Algorithms for nonlinear programming problems I

Martin Branda

Charles University in Prague
Faculty of Mathematics and Physics
Department of Probability and Mathematical Statistics

Computational Aspects of Optimization

Algorithm classification

- Order of derivatives ${ }^{1}$: derivative-free, first order (gradient), second-order (Newton)
- Feasibility of the constructed points: interior and exterior point methods
- Deterministic/randomized
- Local/global
${ }^{1}$ If possible, deliver the derivatives.

Unconstrained problems

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, x^{0}$ be a starting point, $d^{k} \in \mathbb{R}^{n}$ be a descent direction, and $\lambda \in \mathbb{R}$ be a step length.

Find a descent direction d^{k}, solve the line search problem

$$
\lambda^{k}=\arg \min _{0 \leq \lambda \leq \lambda_{\max }} f\left(x^{k}+\lambda d^{k}\right)
$$

and set

$$
x^{k+1}=x^{k}+\lambda^{k} d^{k}
$$

Iterate until a convergence criterion is not satisfied, e.g. $\left\|d^{k}\right\|<\varepsilon$ or $\left|f\left(x^{k}\right)-f\left(x^{k+1}\right)\right|<\varepsilon$.

Review of line search methods

Bazaraa et al. (2006):

- Derivative-free: dichotomous search, golden section method, Fibonacci search
- Using derivatives: bisection search, Newton's method

Descent directions - Steepest descent

A vector d is called a descent direction of a function f at x if there exists a $\delta>0$ such that

$$
f(x+\lambda d)<f(x), \lambda \in(0, \delta)
$$

Steepest descent d with $\|d\|=1$ minimizes the limit

$$
f^{\prime}(x ; d):=\lim _{\lambda \rightarrow 0_{+}} \frac{f(x+\lambda d)-f(x)}{\lambda}<0
$$

If f is differentiable at x with a nonzero gradient, then

$$
d=-\frac{\nabla f(x)}{\|\nabla f(x)\|}
$$

leading to the gradient (Cauchy) method.

$$
f^{\prime}(x ; d)=\nabla f(x)^{T} d
$$

Descent directions

If we set

$$
h(\lambda):=f(x+\lambda d)
$$

then

$$
h^{\prime}(0)=\nabla f(x)^{T} d
$$

h is decreasing $\Leftrightarrow f$ is decreasing in direction d.

Descent directions

Steepest descent - works well during the early steps, the zigzagging phenomenon often appears in later steps, see Bazaraa et al. (2006), Example 8.6.2

Descent directions - Newton direction

Approximation of f by a limited Taylor expansion around x^{k}

$$
g(x):=f\left(x^{k}\right)+\nabla f\left(x^{k}\right)^{T}\left(x-x^{k}\right)+\frac{1}{2}\left(x-x^{k}\right)^{T} \nabla^{2} f\left(x^{k}\right)\left(x-x^{k}\right)
$$

Setting $\nabla_{x} g(x)=0$, we obtain the Newton direction

$$
d=-\left(\nabla^{2} f\left(x^{k}\right)\right)^{-1} \nabla f\left(x^{k}\right)
$$

If $\nabla^{2} f\left(x^{k}\right)>0$, then d is a descent direction ${ }^{2}$.
${ }^{2}$ In general, $d=-A \nabla f\left(x^{k}\right)$ for $A>0$ is a descent direction \rightarrow Quasi-Newton methods.

Descent directions - Newton direction

Convergence of the algorithm: Bazaraa et al. (2006), Theorem 8.6.5 ($f \in C^{2}, \nabla f(\bar{x})=0$ and $\nabla^{2} f(\bar{x})>0$ at a local minimum \bar{x}, starting point is sufficiently close.)

Descent directions - Example

$$
\min _{x, y}(x-y)^{4}+2 x^{2}+y^{2}-x+2 y
$$

Partial derivatives

$$
\begin{align*}
& \frac{\partial f(x, y)}{\partial x}=4(x-y)^{3}+4 x-1=0 \\
& \frac{\partial f(x, y)}{\partial y}=-4(x-y)^{3}+2 y+2=0 \tag{1}
\end{align*}
$$

Second-order partial derivatives

$$
\begin{align*}
& \frac{\partial^{2} f(x, y)}{\partial x^{2}}=12(x-y)^{2}+4 \\
& \frac{\partial^{2} f(x, y)}{\partial x \partial y}=-12(x-y)^{2} \tag{2}\\
& \frac{\partial^{2} f(x, y)}{\partial y^{2}}=12(x-y)^{2}+2
\end{align*}
$$

