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LIf possible, deliver the derivatives.
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Unconstrained problems Review of line search methods

Let f : R” — R, x° be a starting point, d¥ € R" be a descent direction,
and A € R be a step length.

Find a descent direction d*, solve the line search problem Bazaraa et al. (2006):
. . . @ Derivative-free: dichotomous search, golden section method,
A =arg 0<min f(x* + Ad") Fibonacci search

a @ Using derivatives: bisection search, Newton's method
and set

XKL = xk 4 \kgk,

Iterate until a convergence criterion is not satisfied, e.g. Hd"” <e€or
[f(xk) — F(x*1)| < e.
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Descent directions — Steepest descent Descent directions

A vector d is called a descent direction of a function f at x if there exists
a 0 > 0 such that

F(x + \d) < f(x), A€ (0,9).
Steepest descent d with ||d|| = 1 minimizes the limit If we set
h(X) :== f(x + Ad),

f'(x:d) := lim flx+Ad) — f(x)

< 0.
A0, A then

H(0) = VF(x)"d.

If f is differentiable at x with a nonzero gradient, then h iis decreasing <> f is decreasing in direction d.

V)
Y= IV

leading to the gradient (Cauchy) method.
f'(x;d) = VFf(x)Td.

oz o) oz 7/

Review of basic methods for unconstrained problems
Descent directions Descent directions — Newton direction

Approximation of f by a limited Taylor expansion around x*

g(x) == F(x*) + V9T (x — x) + %(X — xYTV2f (xF)(x — xK)
Steepest descent — works well during the early steps, the zigzagging
phenomenon often appears in later steps, see Bazaraa et al. (2006), Setting V,g(x) = 0, we obtain the Newton direction
Example 8.6.2

d =~ (Vr(e) VAR,

If V2f(x) > 0, then d is a descent direction.

%In general, d = —~AVf(x*) for A > 0 is a descent direction — Quasi-Newton
methods.
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Descent directions — Newton direction

Convergence of the algorithm: Bazaraa et al. (2006), Theorem 8.6.5
(f € C?, VF(X) = 0 and V2f(X) > 0 at a local minimum X, starting point
is sufficiently close.)

ozt 1048

Algorithm convergence

Definition

Let X C RP, Y C R9 be nonempty closed sets. Let F: X — Y be a
set-valued mapping. The map F is said to be closed at x € X if for any
sequences {x*} C X, and {y*} satisfying xx — x, y¥ € F(x¥), y¥ — y we
have that y € F(x).

The map F is said to be closed on Z C X if it is closed at each point in Z.
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Descent directions — Example

min(x—y)“-‘,—2><2-',-y2 —x+2y
X,y

Partial derivatives

M =4(x—y)3+4><—1:0,
Ox o)
of(x,y) _ N3 _
oy~ Mxyytv+2=0

Second-order partial derivatives

Pr(xy) _

2
pw 12(x — y)” + 4,
Pf(xy) _ 2
o) 12—y, @
f(x,y) >
T =12(x—y)" +2.

Compare directions d*? = Vf(x) and dV"*" = — (sz(x))_1 Vf(x) ...

oz e

Algorithm convergence — Zangwill's theorem

Bazaraa et al. (2006), Theorem 7.2.3: Let

Al. X C RP be a nonempty closed set,

A2. XC X bea nonempty solution set,

A3. F: X — X be a set-valued mapping closed over complement of X,

A4. Given x! € X the sequence {x*} is generated iteratively as follows: If
xK € X, then STOP; otherwise, let x*T1 € F(x*) and repeat,

A5. the sequence x!,x2,... be contained in a compact subset of X,

A6. there exist a continuous function® « such that a(y) < a(x) if

x ¢ X and y € F(x).
Then either the algorithm stops in a finite number of steps with a point in
X or it generates an infinite sequence {x*} such that all accumulation
points belong to X and a(x*) — a(x) for some x € X.

