

Let $f : \mathbb{R}^n \to \mathbb{R}$, x^0 be a starting point, $d^k \in \mathbb{R}^n$ be a **descent direction**, and $\lambda \in \mathbb{R}$ be a **step length**.

Find a descent direction d^k , solve the line search problem

$$\lambda^{k} = \arg\min_{0 \le \lambda \le \lambda_{max}} f(x^{k} + \lambda d^{k})$$

and set

$$x^{k+1} = x^k + \lambda^k d^k.$$

Iterate until a convergence criterion is not satisfied, e.g. $\|d^k\| < \varepsilon$ or $|f(x^k) - f(x^{k+1})| < \varepsilon$.

- Derivative-free: dichotomous search, golden section method, Fibonacci search
- Using derivatives: bisection search, Newton's method

2017-04-27 4 / 45

Descent directions - Steepest descent

Review of basic methods for unconstrained problems

A vector d is called a descent direction of a function f at x if there exists a $\delta>0$ such that

$$f(x + \lambda d) < f(x), \ \lambda \in (0, \delta).$$

Steepest descent *d* with ||d|| = 1 minimizes the limit

$$f'(x; d) := \lim_{\lambda \to 0_+} \frac{f(x + \lambda d) - f(x)}{\lambda} < 0.$$

If f is differentiable at x with a nonzero gradient, then

$$d = -\frac{\nabla f(x)}{\|\nabla f(x)\|}$$

leading to the gradient (Cauchy) method.

$$f'(x;d) = \nabla f(x)^T d.$$

Martin Branda (KPMS MFF UK)

2017-04-27 6 / 45

Descent directions

Review of basic methods for unconstrained problems

If we set

$$h(\lambda) := f(x + \lambda d),$$

then

 $h'(0) = \nabla f(x)^T d.$

h is decreasing \Leftrightarrow *f* is decreasing in direction *d*.

Martin Branda (KPMS MFF UK)	2017-04-27	7 / 45

Review of basic methods for unconstrained problems Descent directions

Steepest descent – works well during the early steps, the **zigzagging** phenomenon often appears in later steps, see Bazaraa et al. (2006), Example 8.6.2

Descent directions – Newton direction

Review of basic methods for unconstrained problems

Approximation of f by a limited Taylor expansion around x^k

$$g(x) := f(x^k) + \nabla f(x^k)^T (x - x^k) + \frac{1}{2} (x - x^k)^T \nabla^2 f(x^k) (x - x^k)$$

Setting $\nabla_x g(x) = 0$, we obtain the **Newton direction**

$$d = -\left(\nabla^2 f(x^k)\right)^{-1} \nabla f(x^k).$$

If $\nabla^2 f(x^k) > 0$, then *d* is a descent direction².

²In general, $d = -A\nabla f(x^k)$ for A > 0 is a descent direction \rightarrow Quasi-Newton methods. Martin Branda (KPMS MFF UK) 2017-04-27 9 / 45

2017-04-27 8 / 45

Descent directions - Newton direction

Review of basic methods for unconstrained problems

Convergence of the algorithm: Bazaraa et al. (2006), Theorem 8.6.5 $(f \in C^2, \nabla f(\overline{x}) = 0 \text{ and } \nabla^2 f(\overline{x}) > 0 \text{ at a local minimum } \overline{x}, \text{ starting point is sufficiently close.})$

Descent directions – Example

Review of basic methods for unconstrained problems

$$\min_{x,y}(x-y)^4 + 2x^2 + y^2 - x + 2y$$

Partial derivatives

 $\begin{aligned} \frac{\partial f(x,y)}{\partial x} &= 4(x-y)^3 + 4x - 1 = 0, \\ \frac{\partial f(x,y)}{\partial y} &= -4(x-y)^3 + 2y + 2 = 0. \end{aligned}$ (1)

Second-order partial derivatives

 $\frac{\partial^2 f(x,y)}{\partial x^2} = 12(x-y)^2 + 4,$ $\frac{\partial^2 f(x,y)}{\partial x \partial y} = -12(x-y)^2,$ $\frac{\partial^2 f(x,y)}{\partial y^2} = 12(x-y)^2 + 2.$ (2)

Compare directions
$$d^{SD} = \nabla f(x)$$
 and $d^{Newton} = -(\nabla^2 f(x))^{-1} \nabla f(x)$.

