Lagrangian duality

Martin Branda

Charles University
Faculty of Mathematics and Physics Department of Probability and Mathematical Statistics

Computational Aspects of Optimization

Content

(1) Lagrangian duality in nonlinear programming
(2) Lagrangian duality in linear and quadratic programming
(3) Lagrangian duality in integer programming

4 Generalized Benders Decomposition
(5) Support Vector Machines

Nonlinear Programming Problem (NLP)

Primal problem (P):

$$
\begin{aligned}
(P)=\min _{x \in X} f(x) \text { s.t. } g_{j}(x) & \leq 0, j=1, \ldots, m, \\
h_{i}(x) & =0, i=1, \ldots, l
\end{aligned}
$$

Lagrangian function, $u \in \mathbb{R}_{+}^{m}, v \in \mathbb{R}^{\prime}$:

$$
L(x, u, v)=f(x)+\sum_{j=1}^{m} u_{j} g_{j}(x)+\sum_{i=1}^{l} v_{i} h_{i}(x) .
$$

Dual problem

Dual function:

$$
\begin{equation*}
\theta(u, v)=\inf _{x \in X} L(x, u, v) \tag{1}
\end{equation*}
$$

Dual problem (D):

$$
\begin{equation*}
(D)=\sup _{u \geq 0, v} \theta(u, v) \tag{2}
\end{equation*}
$$

Weak Duality Theorem

Theorem

Let x be feasible for problem (P) and (u, v) be feasible for problem (D). Then

$$
\theta(u, v) \leq f(x)
$$

Proof.

$$
\theta(u, v)=\inf _{y \in X} L(y, u, v) \leq L(x, u, v) \leq f(x)
$$

where the last inequality follows from feasibility of x and (u, v), when $u_{j} g_{j}(x) \leq 0$ and $v_{i} h_{i}(x)=0$.

Weak Duality Theorem - Consequences

1. We obtain

$$
(P) \geq(D)
$$

2. If for some primal feasible \bar{x} and dual feasible (\bar{u}, \bar{v}) holds

$$
f(\bar{x})=\theta(\bar{u}, \bar{v}),
$$

then \bar{x} is optimal solution of (P) and (\bar{u}, \bar{v}) is optimal solution of (D).
3. If $(P)=-\infty$ (unbounded primal problem), then $\theta(u, v)=-\infty$ for all $(u, v) \in \mathbb{R}_{+}^{m} \times \mathbb{R}^{\prime}$.
4. If $(D)=\infty$, then (P) is infeasible.

Strong Duality Theorem

Theorem

Let

- X be a nonempty convex set
- f, g_{j} be convex
- h_{i} be affine
- Slater condition be satisfied, i.e. there is $\hat{x} \in X$ such that

$$
\begin{aligned}
& g_{j}(\hat{x})<0, \forall j \text { and } h_{i}(\hat{x})=0, \forall i, \text { and } \\
& 0 \in \operatorname{int}\left\{\left(h_{1}(x), \ldots, h_{l}(x)\right): x \in X\right\}:=h(X) .
\end{aligned}
$$

Then $(P)=(D)$.
Moreover, if (P) is finite, then sup in (D) is achieved at $(\bar{u}, \bar{v}) \in \mathbb{R}_{+}^{m} \times \mathbb{R}^{\prime}$. If inf in (P) is achieved at \bar{x}, then $\sum_{j=1}^{m} \bar{u}_{j} g_{j}(\bar{x})=0$.

A counterexample

Convexity alone is not sufficient. Consider

$$
\begin{aligned}
&(P)=\min _{x, y} e^{-x} \\
& \text { s.t. } x^{2} / y \leq 0 \\
& \quad y>0 \quad(\text { or } y \geq \varepsilon) .
\end{aligned}
$$

The optimal value is $(P)=1$. The dual function is equal to

$$
\theta(u)=\inf _{x \in \mathbb{R}, y>0} e^{-x}+u x^{2} / y= \begin{cases}0 & u \geq 0 \\ -\infty & u<0\end{cases}
$$

The dual problem is

$$
(D)=\max _{u \geq 0} \theta(u)
$$

with optimal value $(D)=0$. Slater condition is not satisfied since $x=0$ for any feasible (x, y), i.e. $x^{2} / y=0$.