3descent function: a(x) = f(x) or a(x) = ||[VF(x)|
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Algorithm convergence

Algorithm convergence — Newton method

Let X be an optimal solution, set

F(x) =x— (V2f(x)) " VF(x),

alx) = x|

More details: Bazaraa et al. (2006), Theorem 8.6.5

wronar 1548

Method of Zoutendijk

0. Start with a feasible x!. For k =1,...(, Kmax) do
1. Set J(x¥) = {j : gj(x*) = 0} and solve linear programming
problem for finding a direction:
min z
z,d
st. VA(x¥)Td < z,
ng(xk)Td <z, je JxM,
—1<d:<1,i=1,...,n.
Denote by (2%, d¥) € R*" the optimal solution.

o If zZK =0 then STOP (We have found a Fritz-John point).
o Else if z€ < 0 then continue with STEP 2.
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Method of Zoutendijk

Bazaraa et al. (2006), Section 10.1: f : R" = R, gj : R" = R
differentiable

min f(x) s.t. gi(x) <0, j=1,...,m.
X
(Extension including equality constraints is possible.)

Method based on improving feasible directions (remember the
“directional” optimality conditions).
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Methods based on directions
Method of Zoutendijk
First constraint Vgy(X)
iy ~
Contours of the
objective function
Third < 3
comsirand
N Improving feasible
N directions
4
Second
h e,
Fourth ‘_|
constrant
Bazaraa et al. (2006)
19/ a5
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Methods based on directions

Method of Zoutendijk

2. Find maximal possible step

Amax := sup{\ : gj(xk +Ad¥)<0,j=1,...

solve the line search problem

M=arg min  f(x*+ rd¥)

0<AS Amax
and set

XKL — gk 1 akgk,
Continue with STEP 1.

Martin Branda (KPMS MFF UK)

Methods based on directions

Method of Zoutendijk — example
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Bazaraa et al. (2006), Example 10.1.8

min 2x12 + 2><22 —2x1x0 — 4x1 — 6x2
s.t. x1 +x2 <5,

2x¢ — x <0,

—x <0,

—xp <0.

Vi(x) = (4x1 — 2x0 — 4, dxy — 2x; — 6) "

Martin Branda (KPMS MFF UK)
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Methods based on directions

Method of Zoutendijk

Where could be a problem? Direction as well as line search mappings need
not to be closed...

Convergence: Bazaraa et al. (2006), part 10.2.
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Methods based on directions

Method of Zoutendijk — Example

Starting point x° = (0,0.75)7, V£(x°) = (=5.5,-3)7, J(x°) = {3}. The
direction finding problem is then
min z
s.t. —5.5d1 —3dh < z,
dp < ()
—a =2z
—1<d,db <1
with optimal solution d! = (1, 1), z! = —1

Martin Branda (KPMS MFF UK)
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Method of Zoutendijk — Example

Then
X0+ Adt = (), 0.75 - )

and
F(x° + Ad') = 6A% — 2.5\ — 3.375.

Maximize it over the set of feasible solutions M to obtain A, = 0.4114.
Finally

min 6% — 2.5\ — 3.375

(6)
s.t. 0 < A < Apmax-
Al = 0.2083.
2017-04-27 24/ 45

Cutting plane method

0. Start with a polyhedral set M° such that M C MO, e.g. a box
MO = [Iby, uby] X -+ X [Ibm, ubm). For k =0,...(, Kmax) do

1. Solve the linear programming problem
min f(x) s.t. x € M¥,
X

and obtain x¥ € Mk, If x € M, then STOP, we have found an
optimal solution. Otherwise continue with STEP 2.

2. If x¥ ¢ M, then find j* = arg max; gj(x*), construct a cutting plane
and set

MK = pmkn {X eR: gjk(xk) + ngk(xk)T(x - x9) < 0}.

Note that xX violates the cut, and no x € M is cut off* (compare
with the integer programming cuts). Return to STEP 1.

*From convexity g (x*) + Vg (x*) (x — x*) < gu(x) < 0.
arorzr /e

Cutting plane method

f:R" =R, g :R"=R
min f(x) s.t. gj(x) <0, j=1,...,m.
X

Denote M ={x e R: gj(x) <0, j=1,...,m}.

ASS. f is affine, g are convex and differentiable, M is compact.

2070027

Cutting plane method — Example

26 / 45

min — X1 — X2
X

st.xt+x3-1<0,
x1,x2 > 0.