Compare directions $\nabla f(x)$ and $d=-\left(\nabla^{2} f(x)\right)^{-1} \nabla f(x) \ldots$

Conjugate gradient method

Nocedal and Wright (2006), Chapter 5: Consider (unconstrained) quadratic programming problem

$$
\min \frac{1}{2} x^{T} A x-b^{T} x
$$

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric positive definite matrix. We say that vectors $p^{1}, \ldots p^{n}$ are conjugate with respect to A if

$$
\left(p^{i}\right)^{T} A p^{j}=0 \text { for all } i \neq j
$$

If we set $x^{k+1}=x^{k}+\alpha^{k} p^{k}$, where

$$
\begin{align*}
r^{k} & =A x^{k}-b, \\
\alpha^{k} & =-\frac{r^{k T} p^{k}}{\left(p^{k}\right)^{T} A p^{k}} \tag{3}
\end{align*}
$$

then x^{n+1} is an optimal solution.

Method of Zoutendijk

Bazaraa et al. (2006), Section 10.1: $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, g_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ differentiable

$$
\min _{x} f(x) \text { s.t. } g_{j}(x) \leq 0, j=1, \ldots, m .
$$

(Extension including equality constraints is possible.)

Method based on improving feasible directions (remember the "directional" optimality conditions).

Method of Zoutendijk

0 . Start with a feasible x^{1}. For $k=1, \ldots\left(, K_{\max }\right)$ do

1. Set $J\left(x^{k}\right)=\left\{j: g_{j}\left(x^{k}\right)=0\right\}$ and solve linear programming problem for finding a direction:

$$
\begin{aligned}
& \min _{z, d} z \\
& \text { s.t. } \\
& \qquad \begin{array}{ll}
& f\left(x^{k}\right)^{T} d \leq z \\
& \nabla g_{j}\left(x^{k}\right)^{T} d \leq z, j \in J\left(x^{k}\right) \\
& -1 \leq d_{i} \leq 1, \quad i=1, \ldots, n .
\end{array}
\end{aligned}
$$

Denote by $\left(z^{k}, d^{k}\right) \in \mathbb{R}^{1+n}$ the optimal solution.

- If $z^{k}=0$ then STOP (We have found a Fritz-John point).
- Else if $z^{k}<0$ then continue with STEP 2.

Method of Zoutendijk

Bazaraa et al. (2006)

Method of Zoutendijk

2. Find maximal possible step

$$
\lambda_{\max }:=\sup \left\{\lambda: g_{j}\left(x^{k}+\lambda d^{k}\right) \leq 0, j=1, \ldots, m\right\}
$$

solve the line search problem

$$
\lambda^{k}=\arg \min _{0 \leq \lambda \leq \lambda_{\max }} f\left(x^{k}+\lambda d^{k}\right)
$$

and set

$$
x^{k+1}=x^{k}+\lambda^{k} d^{k}
$$

Continue with STEP 1.

Method of Zoutendijk

Where could be a problem? Direction as well as line search need not to be closed...

Convergence: Bazaraa et al. (2006), part 10.2.

Method of Zoutendijk - example

Bazaraa et al. (2006), Example 10.1.8

$$
\begin{align*}
& \min 2 x_{1}^{2}+2 x_{2}^{2}-2 x_{1} x_{2}-4 x_{1}-6 x_{2} \\
& \text { s.t. } x_{1}+x_{2} \leq 5 \\
& \quad 2 x_{1}^{2}-x_{2} \leq 0 \tag{4}\\
& \quad-x_{1} \leq 0 \\
& \\
& -x_{2} \leq 0
\end{align*}
$$

$$
\begin{equation*}
\nabla f(x)=\left(4 x_{1}-2 x_{2}-4,4 x_{2}-2 x_{1}-6\right)^{T} \tag{5}
\end{equation*}
$$

Method of Zoutendijk - Example

Starting point $x^{0}=(0,0.75)^{T}, \nabla f\left(x^{0}\right)=(-5.5,-3)^{T}, J\left(x^{0}\right)=\{3\}$. The direction finding problem is then
$\min z$

$$
\begin{align*}
\text { s.t. } & -5.5 d_{1}-3 d_{2} \leq z, \\
& -d_{1} \leq z, \tag{6}\\
& -1 \leq d_{1}, d_{2} \leq 1
\end{align*}
$$

with optimal solution $d^{1}=(1,-1), z^{1}=-1$.