SDT proof

Bazaraa et al. (2006), Lemma 6.2.3:

Lemma

Let $X \subseteq \mathbb{R}^{n}$ be a convex set, $f, g_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex, $h_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be affine. If System 1 has no solution, then System 2 has a solution (u_{0}, u, v). The converse holds true if $u_{0}>0$.

System 1: $f(x)<0, g_{j}(x) \leq 0, h_{i}(x)=0$ for some $x \in X$.
System 2: $u_{0} f(x)+\sum_{j=1}^{m} u_{j} g_{j}(x)+\sum_{i=1}^{l} v_{i} h_{i}(x) \geq 0$ for all $x \in X$,

$$
\left(u_{0}, u\right) \geq 0,\left(u_{0}, u, v\right) \neq 0 .
$$

SDT proof

Let γ be a (finite) optimal value of (P) and consider the following system:

$$
f(x)-\gamma<0, g_{j}(x) \leq 0, j=1, \ldots, m, h_{i}(x)=0, i=1, \ldots, l, x \in X
$$

By the definition of γ the system has no solution. Hence, there exists $\left(u_{0}, u, v\right) \neq 0$ with $\left(u_{0}, u\right) \geq 0$ such that

$$
u_{0}(f(x)-\gamma)+\sum_{j=1}^{m} u_{j} g_{j}(x)+\sum_{i=1}^{l} v_{i} h_{i}(x) \geq 0, \forall x \in X
$$

SDT proof

Suppose that $u_{0}=0$. By assumption there is an $\hat{x} \in X$ such that $g_{j}(\hat{x})<0, \forall j$ and $h_{i}(\hat{x})=0, \forall i$. Substituting into the inequality we obtain $\sum_{j=1}^{m} u_{j} g_{j}(\hat{x}) \geq 0$. Since $g_{j}(\hat{x})<0, \forall j$, we have $u_{j}=0, \forall j$, and $u_{0}=0$. This implies that $\sum_{i=1}^{l} v_{i} h_{i}(x) \geq 0$ for all $x \in X$. Since $0 \in h(X)$, we can pick a $x \in X$ such that $h_{i}(x)=-\lambda v_{i}$, where $\lambda>0$ (small). Therefore

$$
\sum_{i=1}^{\prime} v_{i} h_{i}(x)=-\lambda \sum_{i=1}^{\prime} v_{i}^{2} \geq 0
$$

which implies that $v_{i}=0, \forall i$. But this is a contradiction with $\left(u_{0}, u, v\right) \neq 0$. Hence $u_{0}>0 \ldots$

SDT proof

Hence $u_{0}>0$. Thus, if we set $\tilde{u}_{j}=u_{j} / u_{0}$ and $\tilde{v}_{i}=v_{i} / u_{0}$, we get

$$
f(x)+\sum_{j=1}^{m} \tilde{u}_{j} g_{j}(x)+\sum_{i=1}^{\prime} \tilde{v}_{i} h_{i}(x) \geq \gamma, \forall x \in X
$$

This shows that

$$
\theta(\tilde{u}, \tilde{v})=\inf _{x \in X} L(x, \tilde{u}, \tilde{v}) \geq \gamma
$$

Together with the Weak Duality Theorem we obtain that

$$
\gamma=\theta(\tilde{u}, \tilde{v})=\sup _{u \geq 0, v} \theta(u, v)
$$

Content

(1) Lagrangian duality in nonlinear programming
(2) Lagrangian duality in linear and quadratic programming
(3) Lagrangian duality in integer programming

4 Generalized Benders Decomposition
(5) Support Vector Machines

Example: Linear programming

$$
\begin{aligned}
& \min c^{T} x \\
& \text { s.t. } A x=b \\
& \quad x \geq 0
\end{aligned}
$$

Example: Linear programming

For $u \geq 0$

$$
\begin{aligned}
L(x, u, v) & =c^{T} x-u^{T} x+v^{T}(A x-b) \\
& =c^{T} x-u^{T} x+v^{T} A x-v^{T} b \\
& =\left(c^{T}-u^{T}+v^{T} A\right) x-v^{T} b .
\end{aligned}
$$

Then the dual function

$$
\begin{aligned}
\theta(u, v) & =\inf _{x} L(x, u, v) \\
& =-v^{T} b, \text { if } c^{T}-u^{T}+v^{T} A=0, \\
& =-\infty, \text { if } c^{T}-u^{T}+v^{T} A \neq 0 .
\end{aligned}
$$

Then the Lagrange dual problem is

$$
\begin{aligned}
& \max -b^{T} v \\
& \text { s.t. } c-u+A^{T} v=0 .
\end{aligned}
$$

Example: Linear programming

If we substitute $\tilde{v}=-v$ and realize that u can be seen as a vector of slack variables, we obtain

$$
\begin{aligned}
\max & b^{T} \tilde{v} \\
\text { s.t. } & A^{T} \tilde{v} \leq c,
\end{aligned}
$$

which is the standard LP dual.