Martin Branda (KPMS MFF UK)

2017-04-27 11 / 45

Algorithm convergence

Martin Branda (KPMS MFF UK)

Definition

Let $X \subseteq \mathbb{R}^p$, $Y \subseteq \mathbb{R}^q$ be nonempty closed sets. Let $F: X \to Y$ be a set-valued mapping. The map F is said to be **closed** at $x \in X$ if for any sequences $\{x^k\} \subset X$, and $\{y^k\}$ satisfying $x_k \to x$, $y^k \in F(x^k)$, $y^k \to y$ we have that $y \in F(x)$. The map F is said to be closed on $Z \subset X$ if it is closed at each point in Z. Algorithm convergence – Zangwill's theorem

Bazaraa et al. (2006), Theorem 7.2.3: Let

- A1. $X \subseteq \mathbb{R}^p$ be a nonempty **closed** set,
- A2. $\hat{X} \subseteq X$ be a **nonempty solution set**,
- A3. $F: X \to X$ be a set-valued mapping **closed** over complement of \hat{X} ,
- A4. Given $x^1 \in X$ the sequence $\{x^k\}$ is generated iteratively as follows: If $x^k \in \hat{X}$, then STOP; otherwise, let $x^{k+1} \in F(x^k)$ and repeat,
- A5. the sequence x^1, x^2, \ldots be contained in a **compact** subset of *X*,
- A6. there exist a **continuous function**³ α such that $\alpha(y) < \alpha(x)$ if $x \notin \hat{X}$ and $y \in F(x)$.

Then either the algorithm stops in a finite number of steps with a point in \hat{X} or it generates an infinite sequence $\{x^k\}$ such that all accumulation points belong to \hat{X} and $\alpha(x^k) \to \alpha(x)$ for some $x \in \hat{X}$.

2017-04-27 10 / 45

Let \overline{x} be an optimal solution, set

$$F(x) = x - (\nabla^2 f(x))^{-1} \nabla f(x),$$

$$\alpha(x) = \|x - \overline{x}\|.$$

More details: Bazaraa et al. (2006), Theorem 8.6.5

Method of Zoutendijk

Bazaraa et al. (2006), Section 10.1: $f : \mathbb{R}^n \to \mathbb{R}, g_j : \mathbb{R}^n \to \mathbb{R}$ differentiable

 $\min_{x} f(x) \text{ s.t. } g_j(x) \le 0, \ j = 1, \dots, m.$

(Extension including equality constraints is possible.)

Methods based on directions

Method based on **improving feasible directions** (remember the "directional" optimality conditions).

Denote by $(z^k, d^k) \in \mathbb{R}^{1+n}$ the optimal solution.

• If $z^k = 0$ then STOP (We have found a Fritz-John point).

2017-04-27 18 / 45

• Else if $z^k < 0$ then continue with STEP 2.

Martin Branda (KPMS MFF UK)

Martin Branda (KPMS MFF UK)

Bazaraa et al. (2006)

Method of Zoutendijk

2. Find maximal possible step

$$\lambda_{max} := \sup\{\lambda : g_j(x^k + \lambda d^k) \le 0, j = 1, \dots, m\}$$

solve the line search problem

Methods based on directions

$$\lambda^{k} = \arg\min_{0 \le \lambda \le \lambda_{max}} f(x^{k} + \lambda d^{k})$$

and set

$$x^{k+1} = x^k + \lambda^k d^k.$$

Continue with STEP 1.

Method of Zoutendijk

Where could be a problem? Direction as well as line search mappings need not to be closed...

Convergence: Bazaraa et al. (2006), part 10.2.

Methods based on directions

Martin Branda (KPMS MFF UK) 20	2017-04-27 20 / 45	Martin Branda (KPMS MFF UK) 2017-04-27 21 / 45
		Methods based on directions
ivietnod of Zoutendijk – example		Method of Zoutenaljk – Example
Pararas et al. (2006) Example 10.1.8		
Dazaraa et al. (2000), Example 10.1.6		Starting point $x^0 = (0, 0.75)^T$, $\nabla f(x^0) = (-5.5, -3)^T$, $J(x^0) = \{3\}$. The
$\min 2x_1^2 + 2x_2^2 - 2x_1x_2 - 4x_1 - 6x_2$		direction finding problem is then
s.t. $x_1 + x_2 \leq 5$,		min z
$2x_1^2-x_2\leq 0,$	(3)	$s = 55d - 3d \leq 7$
$-x_1 \leq 0,$		$s.t 5.5u_1 - 5u_2 \le 2, \tag{5}$
$-x_2 \leq 0.$		$-u_1 \ge z$,
		$-1 \leq d_1, d_2 \leq 1.$
$\nabla f(x) = (A_{1}, A_{2}, A_{3}, A_{3$		with optimal solution $d^1 = (1, -1)$, $z^1 = -1$.
$\nabla f(x) = (4x_1 - 2x_2 - 4, 4x_2 - 2x_1 - 6)^2$	(4)	