Method of Zoutendijk - Example

Then

$$
x^{0}+\lambda d^{1}=(\lambda, 0.75-\lambda)
$$

and

$$
f\left(x^{0}+\lambda d^{1}\right)=6 \lambda^{2}-2.5 \lambda-3.375 .
$$

Maximize it over the set of feasible solutions M to obtain $\lambda_{\max }=0.4114$. Finally

$$
\begin{align*}
& \min 6 \lambda^{2}-2.5 \lambda-3.375 \\
& \text { s.t. } 0 \leq \lambda \leq \lambda_{\max } . \tag{7}
\end{align*}
$$

$\lambda^{1}=0.2083$.

Cutting plane method

$f: \mathbb{R}^{n} \rightarrow \mathbb{R}, g_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
\min _{x} f(x) \text { s.t. } g_{j}(x) \leq 0, j=1, \ldots, m .
$$

Denote $M=\left\{x \in \mathbb{R}: g_{j}(x) \leq 0, j=1, \ldots, m\right\}$.
ASS. f is affine, g are convex and differentiable, M is compact.

Cutting plane method

0 . Start with a polyhedral set M^{0} such that $M \subset M^{0}$, e.g. a box $M^{0}=\left[l b_{1}, u b_{1}\right] \times \cdots \times\left[l b_{m}, u b_{m}\right]$. For $k=0, \ldots\left(, K_{\max }\right)$ do

1. Solve the linear programming problem

$$
\min _{x} f(x) \text { s.t. } x \in M^{k},
$$

and obtain $x^{k} \in M^{k}$. If $x^{k} \in M$, then STOP, we have found an optimal solution. Otherwise continue with STEP 2.
2. If $x^{k} \notin M$, then find $j^{k}=\arg \max _{j} g_{j}\left(x^{k}\right)$, construct a cutting plane and set

$$
M^{k+1}=M^{k} \cap\left\{x \in \mathbb{R}: g_{j^{k}}\left(x^{k}\right)+\nabla g_{j^{k}}\left(x^{k}\right)^{T}\left(x-x^{k}\right) \leq 0\right\}
$$

Note that x^{k} violates the cut, and no $x \in M$ is cut off ${ }^{3}$ (compare with the integer programming cuts). Return to STEP 1.
${ }^{3}$ From convexity $g_{j^{k}}\left(x^{k}\right)+\nabla g_{j^{k}}\left(x^{k}\right)^{T}\left(x-x^{k}\right) \leq g_{j^{k}}(x) \leq 0$.

Cutting plane method

Kall and Mayer (2005).

Cutting plane method - Example

$$
\begin{gathered}
\min _{x}-x_{1}-x_{2} \\
\text { s.t. } x_{1}^{2}+x_{2}^{2}-1 \leq 0, \\
\\
x_{1}, x_{2} \geq 0 .
\end{gathered}
$$

Set $M=\left\{\left(x_{1}, x_{2}\right): x_{1}^{2}+x_{2}^{2}-1 \leq 0, x_{1}, x_{2} \geq 0\right\}, \nabla g(x)^{T}=\left(2 x_{1}, 2 x_{2}\right)$.

Cutting plane method - Example

0 . Set $M^{0}=[0,1]^{2}$.

1. Solve $\min _{x}-x_{1}-x_{2}$ s.t. $x \in M^{0}$ with optimal solution $x^{0}=(1,1)^{T}$.
2. Since $x^{0} \notin M$, construct the cut

$$
g\left(x^{0}\right)+\nabla g\left(x^{0}\right)^{T}\left(x-x^{0}\right) \leq 0
$$

and set

$$
M^{1}=M^{0} \cap\left\{\left(x_{1}, x_{2}\right): x_{1}+x_{2} \leq 3 / 2\right\}
$$

Continue with STEP 1.

Penalty method

Perfect penalty (rather theoretical)

$$
P P(x)= \begin{cases}0 & \text { if } g(x) \leq 0, h(x)=0 \\ \infty & \text { otherwise }\end{cases}
$$

Compare with Lagrangian duality (sup over multipliers).
The following problem is equivalent to the original constrained one.

$$
\min _{x} f(x)+P P(x)
$$

Penalty method

$L_{p, q^{-}}$penalty function:

$$
P F_{N}(x)=N \cdot\left(\sum_{j=1}^{m}\left[g_{j}(x)\right]_{+}^{p}+\sum_{i=1}^{l}\left|h_{i}(x)\right|^{q}\right)
$$

where N is the penalty parameter, $[\cdot]_{+}=\max \{\cdot, 0\}$.
More general penalty using $\Phi(y)=0$ for $y \leq 0$ and $\Phi(y)>0$ for $y>0$ and $\Psi(y)=0$ for $y=0$ and $\Psi(y)>0$ for $y \neq 0$.