Example: Ordinary least squares with equality constraints

$$
\begin{aligned}
& \min \|A x-b\|_{2}^{2} \\
& \text { s.t. } F x=g .
\end{aligned}
$$

Content

(1) Lagrangian duality in nonlinear programming
(2) Lagrangian duality in linear and quadratic programming
(3) Lagrangian duality in integer programming

4 Generalized Benders Decomposition
(5) Support Vector Machines

Langrangian lower bound is never worse than LP relaxation

Hooker (2009): Consider integer programming problem with complicated constraints $A x \leq a$ and noncomplicated constraints $B x \leq b$:

$$
\begin{aligned}
\min _{x} & c^{T} x \\
\text { s.t. } & A x \leq a, \\
& B x \leq b, \\
x & \in \mathbb{Z}_{+}^{n} .
\end{aligned}
$$

Langrangian lower bound is never worse than LP relaxation

Dual function obtained by relaxing the complicated constraints $A x \leq a$:

$$
\begin{gathered}
\theta(u)=\min _{x} c^{T} x+u^{T}(A x-a) \\
\text { s.t. } B x \leq b, \\
x \in \mathbb{Z}_{+}^{n} .
\end{gathered}
$$

Let $S=\left\{x \in \mathbb{Z}_{+}^{n}: B x \leq b\right\}$, then the dual function can be rewritten as

$$
\begin{aligned}
\theta(u)= & \min _{x} c^{T} x+u^{T}(A x-a) \\
& \text { s.t. } x \in \operatorname{conv}(S)
\end{aligned}
$$

where $\operatorname{conv}(S)$ can be described by (a large number of) linear inequalities.

The optimal value of the dual problem

$$
z_{L D}=\max _{u \geq 0} \theta(u)
$$

is therefore equal to (it follows from LP duality)

$$
\begin{aligned}
z_{L D}=\min _{x} & c^{\top} x \\
\text { s.t. } & A x \leq a, \\
& x \in \operatorname{conv}(S) .
\end{aligned}
$$

Let $P=\left\{x \in \mathbb{R}_{+}^{n}: B x \leq b\right\}$, i.e. $\operatorname{conv}(S) \subseteq P$, where the LP relaxation is

$$
\begin{aligned}
z_{L P}=\min _{x} & c^{\top} x \\
\text { s.t. } & A x \leq a \\
& x \in P
\end{aligned}
$$

i.e. $z_{L P} \leq z_{L D}$.

Content

(1) Lagrangian duality in nonlinear programming
(2) Lagrangian duality in linear and quadratic programming
(3) Lagrangian duality in integer programming

4 Generalized Benders Decomposition

(5) Support Vector Machines

Generalized Benders Decomposition

Geoffrion (1972), Floudas (2009):

$$
\begin{aligned}
& \min _{x, y} f(x, y) \\
& \text { s.t. } g_{j}(x, y) \leq 0, j=1, \ldots, m, \\
& \quad x \in X, y \in Y .
\end{aligned}
$$

The problem can be rewritten as

$$
\begin{array}{rl}
\min _{y} \inf _{x} & f(x, y) \\
\text { s.t. } & g_{j}(x, y) \leq 0, j=1, \ldots, m, \\
& x \in X, y \in Y .
\end{array}
$$

Generalized Benders Decomposition

Assumptions:

- $X \subseteq \mathbb{R}^{n}$ is a nonempty compact convex set, $Y \subseteq \mathbb{R}^{s}$, e.g. $Y=\{0,1\}^{s}$.
- $f(\cdot, y), g_{j}(\cdot, y): \mathbb{R}^{n} \times \mathbb{R}^{s} \rightarrow \mathbb{R}$ are continuous convex for each $y \in Y$.
- For each $y \in Y \cap V$, where

$$
V=\left\{y: g_{j}(x, y) \leq 0, \forall_{j} \text { for some } x \in X\right\}
$$

the resulting problem is unbounded or is feasible and the Lagrange multipliers exist (under Slater CQ).
(Less stringent assumptions are available, see Floudas (2009).)

