start-up costs
- f_{it} variable production costs

$$\min_{x_{it}, y_{it}} \sum_{i=1}^{n} \sum_{t=1}^{T} (c_{it} x_{it} + f_{it} y_{it}) \\
\text{s.t.} \sum_{i=1}^{n} x_{it} \ge D_t, \ t = 1, \dots, T, \\
p_i^{\min} y_{it} \le x_{it} \le p_i^{\max} y_{it}, \\
x_{it} \ge 0, \ y_{it} \in \{0, 1\}.$$
(22)

イロト 不得 トイヨト イヨト 二日

Literature

- O. Kafka: **Optimální plánování rozvozu pomocí dopravních prostředků**, Diploma thesis MFF UK, 2013. (IN CZECH)
- P. Toth, D. Vigo (2002). The vehicle routing problem, SIAM, Philadelphia.
- L.A. Wolsey (1998). Integer Programming. Wiley, New York.
- L.A. Wolsey, G.L. Nemhauser (1999). Integer and combinatorial optimization. Wiley, New York.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □