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Algorithm classification

Order of derivatives1: derivative-free, first order (gradient),
second-order (Newton)

Feasibility of the constructed points: interior and exterior point
methods

Deterministic/randomized

Local/global

1If possible, deliver the derivatives.
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Review of basic methods for unconstrained problems

Unconstrained problems

Let f : Rn → R, x0 be a starting point, dk ∈ Rn be a descent direction,
and λ ∈ R be a step length.

Find a descent direction dk , solve the line search problem

λk = arg min
0≤λ≤λmax

f (xk + λdk)

and set
xk+1 = xk + λkdk .

Iterate until a convergence criterion is not satisfied, e.g.
∥∥dk

∥∥ < ε or
|f (xk)− f (xk+1)| < ε.
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Review of basic methods for unconstrained problems

Review of line search methods

Bazaraa et al. (2006):

Derivative-free: dichotomous search, golden section method,
Fibonacci search

Using derivatives: bisection search, Newton’s method
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Review of basic methods for unconstrained problems

Descent directions – Steepest descent

A vector d is called a descent direction of a function f at x if there exists
a δ > 0 such that

f (x + λd) < f (x), λ ∈ (0, δ).

Steepest descent d with ‖d‖ = 1 minimizes the limit

f ′(x ; d) := lim
λ→0+

f (x + λd)− f (x)

λ
< 0.

If f is differentiable at x with a nonzero gradient, then

d = − ∇f (x)

‖∇f (x)‖

leading to the gradient (Cauchy) method.

f ′(x ; d) = ∇f (x)Td .
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Review of basic methods for unconstrained problems

Descent directions

If we set
h(λ) := f (x + λd),

then
h′(0) = ∇f (x)Td .

h is decreasing ⇔ f is decreasing in direction d .
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Review of basic methods for unconstrained problems

Descent directions

Steepest descent – works well during the early steps, the zigzagging
phenomenon often appears in later steps, see Bazaraa et al. (2006),
Example 8.6.2
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Review of basic methods for unconstrained problems

Descent directions – Newton direction

Approximation of f by a limited Taylor expansion around xk

g(x) := f (xk) +∇f (xk)T (x − xk) +
1

2
(x − xk)T∇2f (xk)(x − xk)

Setting ∇xg(x) = 0, we obtain the Newton direction

d = −
(
∇2f (xk)

)−1
∇f (xk).

If ∇2f (xk) > 0, then d is a descent direction2.

2In general, d = −A∇f (xk) for A > 0 is a descent direction → Quasi-Newton
methods.
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Review of basic methods for unconstrained problems

Descent directions – Newton direction

Convergence of the algorithm: Bazaraa et al. (2006), Theorem 8.6.5
(f ∈ C 2, ∇f (x) = 0 and ∇2f (x) > 0 at a local minimum x , starting point
is sufficiently close.)
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Review of basic methods for unconstrained problems

Descent directions – Example

min
x,y

(x − y)4 + 2x2 + y 2 − x + 2y

Partial derivatives

∂f (x , y)

∂x
= 4(x − y)3 + 4x − 1 = 0,

∂f (x , y)

∂y
= −4(x − y)3 + 2y + 2 = 0.

(1)

Second-order partial derivatives

∂2f (x , y)

∂x2
= 12(x − y)2 + 4,

∂2f (x , y)

∂x∂y
= −12(x − y)2,

∂2f (x , y)

∂y 2
= 12(x − y)2 + 2.

(2)

Compare directions dSD = ∇f (x) and dNewton = −
(
∇2f (x)

)−1∇f (x) ...
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Algorithm convergence

Algorithm convergence

Definition

Let X ⊆ Rp, Y ⊆ Rq be nonempty closed sets. Let F : X → Y be a
set-valued mapping. The map F is said to be closed at x ∈ X if for any
sequences {xk} ⊂ X , and {yk} satisfying xk → x , yk ∈ F (xk), yk → y we
have that y ∈ F (x).
The map F is said to be closed on Z ⊆ X if it is closed at each point in Z .
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Algorithm convergence

Algorithm convergence – Zangwill’s theorem

Bazaraa et al. (2006), Theorem 7.2.3: Let

A1. X ⊆ Rp be a nonempty closed set,

A2. X̂ ⊆ X be a nonempty solution set,

A3. F : X → X be a set-valued mapping closed over complement of X̂ ,

A4. Given x1 ∈ X the sequence {xk} is generated iteratively as follows: If
xk ∈ X̂ , then STOP; otherwise, let xk+1 ∈ F (xk) and repeat,

A5. the sequence x1, x2, . . . be contained in a compact subset of X ,

A6. there exist a continuous function3 α such that α(y) < α(x) if
x /∈ X̂ and y ∈ F (x).

Then either the algorithm stops in a finite number of steps with a point in
X̂ or it generates an infinite sequence {xk} such that all accumulation
points belong to X̂ and α(xk)→ α(x) for some x ∈ X̂ .