Generalized Benders Decomposition

Master problem

$$
\begin{aligned}
& \min v(y) \\
& \text { s.t. } y \in Y \cap V \text {, }
\end{aligned}
$$

where the primal (slave) problem is

$$
\begin{array}{rl}
v(y)=\inf _{x} & f(x, y) \\
& \text { s.t. } \\
& g_{j}(x, y) \leq 0, j=1, \ldots, m, \\
& x \in X .
\end{array}
$$

We assume that $v(y)$ can be computed easily ...

Generalized Benders Decomposition

Feasibility Lagrange function: if the primal problem is infeasible for a given $y \in Y$, then consider

$$
\bar{L}(x, y, u)=\sum_{j=1}^{m} u_{j} g_{j}(x, y)
$$

where $u \in \Lambda=\left\{u \in \mathbb{R}_{+}^{m}: \sum_{j=1}^{m} u_{j}=1\right\}$. We obtain $y \in V$ if and only if

$$
\sup _{u \in \Lambda} \inf _{x \in X} \bar{L}(x, y, u) \leq 0
$$

... based on Lagrangian duality for the problem

$$
\begin{aligned}
\min _{x} & \sum_{i=1}^{n} 0 x_{i} \\
\text { s.t. } & g_{j}(x, y) \leq 0, j=1, \ldots, m, \\
& x \in X
\end{aligned}
$$

Generalized Benders Decomposition

Optimality Lagrange function: if the primal problem is feasible for a fixed $y \in Y$, then (under Slater CQ) we can use the Lagrange function

$$
L(x, y, u)=f(x, y)+\sum_{j=1}^{m} u_{j} g_{j}(x, y)
$$

and the strong duality, i.e. for each $y \in Y \cap V$ we have

$$
\begin{aligned}
v(y)= & \inf _{x \in X} f(x, y) \text { s.t. } g_{j}(x, y) \leq 0, j=1, \ldots, m, \\
& =(S D)= \\
& =\sup _{u \geq 0} \inf _{x \in X} L(x, y, u)
\end{aligned}
$$

Generalized Benders Decomposition

Combining the feasibility and optimality Lagrange functions, we obtain an equivalent problem

$$
\left.\begin{array}{rl}
\min _{y, \mu} & \mu \\
\text { s.t. } & \mu \\
& \geq \sup _{u \geq 0} \inf _{x \in X} L(x, y, u) \\
& 0 \geq \sup _{u \in \Lambda} \inf _{x \in X} \bar{L}(x, y, u) \\
& y
\end{array}\right)
$$

or

$$
\begin{aligned}
\min _{y, \mu} & \mu \\
\text { s.t. } & \mu \\
& \geq \inf _{x \in X} L(x, y, u), \forall u \geq 0 \\
0 & \geq \inf _{x \in X} \bar{L}(x, y, u), \forall u \in \Lambda \\
& y
\end{aligned}
$$

Content

(1) Lagrangian duality in nonlinear programming
(2) Lagrangian duality in linear and quadratic programming
(3) Lagrangian duality in integer programming

4 Generalized Benders Decomposition
(5) Support Vector Machines

The support vector classifier

Hastie et al. (2009): Training data: N pairs $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots$, $\left(x_{N}, y_{N}\right), x_{i} \in \mathbb{R}^{p}, y_{i} \in\{-1,1\}$ (classes).
A linear classification rule with $\|\beta\|=1$

$$
G(x)=\operatorname{sign}\left[x^{\top} \beta+\beta_{0}\right] .
$$

Assume first that the data are separable. We would like to find the biggest margin between the training points for class 1 and -1 :

$$
\begin{array}{rl}
\max _{\beta_{0}, \beta, M} & M \\
\text { s.t. } & y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right) \geq M, i=1, \ldots, N, \\
& \|\beta\|=1
\end{array}
$$

The support vector classifier

Hastie et al. (2009)

The support vector classifier

By setting $M=1 /\|\beta\|$:

$$
\begin{aligned}
& \min _{\beta_{0}, \beta}\|\beta\| \\
& \text { s.t. } y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right) \geq 1, i=1, \ldots, N .
\end{aligned}
$$

If the classes overlap:

$$
\begin{aligned}
\min _{\beta_{0}, \beta, \xi} & \frac{1}{2}\|\beta\|^{2}+C \sum_{i=1}^{N} \xi_{i} \\
\text { s.t. } & y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right) \geq 1-\xi_{i}, \quad i=1, \ldots, N, \\
& \xi_{i} \geq 0
\end{aligned}
$$

where we penalize the overall overlap.