2017-04-27 22 / 45

Methods based on directions

$$x^0 + \lambda d^1 = (\lambda, 0.75 - \lambda)$$

and

$$f(x^0 + \lambda d^1) = 6\lambda^2 - 2.5\lambda - 3.375.$$

Maximize it over the set of feasible solutions M to obtain $\lambda_{\max}=$ 0.4114. Finally

$$\min 6\lambda^2 - 2.5\lambda - 3.375 s.t. 0 \le \lambda \le \lambda_{max}.$$
 (6)

2017-04-27 24 / 45

 $\lambda^1 = 0.2083.$

Martin Branda (KPMS MFF UK)

Cutting plane method

 $f: \mathbb{R}^n \to \mathbb{R}, g_j: \mathbb{R}^n \to \mathbb{R}$

$$\min_{x} f(x) \text{ s.t. } g_j(x) \leq 0, \ j = 1, \ldots, m.$$

Denote $M = \{x \in \mathbb{R} : g_j(x) \leq 0, j = 1, \dots, m\}.$

ASS. f is affine, g are convex and differentiable, M is compact.

Cutting plane method

Martin Branda (KPMS MFF UK)

2017-04-27 26 / 45

Cutting plane method

- 0. Start with a polyhedral set M^0 such that $M \subset M^0$, e.g. a box $M^0 = [lb_1, ub_1] \times \cdots \times [lb_m, ub_m]$. For $k = 0, \dots, (K_{max})$ do
- 1. Solve the linear programming problem

Cutting plane method

$$\min f(x) \text{ s.t. } x \in M^k$$

and obtain $x^k \in M^k$. If $x^k \in M$, then STOP, we have found an optimal solution. Otherwise continue with STEP 2.

2. If $x^k \notin M$, then find $j^k = \arg \max_j g_j(x^k)$, construct a **cutting plane** and set

$$M^{k+1} = M^k \cap \left\{ x \in \mathbb{R} : g_{j^k}(x^k) + \nabla g_{j^k}(x^k)^T(x-x^k) \leq 0 \right\}.$$

Note that x^k violates the cut, and no $x \in M$ is cut off⁴ (compare with the integer programming cuts). Return to STEP 1.

⁴From convexity
$$g_{jk}(x^k) + \nabla g_{jk}(x^k)^T (x - x^k) \le g_{jk}(x) \le 0.$$

Martin Branda (KPMS MFF UK) 2017-04-27 27 / 45

Cutting plane method – Example

Cutting plane method

$$\begin{split} \min_{x} & -x_1 - x_2 \\ \text{s.t.} & x_1^2 + x_2^2 - 1 \leq 0, \\ & x_1, x_2 \geq 0. \end{split}$$

Set $M = \{(x_1, x_2): x_1^2 + x_2^2 - 1 \le 0, x_1, x_2 \ge 0\}, \nabla g(x)^T = (2x_1, 2x_2).$

Martin Branda (KPMS MFF UK)

2017-04-27 28 / 45

Cutting plane method – Example

Cutting plane method

- 0. Set $M^0 = [0, 1]^2$.
- 1. Solve $\min_x -x_1 x_2$ s.t. $x \in M^0$ with optimal solution $x^0 = (1, 1)^T$.
- 2. Since $x^0 \notin M$, construct the cut

$$g(x^0) + \nabla g(x^0)^T (x - x^0) \leq 0,$$

and set

$$M^1 = M^0 \cap \{(x_1, x_2): x_1 + x_2 \le 3/2\}$$

Continue with STEP 1.

Martin Branda (KPMS MFF UK)

Cutting plane method

$$x^1 = (1, 0.5)^T$$
, $x^1 \notin M$,

$$M^2 = M^1 \cap \{(x_1, x_2): 2x_1 + x_2 \le 9/4\}.$$

2017-04-27 31 / 45

Kall and Mayer (2005).

Martin Branda (KPMS MFF UK)

Perfect penalty (rather theoretical)

$$PP(x) = \begin{cases} 0 & \text{if } g(x) \le 0, h(x) = 0\\ \\ \infty & \text{otherwise.} \end{cases}$$

Penalty method

Compare with the Lagrangian duality (sup over multipliers).