Set M= {(x1,x): x¥+x3 —1<0,x,x >0}, Vg(x)T = (2x1,2x).
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Cutting plane method — Example Cutting plane method — Example

0. Set M° = [0, 1]>.
1. Solve min, —x; — xo s.t. x € M® with optimal solution x° = (1,1)7.

2. Since x° ¢ M, construct the cut xt=(1,05)", x' ¢ M,

g(x%) +Ve(x®) T (x—x% <o, M? = M0 {(x1,2) © 2x1 +x2 < 9/4}.
and set
M= MOn {(x1,%) 1 x1+x2 <3/2}.
Continue with STEP 1.

wrosz 2945 v 30/
Cutting plane method Cutting plane method

Algorithm with projection ...

1 12
1 1
0.8 0.8
o 06 g,(x)=0
04 0.
02 0.2
0 0.0
0.0 02 04 06 08 1.0 12 0.0 0.2 04 06 08 1.0 12

Kall and Mayer (2005).
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Penalty method

Perfect penalty (rather theoretical)
0 if g(x) < 0,h(x) = 0,
PP(x) = {

oo otherwise.

Compare with the Lagrangian duality (sup over multipliers).

The following problem is equivalent to the original constrained one.

mXin f(x) + PP(x).

S

Penalty method

Algorithm:
0. Sete >0, N1 >0,8>1 Fork=1,...(,Kmax) do:
1. Solve
min f(x) + PFyx(x).

and obtain x*

2. IF PFyk(x*) < ¢, then STOP. ELSE set Nx*! = Nk . 3 and continue
with STEP 1.

Exterior point method.
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Penalty method

Lp.q— penalty function, p,q € {1,2,...}:
m 1
PEN(x) = N~ | > lg()2 + > Ihi(x)|7 ] .
j=1 i=1
where N > 0 is the penalty parameter, [-]; = max{-,0}.

More general penalty using ®(y) =0 for y < 0 and ®(y) > 0 for y > 0
and W(y) =0 for y =0 and W(y) > 0 for y # 0.

o 34

Penalty method

Convergence of the method: Bazaraa et al. (2006), Theorem 9.2.2
(continuous f, gj, hj, xx € X N U compact).
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Penalty functions — Example

Consider

min x2 + x2

s.t. x1 +x = 2.
with optimal solution X; = X = 1. Penalty function problem
minx? + x5 + N(x1 + x — 2)%

Using optimality conditions

2017 0n27

Augmented Lagrangian Method

Nocedal and Wright (2006), Section 17.3: f : R" = R, h; : R" - R
differentiable

min f(x)

X

st hi(x)=0, i=1,...,1.

(Extension including inequality constraints is possible.)

!
L(x,v) = f(x) = Y _ vihi(x).
i=1
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Penalty method

Remarks

o Sequential Unconstrained Minimization (SUMT): optimal solution

x¥ is used as a starting point in the next iteration® to solve the
penalty problem with Nyj.

o Exact penalty: Instead of N — oo it is sufficient to converge
N — N < oo (numerically more stable).

5 “warm starting”

20170027

Augmented Lagrangian Method

Augmented Lagrangian Method

39 /45

Augmented Lagrangian function — combination of the Lagrangian
function with the quadratic penalty term

1 I

La(x, A\, p) = f(x) — Z)\ihi(x) + g Z (hi(x)).

i=1 i=1

! !
Vila(x, A 1) = Vif(x) = > AiVihi(x) + 1Y hi(x)Vichi(x)
i=1 i=1
!

= Vif(x) — Z (Ni = phi(x)) Vxhi(x).

i=1

We have that v; &~ \; — phi(x).
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Augmented Lagrangian Method

Augmented Lagrangian Method

0. Set initial ul >0, 8> 1and Al. Select a tolerance ¢ > 0. For
k=1,...(, Kmax) do:

1. Solve unconstrained problem
min La(x, A%, 11%)
X

and obtain x*. If ||V La(x, A%, uk)|| < &, STOP. Otherwise
continue with STEP 2.

2. Update the Lagrange multipliers Af-‘“ = Ak — pikhi(x*) and the
penalty parameter %+ = guk. Go to STEP 1.

o 434
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Augmented Lagrangian Method

Augmented Lagrangian Method

Convergence of the algorithm: Nocedal and Wright (2006), Theorem 17.5

(LICQ, SOSC).
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