3descent function: α(x) = f (x) or α(x) = ‖∇f (x)‖
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Algorithm convergence

Algorithm convergence – Newton method

Let x be an optimal solution, set

F (x) = x −
(
∇2f (x)

)−1∇f (x),

α(x) = ‖x − x‖ .

More details: Bazaraa et al. (2006), Theorem 8.6.5
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Methods based on directions

Method of Zoutendijk

Bazaraa et al. (2006), Section 10.1: f : Rn → R, gj : Rn → R
differentiable

min
x

f (x) s.t. gj(x) ≤ 0, j = 1, . . . ,m.

(Extension including equality constraints is possible.)

Method based on improving feasible directions (remember the
“directional” optimality conditions).

Martin Branda (KPMS MFF UK) 2017-04-27 17 / 45

Methods based on directions

Method of Zoutendijk

0. Start with a feasible x1. For k = 1, . . . (,Kmax) do

1. Set J(xk) = {j : gj(x
k) = 0} and solve linear programming

problem for finding a direction:

min
z,d

z

s.t. ∇f (xk)Td ≤ z ,

∇gj(xk)Td ≤ z , j ∈ J(xk),

− 1 ≤ di ≤ 1, i = 1, . . . , n.

Denote by (zk , dk) ∈ R1+n the optimal solution.

If zk = 0 then STOP (We have found a Fritz-John point).
Else if zk < 0 then continue with STEP 2.
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Methods based on directions

Method of Zoutendijk

Bazaraa et al. (2006)
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Methods based on directions

Method of Zoutendijk

2. Find maximal possible step

λmax := sup{λ : gj(x
k + λdk) ≤ 0, j = 1, . . . ,m},

solve the line search problem

λk = arg min
0≤λ≤λmax

f (xk + λdk)

and set
xk+1 = xk + λkdk .

Continue with STEP 1.
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Methods based on directions

Method of Zoutendijk

Where could be a problem? Direction as well as line search mappings need
not to be closed...

Convergence: Bazaraa et al. (2006), part 10.2.
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Methods based on directions

Method of Zoutendijk – example

Bazaraa et al. (2006), Example 10.1.8

min 2x21 + 2x22 − 2x1x2 − 4x1 − 6x2

s.t. x1 + x2 ≤ 5,

2x21 − x2 ≤ 0,

− x1 ≤ 0,

− x2 ≤ 0.

(3)

∇f (x) = (4x1 − 2x2 − 4, 4x2 − 2x1 − 6)T (4)
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Methods based on directions

Method of Zoutendijk – Example

Starting point x0 = (0, 0.75)T , ∇f (x0) = (−5.5,−3)T , J(x0) = {3}. The
direction finding problem is then

min z

s.t. − 5.5d1 − 3d2 ≤ z ,

− d1 ≤ z ,

− 1 ≤ d1, d2 ≤ 1.

(5)

with optimal solution d1 = (1,−1), z1 = −1.
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Methods based on directions

Method of Zoutendijk – Example

Then
x0 + λd1 = (λ, 0.75− λ)

and
f (x0 + λd1) = 6λ2 − 2.5λ− 3.375.

Maximize it over the set of feasible solutions M to obtain λmax = 0.4114.
Finally

min 6λ2 − 2.5λ− 3.375

s.t. 0 ≤ λ ≤ λmax .
(6)

λ1 = 0.2083.
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Cutting plane method

Cutting plane method

f : Rn → R, gj : Rn → R

min
x

f (x) s.t. gj(x) ≤ 0, j = 1, . . . ,m.

Denote M = {x ∈ R : gj(x) ≤ 0, j = 1, . . . ,m}.

ASS. f is affine, g are convex and differentiable, M is compact.
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Cutting plane method

Cutting plane method

0. Start with a polyhedral set M0 such that M ⊂ M0, e.g. a box
M0 = [lb1, ub1]× · · · × [lbm, ubm]. For k = 0, . . . (,Kmax) do

1. Solve the linear programming problem

min
x

f (x) s.t. x ∈ Mk ,

and obtain xk ∈ Mk . If xk ∈ M, then STOP, we have found an
optimal solution. Otherwise continue with STEP 2.

2. If xk /∈ M, then find jk = arg maxj gj(x
k), construct a cutting plane

and set

Mk+1 = Mk ∩
{
x ∈ R : gjk (xk) +∇gjk (xk)T (x − xk) ≤ 0

}
.

Note that xk violates the cut, and no x ∈ M is cut off4 (compare
with the integer programming cuts). Return to STEP 1.

4From convexity gjk (x
k) +∇gjk (xk)T (x − xk) ≤ gjk (x) ≤ 0.
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Cutting plane method

Cutting plane method – Example

min
x
− x1 − x2

s.t. x21 + x22 − 1 ≤ 0,

x1, x2 ≥ 0.

