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Algorithm classification

Order of derivatives!: derivative-free, first order (gradient),
second-order (Newton)

Feasibility of the constructed points: interior and exterior point
methods

Deterministic/randomized

(]

Local/global

If possible, deliver the derivatives.
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Review of basic methods for unconstrained problems

Unconstrained problems

Let f: R" > R, x° be a starting point, d* € R" be a descent direction,
and A € R be a step length.

Find a descent direction d*, solve the line search problem

A= in  f(x*+ A"
argOS)r‘nSIQmax (X + )

and set
kL = xk 1 \kgk,

Iterate until a convergence criterion is not satisfied, e.g. HdkH < e or
[F(xF) — F(xF)| < e.
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Review of basic methods for unconstrained problems

Review of line search methods

Bazaraa et al. (2006):

@ Derivative-free: dichotomous search, golden section method,
Fibonacci search

@ Using derivatives: bisection search, Newton's method
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Review of basic methods for unconstrained problems

Descent directions — Steepest descent

A vector d is called a descent direction of a function f at x if there exists
a d > 0 such that

f(x+ M) < f(x), A€ (0,0).
Steepest descent d with ||d|| = 1 minimizes the limit

F(x: d) = Jim f(x + /\<>f\) — f(x)

< 0.

If f is differentiable at x with a nonzero gradient, then

Vf(x)

V= VR

leading to the gradient (Cauchy) method.
f'(x;d) = VFf(x)Td.
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Review of basic methods for unconstrained problems

Descent directions

If we set
h(X) := f(x + Ad),

then
H(0) = Vf(x)"d.

h is decreasing < f is decreasing in direction d.
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Review of basic methods for unconstrained problems

Descent directions

Steepest descent — works well during the early steps, the zigzagging
phenomenon often appears in later steps, see Bazaraa et al. (2006),
Example 8.6.2
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Review of basic methods for unconstrained problems

Descent directions — Newton direction

Approximation of f by a limited Taylor expansion around x*

£0) = F() + TFGH) T (x = xK) 4 30— )TV (k) — x4)

Setting Vxg(x) = 0, we obtain the Newton direction

d=— (v2f(x’<)) V().

If V2f(x¥) > 0, then d is a descent direction?.

%In general, d = —~AVf(x*) for A > 0 is a descent direction — Quasi-Newton
methods.
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Review of basic methods for unconstrained problems

Descent directions — Newton direction

Convergence of the algorithm: Bazaraa et al. (2006), Theorem 8.6.5
(f € C?, Vf(x) = 0 and V2f(x) > 0 at a local minimum X, starting point
is sufficiently close.)
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Review of basic methods for unconstrained problems

Descent directions — Example

min(x — y)4 +2xX°+y* —x+2y
X,y
Partial derivatives

LC(X’ y) =4(x — y)3 +4x—-1=0,
Bf(a; y) (1)
) _ _ 3 _
oy =—4(x—-y)y +2y+2=0.

Second-order partial derivatives

Pf(x,y)
ox?
&f(x.y)
Ox0y
Pf(x,y)
Oy?

=12(x — y)* + 4,

= —12(x — y)’, ()
=12(x —y)* +2.

Compare directions Vf(x) and d = — (V21‘(X))71 Vi(x) ...
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Review of basic methods for unconstrained problems

Conjugate gradient method

Nocedal and Wright (2006), Chapter 5: Consider (unconstrained)
quadratic programming problem

1
min EXTAX —bTx.

Let A € R™" be a symmetric positive definite matrix. We say that vectors
pl,...p" are conjugate with respect to A if

(p)TAp/ =0 for all i # j.

If we set xk*t1 = xk + akp¥, where

r* = Ax* — b,
o rkT pk (3)
()T ApF

then x"*1 is an optimal solution.
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Method of Zoutendijk

Bazaraa et al. (2006), Section 10.1: f : R" = R, gj : R" = R
differentiable

min f(x) s.t. gj(x) <0, j=1,...,m.
(Extension including equality constraints is possible.)

Method based on improving feasible directions (remember the
“directional” optimality conditions).
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Method of Zoutendijk

0. Start with a feasible x'. For k = 1,...(, Knax) do
1. Set J(x*) = {j : gj(x*) = 0} and solve linear programming
problem for finding a direction:
min z
z,d
st VF(x¥)Td < z,

ng(xk)Td <z je€ J(Xk),

_1<di<1,i=1,....n
Denote by (z¥, d*) € R1*" the optimal solution.

o If zK =0 then STOP (We have found a Fritz-John point).
o Else if zK < 0 then continue with STEP 2.
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Method of Zoutendijk

Firstcorstraint — Vg3(X)

Third
constraint

Ve (@)

Contours of the
objective function

\ Improving feasible
~ directions
s

Second

Bazaraa et al. (2006)
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Method of Zoutendijk

2. Find maximal possible step
Amax := sup{A: gj(xk + )\dk) <0,j=1,...,m},
solve the line search problem

A= in  f(x*+ Ad"
arg0§>r‘nglg\1max (X + )

and set
Xkt — xk 4 \kgk,

Continue with STEP 1.
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Method of Zoutendijk

Where could be a problem? Direction as well as line search need not to be

closed. ..

Convergence: Bazaraa et al. (2006), part 10.2.
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Method of Zoutendijk — example

Bazaraa et al. (2006), Example 10.1.8

min 2x12 + 2x22 — 2x1xp — 4x1 — 6xp
s.t. x1 +x2 <5,

2xf —x <0, (4)
— X1 < O)
— X2 < 0.

