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Algorithm convergence

Algorithm convergence

Definition

Let X CRP, Y C RY9 be nonempty closed sets. Let F: X — Y be a
set-valued mapping. The map F is said to be closed at x € X if for any
sequences {x¥} C X, and {y*} satisfying xx — x, y¥ € F(x¥), y* = y we
have that y € F(x).

The map F is said to be closed on Z C X if it is closed at each point in Z.
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Algorithm convergence

Algorithm convergence — Zangwill's theorem

Bazaraa et al. (2006), Theorem 7.2.3: Let

Al.
A2.
A3.
A4.

Ab.
Ab6.

X C RP be a nonempty closed set
X C X be a nonempty solution set
F : X = X be a set-valued mapping closed over complement of X

Given x! € X the sequence {x*} is generated iteratively as follows: If
xk € X, then STOP; otherwise, let xk*1 F(xk) and repeat.

the sequence x1, x%,... be contained in a compact subset of X

there exist a continuous function® « such that a(y) < a(x) if
x ¢ X and y € F(x)

Then either the algorithm stops in a finite number of steps with a point in
X or it generates an infinite sequence {x*} such that all accumulation
points belong to X and a(x¥) — a(x) for some x € X.

descent function: a(x) = f(x) or a(x) = ||[VFf(x)||
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Algorithm convergence

Algorithm convergence — Newton method

Let X be an optimal solution, set

F(x) =x— (V2F(x)) " VF(x),

a(x) = llx -]

More details: Bazaraa et al. (2006), Theorem 8.6.5
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Algorithm convergence

Algorithm classification

Order of derivatives?: derivative-free, first order (gradient),
second-order (Newton)

Feasibility of the constructed points: interior and exterior point
methods

Deterministic/randomized

(]

Local/global

2If possible, deliver the derivatives.
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Interior point method and barrier functions

Barrier method

f:R" =R, g:R" =R
min f(x) s.t. gj(x) <0, j=1,...,m.
X
(Extension including equality constraints is straightforward.)

Assumption

{x: g(x) <0} #£0.
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Interior point method and barrier functions

Barrier method

Barrier functions: continuous with the following properties

B(y) >0,y <0, lim B(y)= cc.
y—0_

Examples
-1
—, —logmin{l, —y}.
y

Maybe the most popular barrier function:

B(y) = —log—y

Set .
B(x) = Z B(gj(x)).
and solve -
min f(x) 4+ uB(x), (1)

where 1 > 0 is a parameter.
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Interior point method and barrier functions

Polynomial-time interior point methods for LP

n
min ¢’ x — ,U,Z log x;
= (2)
s.t. Ax = b.

KKT-conditions ...
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Interior point method and barrier functions

Interior point methods

f:R" =R, gi:R" =R
min f(x) s.t. gi(x) <0, j=1,...,m.
X
(Extension including equality constraints is straightforward.)

New slack decision variables s € R™
min f(x)
X,S
s.t. gi(x)+s =0, j=1,....,m, (3)
sj > 0.

Martin Branda (KPMS MFF UK) 03-05-2016 9/31



Interior point method and barrier functions

Interior point methods

Barrier problem

m|n f(x ,uZIogSJ

s.t. g(x) +s=0.

(4)

The barrier term prevents the components of s from becoming too close to
zero.

Lagrangian function

L(x,s,z) uZIogSJ sz(gj(x) +55).

j=1
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Interior point methods

KKT conditions for barrier problem (matrix notation)
Vf(x)—Veg'(x)z = 0,
—nSte—z = 0,
gix)+s = 0,

S = diag{s1,...,sm}, Z = diag{z1,...,zm}, Vg(x) is the Jacobian
matrix (components of function in rows?)

Multiply the second equality by S

Vf(x)-Vg'(x)z = 0,
—SZe = e,
gx)+s = 0,

= Nonlinear system of equalities — Newton’'s method
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Interior point method and barrier functions

Newton's method

Vf(x +v) = VFf(x) + V?f(x)v =0
with the solution (under V2f(x) = 0)

v=—(V*f(x)) " VF(x)
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Interior point method and barrier functions

Interior point methods

Use Newton's method to obtain a step (Ax, As, Az)

H(x,z) 0 -Vvg’ Ax ~Vf(x)+Vg'(x)z
0 -Z =S5 As SZe + pe
Vg / 0 Az —g(x)—s

H(x,z) = V2f(x) — PRy z;V2gi(x), V2f denotes the Hessian matrix.
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Interior point method and barrier functions

Interior point methods

Stopping criterion:

E= max{ HVf(x) — Vg (x)z

15Ze + peell, lg(x) + s } <,

e > 0 small.
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Interior point method and barrier functions

Interior point methods

ALGORITHM:

0. Choose x° and s > 0, and compute initial values for the multipliers
z% > 0. Select an initial barrier parameter ;® > 0 and parameter
o€(0,1), set k=1.

1. Repeat until a stopping test for the nonlinear program (19.1) is
satisfied:

e Solve the nonlinear system of equalities using Newton's method and
obtain (x¥, sk, z¥).
o Decrease barrier parameter p k1 = gk, set k = k + 1.
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Interior point method and barrier functions

Interior point methods

Convergence of the method (Nocedal and Wright 2006, Theorem 19.1):
continuously differentiable f, g;, LICQ at any limit point, then the limits
are stationary points of the original problem
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Interior point method — Example

min (x1 —2)* 4+ (x1 — 2x2)?
X

s.t. x12 —xp < 0.

min (x1 — 2)* 4+ (x1 — 2x2)?
X,5

st.x? —xo+5=0, (6)
s>0.

min (x; —2)* + (x1 — 2x2)?> — pulogs

X,s

s.t. x12—xz+s:O.
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Interior point method — Example

Lagrange function
L(x1,x2,5,2) = (x1 — 2)* + (x1 — 2x0)% — pulogs — z(xF — x2 + s).