The following problem is equivalent to the original constrained one.

$$\min_{x} f(x) + PP(x).$$

Penalty method

 $L_{p,q}$ - penalty function, $p, q \in \{1, 2, ...\}$:

$$PF_N(x) = N \cdot \left(\sum_{j=1}^m [g_j(x)]_+^p + \sum_{i=1}^l |h_i(x)|^q \right),$$

Penalty method

where N > 0 is the penalty parameter, $[\cdot]_+ = \max\{\cdot, 0\}$.

More general penalty using $\Phi(y) = 0$ for $y \le 0$ and $\Phi(y) > 0$ for y > 0and $\Psi(y) = 0$ for y = 0 and $\Psi(y) > 0$ for $y \ne 0$.

Martin Branda (KPMS MFF UK)

Penalty functions – Example

Consider

min
$$x_1^2 + x_2^2$$

s.t. $x_1 + x_2 = 2$.

with optimal solution $\hat{x}_1 = \hat{x}_2 = 1$. Penalty function problem

Penalty method

$$\min x_1^2 + x_2^2 + N(x_1 + x_2 - 2)^2.$$

Using optimality conditions

Martin Branda (KPMS MFF UK)

$$\hat{x}_1^N = \hat{x}_2^N = \frac{2N}{2N+1}.$$

Penalty method

Remarks

- Sequential Unconstrained Minimization (SUMT): optimal solution x^k is used as a starting point in the next iteration⁵ to solve the penalty problem with N_{k+1} .
- Exact penalty: Instead of $N \to \infty$ it is sufficient to converge $N \to \overline{N} < \infty$ (numerically more stable).

Penalty method

⁵ "warm starting"		
Martin Branda (KPMS MFF UK)	2017-04-27	39 / 45

Augmented Lagrangian Method

Nocedal and Wright (2006), Section 17.3: $f : \mathbb{R}^n \to \mathbb{R}, h_i : \mathbb{R}^n \to \mathbb{R}$ differentiable

$$\min_{x} f(x)$$

s.t. $h_i(x) = 0, i = 1, \dots, l$

(Extension including inequality constraints is possible.)

$$L(x, v) = f(x) - \sum_{i=1}^{l} v_i h_i(x).$$

Augmented Lagrangian Method

Augmented Lagrangian Method

Augmented Lagrangian function – combination of the Lagrangian function with the quadratic penalty term

$$L_A(x,\lambda,\mu) = f(x) - \sum_{i=1}^l \lambda_i h_i(x) + \frac{\mu}{2} \sum_{i=1}^l (h_i(x))^2 .$$

$$\nabla_x L_A(x,\lambda,\mu) = \nabla_x f(x) - \sum_{i=1}^l \lambda_i \nabla_x h_i(x) + \mu \sum_{i=1}^l h_i(x) \nabla_x h_i(x)$$

$$= \nabla_x f(x) - \sum_{i=1}^l (\lambda_i - \mu h_i(x)) \nabla_x h_i(x).$$

We have that $v_i \approx \lambda_i - \mu h_i(x)$.

Martin Branda (KPMS MFF UK)

Martin Branda (KPMS MFF UK)

2017-04-27 41 / 45

2017-04-27 38 / 45

2017-04-27 42 / 45

Augmented Lagrangian Method

Augmented Lagrangian Method

- 0. Set initial $\mu^1>0$, $\beta>1$ and λ^1 . Select a tolerance $\varepsilon>0$. For $k=1,\ldots(,K_{max})$ do:
- 1. Solve unconstrained problem

$$\min L_A(x,\lambda^k,\mu^k)$$

- and obtain x^k . If $\|\nabla_x L_A(x^k, \lambda^k, \mu^k)\| \le \varepsilon$, STOP. Otherwise continue with STEP 2.
- 2. Update the Lagrange multipliers $\lambda_i^{k+1} = \lambda_i^k \mu^k h_i(x^k)$ and the penalty parameter $\mu^{k+1} = \beta \mu^k$. Go to STEP 1.

Augmented Lagrangian Method

Convergence of the algorithm: Nocedal and Wright (2006), Theorem 17.5 (LICQ, SOSC).

|--|

Augmented Lagrangian Method

2017-04-27 43 / 45

Martin Branda (KPMS MFF UK)

2017-04-27 44 / 45

Literature

- Bazaraa, M.S., Sherali, H.D., and Shetty, C.M. (2006). Nonlinear programming: theory and algorithms, Wiley, Singapore, 3rd edition.
- Boyd, S., Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press, Cambridge.
- P. Kall, J. Mayer: Stochastic Linear Programming: Models, Theory, and Computation. Springer, 2005.
- Nocedal, J., Wright, J.S. (2006). Numerical optimization. Springer, New York, 2nd edition.