VF(x) = (4x1 — 2x2 — 4, 4xp — 2x; — 6)" (5)
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Method of Zoutendijk — Example

Starting point x° = (0,0.75)7, Vf(x%) = (-5.5,-3)7, J(x°) = {3}. The
direction finding problem is then

min z

s.t. —5.5d; —3d> < z,
—dy < z,
—1<d,dr <1

with optimal solution d! = (1, 1), z! = —1.
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Method of Zoutendijk — Example

Then
X0+ Md' = (), 0.75 - \)
and
f(x° 4+ Ad') = 612 — 2.5\ — 3.375.

Maximize it over the set of feasible solutions M to obtain A2 = 0.4114.
Finally

min 6)% — 2.5\ — 3.375 ™)
st 0 <A< Amax-

Al =0.2083.
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Cutting plane method

Cutting plane method

f:R" =R, g:R" =R

mmf( x)st. gi(x) <0, j=1,...,m.

Denote M = {x e R: gj(x) <0, j=1,...,m}.

ASS. f is affine, g are convex and differentiable, M is compact.
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Cutting plane method

0. Start with a polyhedral set M% such that M ¢ M°, e.g. a box
MO = [Iby, uby] X - -+ X [lbm, ubm]. For k =0, ...(, Kmax) do

1. Solve the linear programming problem

min f(x) s.t. x € Mk,

and obtain x* € M*_If x* € M, then STOP, we have found an
optimal solution. Otherwise continue with STEP 2.

2. If x¥ ¢ M, then find j% = arg max; gj(x*), construct a cutting plane
and set

MK+ — Mk N {X eER: gjk(xk) + ngk(Xk)T(X - x¥) < 0} :

Note that x* violates the cut, and no x € M is cut off> (compare
with the integer programming cuts). Return to STEP 1.

*From convexity gy (x*) + Vgu (x*)T(x — x*) < gi(x) < 0.
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Cutting plane method

Kall and Mayer (2005).
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Cutting plane method — Example

min — x3 — X2
X

st x2 +x3 —1<0,

x1,x2 > 0.

Set M = {(x1,x2) : x2+x2—1<0,x;,x2 >0}, Vg(x)" = (2x1,2x2).
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Cutting plane method — Example

0. Set M° = [0,1]2.
1. Solve min, —x; — x2 s.t. x € M° with optimal solution x° = (1,1)7.
2. Since x° ¢ M, construct the cut

g(x%) + Ve(x%)T(x —x°) <o,

and set
Mt =M°n {(x1,x2) : x1 +x2 < 3/2}.

Continue with STEP 1.
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Penalty method

Perfect penalty (rather theoretical)
0 if g(x) < 0,h(x) =0,
PP(x) =

oo otherwise.

Compare with Lagrangian duality (sup over multipliers).

The following problem is equivalent to the original constrained one.

mXin f(x) + PP(x).
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Penalty method

L, q— penalty function:

PFn(x Z[gj (x)]% +Z |hi(x )

where N is the penalty parameter, [-]+ = max{-,0}.

More general penalty using ®(y) =0 for y <0 and ®(y) > 0 for y >0
and V(y) =0 for y =0 and ¥(y) > 0 for y # 0.
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Penalty method

Algorithm:
0. Sete >0, N!>0,3>1 Fork=1,...(, Knax) do:
1. Solve
mXin f(x) + PFpi(x).

and obtain xk

2. IF PFpi(x¥) < e, then STOP. ELSE set N1 = N . 3 and continue
with STEP 1.

Exterior point method!
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Penalty method

Convergence of the method: Bazaraa et al. (2006), Theorem 9.2.2
(continuous f, gj, hj, xx € X compact).
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=2
Penalty functions — Example

Consider

min x2 + x3
st.x1 +x0 =2.
with optimal solution X; = X = 1. Penalty function problem
minx? + x5 + N(x; + xo — 2)°.
Using optimality conditions

AN N 2N
1 2

2N +1°
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Penalty method

Remarks

e Sequential Unconstrained Minimization (SUMT): optimal solution
x¥ is used as a starting point in the next iteration* to solve the

penalty problem with Ny ;.

o Exact penalty: Instead of N — oo it is sufficient to converge
N — N < oo (numerically more stable).

*“warm starting”
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Augmented Lagrangian Method

Nocedal and Wright (2006), Section 17.3: f : R" —» R, h; : R" = R
differentiable

min f(x)
st. hi(x) =0, i=1,... 1
(Extension including inequality constraints is possible.)

L(x,v) = f(x) — Z vihi(x).

i=1
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Augmented Lagrangian Method

Augmented Lagrangian function — combination of the Lagrangian
function with the quadratic penalty term

i /
La(x, M) = F(x) = D Nihi) + 53 (b
i=1 i=1

/

I
ViLa(x, A\, 1) = Vif(x) — Z AiVchi(x) + Z hi(x)Vxhi(x)

/

= Vif(x) = Y (Ai — phi(x)) Viehi(x).

i=1

We have that v; = \; — phi(x).
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Augmented Lagrangian Method

0. Set initial u! > 0, B > 1 and A!. Select a tolerance ¢ > 0. For
k=1,...(,Kmax) do:

1. Solve unconstrained problem
min La(x, A%, 1)
X

and obtain x*. If [|[La(x*, \*, u¥)|| < e, STOP. Otherwise continue
with STEP 2.

2. Update the Lagrange multipliers /\f-”r:l = A — 1kh;(xk) and the
penalty parameter %1 = Buk. Go to STEP 1.
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Augmented Lagrangian Method

Convergence of the algorithm: Nocedal and Wright (2006), Theorem 17.5
(LICQ, SOSC).
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Augmented Lagrangian Method

Mathematica — Solver Decision Tree

Is your problem linear?

7

LinearProgramming Do you want a global eptimum?

AR

Do you want an exact solution? Is yaur problem smail?

T

Minimize NMinimize FindMinimum
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Augmented Lagrangian Method
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