Penalty method

Algorithm:

0 . Set $\varepsilon>0, N^{1}>0, \beta>1$. For $k=1, \ldots\left(, K_{\max }\right)$ do:

1. Solve

$$
\min _{x} f(x)+P F_{N^{k}}(x) .
$$

and obtain x^{k}
2. IF $P F_{N^{k}}\left(x^{k}\right)<\varepsilon$, then STOP. ELSE set $N^{k+1}=N^{k} \cdot \beta$ and continue with STEP 1.

Exterior point method!

Penalty method

Convergence of the method: Bazaraa et al. (2006), Theorem 9.2.2 (continuous $f, g_{j}, h_{i}, x_{k} \in X$ compact).

Penalty functions - Example

Consider

$$
\begin{aligned}
& \min x_{1}^{2}+x_{2}^{2} \\
& \text { s.t. } x_{1}+x_{2}=2 .
\end{aligned}
$$

with optimal solution $\hat{x}_{1}=\hat{x}_{2}=1$. Penalty function problem

$$
\min x_{1}^{2}+x_{2}^{2}+N\left(x_{1}+x_{2}-2\right)^{2}
$$

Using optimality conditions

$$
\hat{x}_{1}^{N}=\hat{x}_{2}^{N}=\frac{2 N}{2 N+1} .
$$

Penalty method

Remarks

- Sequential Unconstrained Minimization (SUMT): optimal solution x^{k} is used as a starting point in the next iteration ${ }^{4}$ to solve the penalty problem with N_{k+1}.
- Exact penalty: Instead of $N \rightarrow \infty$ it is sufficient to converge $N \rightarrow \bar{N}<\infty$ (numerically more stable).

Augmented Lagrangian Method

Nocedal and Wright (2006), Section 17.3: $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, h_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ differentiable

$$
\begin{aligned}
& \min _{x} f(x) \\
& \text { s.t. } h_{i}(x)=0, \quad i=1, \ldots, l
\end{aligned}
$$

(Extension including inequality constraints is possible.)

$$
L(x, v)=f(x)-\sum_{i=1}^{l} v_{i} h_{i}(x)
$$

Augmented Lagrangian Method

Augmented Lagrangian function - combination of the Lagrangian function with the quadratic penalty term

$$
\begin{gathered}
L_{A}(x, \lambda, \mu)=f(x)-\sum_{i=1}^{l} \lambda_{i} h_{i}(x)+\frac{\mu}{2} \sum_{i=1}^{\prime}\left(h_{i}(x)\right)^{2} \\
\begin{aligned}
\nabla_{x} L_{A}(x, \lambda, \mu) & =\nabla_{x} f(x)-\sum_{i=1}^{I} \lambda_{i} \nabla_{x} h_{i}(x)+\mu \sum_{i=1}^{\prime} h_{i}(x) \nabla_{x} h_{i}(x) \\
= & \nabla_{x} f(x)-\sum_{i=1}^{l}\left(\lambda_{i}-\mu h_{i}(x)\right) \nabla_{x} h_{i}(x) .
\end{aligned} .
\end{gathered}
$$

We have that $v_{i} \approx \lambda_{i}-\mu h_{i}(x)$.

Augmented Lagrangian Method

0 . Set initial $\mu^{1}>0, \beta>1$ and λ^{1}. Select a tolerance $\varepsilon>0$. For $k=1, \ldots\left(, K_{\max }\right)$ do:

1. Solve unconstrained problem

$$
\min _{x} L_{A}\left(x, \lambda^{k}, \mu^{k}\right)
$$

and obtain x^{k}. If $\left\|L_{A}\left(x^{k}, \lambda^{k}, \mu^{k}\right)\right\| \leq \varepsilon$, STOP. Otherwise continue with STEP 2.
2. Update the Lagrange multipliers $\lambda_{i}^{k+1}=\lambda_{i}^{k}-\mu^{k} h_{i}\left(x^{k}\right)$ and the penalty parameter $\mu^{k+1}=\beta \mu^{k}$. Go to STEP 1 .

Augmented Lagrangian Method

Convergence of the algorithm: Nocedal and Wright (2006), Theorem 17.5 (LICQ, SOSC).

Mathematica - Solver Decision Tree

Literature

- Bazaraa, M.S., Sherali, H.D., and Shetty, C.M. (2006). Nonlinear programming: theory and algorithms, Wiley, Singapore, 3rd edition.
- Boyd, S., Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press, Cambridge.
- P. Kall, J. Mayer: Stochastic Linear Programming: Models, Theory, and Computation. Springer, 2005.
- Nocedal, J., Wright, J.S. (2006). Numerical optimization. Springer, New York, 2nd edition.