The support vector classifier

Lagrange function

$$
\begin{aligned}
L\left(\beta_{0}, \beta, \xi, \alpha, \mu\right)= & \frac{1}{2}\|\beta\|^{2}+C \sum_{i=1}^{N} \xi_{i}-\sum_{i=1}^{N} \mu_{i} \xi_{i} \\
& -\sum_{i=1}^{N} \alpha_{i}\left(y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right)-1+\xi_{i}\right), \alpha_{i} \geq 0, \mu_{i} \geq 0
\end{aligned}
$$

The dual function

$$
\theta(\alpha, \mu)=\inf _{\beta_{0}, \beta, \xi} L\left(\beta_{0}, \beta, \xi, \alpha, \mu\right)
$$

The support vector classifier

$$
\begin{aligned}
L\left(\beta_{0}, \beta, \xi, \alpha, \mu\right)= & \frac{1}{2}\|\beta\|^{2}+C \sum_{i=1}^{N} \xi_{i}-\sum_{i=1}^{N} \mu_{i} \xi_{i} \\
& -\sum_{i=1}^{N} \alpha_{i}\left(y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right)-1+\xi_{i}\right), \alpha_{i} \geq 0, \mu_{i} \geq 0
\end{aligned}
$$

Use the derivatives to obtain the dual function:

$$
\begin{aligned}
\frac{\partial L}{\partial \beta_{0}} & =\sum_{i=1}^{N} \alpha_{i} y_{i}=0 \\
\frac{\partial L}{\partial \beta} & =\beta-\sum_{i=1}^{N} \alpha_{i} y_{i} x_{i}=0 \\
\frac{\partial L}{\partial \xi_{i}} & =C-\alpha_{i}-\mu_{i}=0
\end{aligned}
$$

The support vector classifier

We can express the dual function

$$
\begin{aligned}
\theta(\alpha, \mu)= & \frac{1}{2} \sum_{i=1}^{N} \sum_{i^{\prime}=1}^{N} \alpha_{i} \alpha_{i^{\prime}} y_{i} y_{i^{\prime}} x_{i}^{T} x_{i^{\prime}}+C \sum_{i=1}^{N} \xi_{i}-\sum_{i=1}^{N} \sum_{i^{\prime}=1}^{N} \alpha_{i} \alpha_{i^{\prime}} y_{i} y_{i^{\prime}} x_{i}^{T} x_{i^{\prime}} \\
& -\beta_{0} \sum_{i=1}^{N} \alpha_{i} y_{i}+\sum_{i=1}^{N} \alpha_{i}-\sum_{i=1}^{N} \alpha_{i} \xi_{i}-\sum_{i=1}^{N} \mu_{i} \xi_{i} \\
= & -\frac{1}{2} \sum_{i=1}^{N} \sum_{i^{\prime}=1}^{N} \alpha_{i} \alpha_{i^{\prime}} y_{i} y_{i^{\prime}} x_{i}^{T} x_{i^{\prime}}+\sum_{i=1}^{N} \alpha_{i}
\end{aligned}
$$

subject to $0 \leq \alpha_{i} \leq C, \sum_{i=1}^{N} \alpha_{i} y_{i}=0$.

Literature

- Bazaraa, M.S., Sherali, H.D., and Shetty, C.M. (2006). Nonlinear programming: theory and algorithms, Wiley, Singapore, 3rd edition.
- Boyd, S., Vandenberghe, L. (2004). Convex Optimization, Cambridge University Press, Cambridge.
- Floudas, Ch.A. (2009). Generalized Benders Decomposition. In Encyclopedia of Optimization, Ch.A. Floudas, P.M. Pardalos eds., 1162-1175.
- Geoffrion, A.M. (1972). Generalized Benders decomposition. Journal of Optimization Theory Applications 10, 237-260.
- Hastie, T., Tibshirani, R., Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics, 2nd edition.
- Hooker, J.N. (2009). Integer Programming: Lagrangian Relaxation. In Encyclopedia of Optimization, Ch.A. Floudas, P.M. Pardalos eds., 1667-1673.