Optimality conditions together with feasibility

L

87 = 4(X1 — 2)3 + 2(X1 — 2X2) —2zx; =0,

8X1
O 4 —20)+2 =0,

aXQ (8)
% __H_ z=0

ds s -

oL

We have obtained 4 equations with 4 variables ...
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Interior point method and barrier functions

Interior point method — Example

Slight modification

4(x1 — 23 +2(x1 — 2x) — 22 = 0O, (9)
—4(x; —2x2)+z = 0, (10)
—sz—p = 0, (11)
2 —x+s = 0. (12)
Necessary derivatives

—92)2 — _
Hixt, 50, 2) = 12(x —2)°+2—-2z —4 (13)

—4 8

2x1

ve) = (21) (14)
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Interior point method and barrier functions

Interior point method — Example

System of linear equations for Newton's step

12(xq —2)2+2—-2z —4 0 -2x Axq
—4 8 0 1 Axo |
0 0o - -5 As |

z
2xq -1 1 0 Az
—4(xy — 2)% = 2(x1 — 2x2) + 22x1
4(x1 —2x2) — z
SZ+ W
—xl2 +Xo—S
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Interior point method — Example

Starting point x° = (0,1), 2% =1, s =1, 1z > 0, then the step ...

48 —4 0 O Axq 36
4 8 0 1 Ay, | | -9
0 0 -1 -1 As | | 1+u
0 -1 1 0 Az 0
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Interior point method and barrier fu ons

Interior point method — Example
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Sequential Quadratic Programming

Sequential Quadratic Programming

Nocedal and Wright (2006): Let f, h; : R" — R be smooth functions,
min f(x)
- (15)
s.t. hi(x)=0, i=1,... /.
Lagrange function
L(x,v) = f(x)+ Z vihi(

and KKT optimality conditions

Vil(x,v) = Vif(x)+AXx)"v =0,
h(x) =0,

where h(x)T = (h(x),..., hj(x)) and
A(x)T = [Vhi(x), Vha(x), ..., Vh(x)] denotes the Jacobian matrix.
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Sequential Quadratic Programming

Sequential Quadratic Programming

We have system of n+ [ equations in the n + / unknowns x and v:

V() +AX) TV ]
VF(x,v) = [ h(x) =0. (17)
ASS. (LICQ) Jacobian matrix A(x) has full row rank.
The Jacobian is given by
VZ.L(x,v) A(x)T
2 _ XX ’
VoF(x,v) = [ Al) 0 . (18)

We can use the Newton algorithm ..
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Sequential Quadratic Programming

Sequential Quadratic Programming

Setting f, = f(x¥), V2. Lx = V2 L(x*,vk), Ax = A(x¥), he = h(x¥), we
obtain the Newton step by solving the system

Vile AT 7 pc] _ [ -Vh—Alw (19)
Ak 0 pv | —hy

Then we set x¥*1 = xk 4+ p, and vkt = vk 4 p,.
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Sequential Quadratic Programming

Sequential Quadratic Programming

ASS. (SOSC) For all d € {d #0: A(x)d = 0}, it holds

d™V2 L(x,v)d > 0.
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Sequential Quadratic Programming

Sequential Quadratic Programming

Important alternative way to see the Newton iterations: Consider the
quadratic program

min f, +p’ Vi + pTv2 Lp
p

(20)
s.t. hy + Agp = 0.
KKT optimality conditions
\ Vi +Alv =0
kP Vit A (21)
hg + Axkp =0,
2 T _
Vil Ag Px | _ Vi (22)
Ak 0 Py —hy

which is the same as the Newton system if we add A,Z—vk to the first
equation. Then we set x¥*1 = xk + p, and vkt = py.
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Sequential Quadratic Programming

Sequential Quadratic Programming

Algorithm: Start with an initial solution (x°, v?) and iterate until a
convergence criterion is met:

1. Evaluate f, = f(x¥), hx = h(x¥), Ax = A(x¥),
V2, L = V2, L(xk, vK).

2. Solve the Newton equations OR the quadratic problem to obtain new
(Xk-i-l’ vk—i—l).

If possible, deliver explicit formulas for first and second order derivatives.
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Sequential Quadratic Programming

Sequential Quadratic Programming

f,gj, hi : R" — R are smooth. We use a quadratic approximation of the
objective function and linearize the constraints, p € RP

1
min £(x*) + pT Vif (x*) + 5T VALK, u¥, v¥)p
p

sit. g(x) + p T Vegi(x¥) <0, j=1,....m, (23)

hi(x¥) 4+ pTVhi(x¥) =0, i=1,...,1.

Use an algorithm for quadratic programming to solve the problem and set
Xkt = xk 4 p, where ukt1, vk*1 are Lagrange multipliers of the
quadratic problem which are used to compute new V2, L.

Convergence: Nocedal and Wright (2006), Theorem 18.1
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Sequential Quadratic Programming
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Sequential Quadratic Programming
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