Set M = {(x1, x2) : x21 + x22 − 1 ≤ 0, x1, x2 ≥ 0}, ∇g(x)T = (2x1, 2x2).
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Cutting plane method

Cutting plane method – Example

0. Set M0 = [0, 1]2.

1. Solve minx −x1 − x2 s.t. x ∈ M0 with optimal solution x0 = (1, 1)T .

2. Since x0 /∈ M, construct the cut

g(x0) +∇g(x0)T (x − x0) ≤ 0,

and set
M1 = M0 ∩ {(x1, x2) : x1 + x2 ≤ 3/2}.

Continue with STEP 1.
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Cutting plane method

Cutting plane method – Example

x1 = (1, 0.5)T , x1 /∈ M,

M2 = M1 ∩ {(x1, x2) : 2x1 + x2 ≤ 9/4}.

Martin Branda (KPMS MFF UK) 2017-04-27 30 / 45

Cutting plane method

Cutting plane method
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Cutting plane method

Cutting plane method

Algorithm with projection ...

Kall and Mayer (2005).
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Penalty method

Penalty method

Perfect penalty (rather theoretical)

PP(x) =

{ 0 if g(x) ≤ 0, h(x) = 0,

∞ otherwise.

Compare with the Lagrangian duality (sup over multipliers).

The following problem is equivalent to the original constrained one.

min
x

f (x) + PP(x).
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Penalty method

Penalty method

Lp,q− penalty function, p, q ∈ {1, 2, . . . }:

PFN(x) = N ·

 m∑
j=1

[gj(x)]p+ +
l∑

i=1

|hi (x)|q
 ,

where N > 0 is the penalty parameter, [·]+ = max{·, 0}.

More general penalty using Φ(y) = 0 for y ≤ 0 and Φ(y) > 0 for y > 0
and Ψ(y) = 0 for y = 0 and Ψ(y) > 0 for y 6= 0.
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Penalty method

Penalty method

Algorithm:

0. Set ε > 0, N1 > 0, β > 1. For k = 1, . . . (,Kmax) do:

1. Solve
min
x

f (x) + PFNk (x).

and obtain xk

2. IF PFNk (xk) < ε, then STOP. ELSE set Nk+1 = Nk · β and continue
with STEP 1.

Exterior point method.
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Penalty method

Penalty method

Convergence of the method: Bazaraa et al. (2006), Theorem 9.2.2
(continuous f , gj , hi , xk ∈ X ∩ U compact).
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Penalty method

Penalty functions – Example

Consider

min x21 + x22

s.t. x1 + x2 = 2.

with optimal solution x̂1 = x̂2 = 1. Penalty function problem

min x21 + x22 + N(x1 + x2 − 2)2.

Using optimality conditions

x̂N1 = x̂N2 =
2N

2N + 1
.
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Penalty method

Penalty method

Remarks

Sequential Unconstrained Minimization (SUMT): optimal solution
xk is used as a starting point in the next iteration5 to solve the
penalty problem with Nk+1.

Exact penalty: Instead of N →∞ it is sufficient to converge
N → N <∞ (numerically more stable).

5“warm starting”
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Augmented Lagrangian Method

Augmented Lagrangian Method

Nocedal and Wright (2006), Section 17.3: f : Rn → R, hi : Rn → R
differentiable

min
x

f (x)

s.t. hi (x) = 0, i = 1, . . . , l .

(Extension including inequality constraints is possible.)

L(x , v) = f (x)−
l∑

i=1

vihi (x).
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Augmented Lagrangian Method

Augmented Lagrangian Method

Augmented Lagrangian function – combination of the Lagrangian
function with the quadratic penalty term

LA(x , λ, µ) = f (x)−
l∑

i=1

λihi (x) +
µ

2

l∑
i=1

(hi (x))2 .

∇xLA(x , λ, µ) = ∇x f (x)−
l∑

i=1

λi∇xhi (x) + µ

l∑
i=1

hi (x)∇xhi (x)

= ∇x f (x)−
l∑

i=1

(λi − µhi (x))∇xhi (x).

We have that vi ≈ λi − µhi (x).
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Augmented Lagrangian Method

Augmented Lagrangian Method

0. Set initial µ1 > 0, β > 1 and λ1. Select a tolerance ε > 0. For
k = 1, . . . (,Kmax) do:

1. Solve unconstrained problem

min
x

LA(x , λk , µk)

and obtain xk . If
∥∥∇xLA(xk , λk , µk)

∥∥ ≤ ε, STOP. Otherwise
continue with STEP 2.

2. Update the Lagrange multipliers λk+1
i = λki − µkhi (xk) and the

penalty parameter µk+1 = βµk . Go to STEP 1.
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Augmented Lagrangian Method

Augmented Lagrangian Method

Convergence of the algorithm: Nocedal and Wright (2006), Theorem 17.5
(LICQ, SOSC).
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Augmented Lagrangian Method
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