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Algorithm convergence

Algorithm convergence

Definition

Let X ⊆ Rp, Y ⊆ Rq be nonempty closed sets. Let F : X → Y be a
set-valued mapping. The map F is said to be closed at x ∈ X if for any
sequences {xk} ⊂ X , and {yk} satisfying xk → x , yk ∈ F (xk), yk → y we
have that y ∈ F (x).
The map F is said to be closed on Z ⊆ X if it is closed at each point in Z .
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Algorithm convergence

Algorithm convergence – Zangwill’s theorem

Bazaraa et al. (2006), Theorem 7.2.3: Let

A1. X ⊆ Rp be a nonempty closed set

A2. X̂ ⊆ X be a nonempty solution set

A3. F : X → X be a set-valued mapping closed over complement of X̂

A4. Given x1 ∈ X the sequence {xk} is generated iteratively as follows: If
xk ∈ X̂ , then STOP; otherwise, let xk+1 ∈ F (xk) and repeat.

A5. the sequence x1, x2, . . . be contained in a compact subset of X

A6. there exist a continuous function1 α such that α(y) < α(x) if
x /∈ X̂ and y ∈ F (x)

Then either the algorithm stops in a finite number of steps with a point in
X̂ or it generates an infinite sequence {xk} such that all accumulation
points belong to X̂ and α(xk)→ α(x) for some x ∈ X̂ .

1descent function: α(x) = f (x) or α(x) = ‖∇f (x)‖
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Algorithm convergence

Algorithm convergence – Newton method

Let x be an optimal solution, set

F (x) = x −
(
∇2f (x)

)−1∇f (x),

α(x) = ‖x − x‖ .

More details: Bazaraa et al. (2006), Theorem 8.6.5
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Algorithm convergence

Algorithm classification

Order of derivatives2: derivative-free, first order (gradient),
second-order (Newton)

Feasibility of the constructed points: interior and exterior point
methods

Deterministic/randomized

Local/global

2If possible, deliver the derivatives.
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Interior point method and barrier functions

Barrier method

f : Rn → R, gj : Rn → R

min
x

f (x) s.t. gj(x) ≤ 0, j = 1, . . . ,m.

(Extension including equality constraints is straightforward.)

Assumption
{x : g(x) < 0} 6= ∅.
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Interior point method and barrier functions

Barrier method

Barrier functions: continuous with the following properties

B(y) ≥ 0, y < 0, lim
y→0−

B(y) =∞.

Examples
−1

y
, − log min{1,−y}.

Maybe the most popular barrier function:

B(y) = − log−y

Set

B̃(x) =
m∑
j=1

B
(
gj(x)

)
,

and solve

min f (x) + µB̃(x), (1)

where µ > 0 is a parameter.
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Interior point method and barrier functions

Polynomial-time interior point methods for LP

min cT x − µ
n∑

j=1

log xj

s.t. Ax = b.

(2)

KKT-conditions ...
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Interior point method and barrier functions

Interior point methods

f : Rn → R, gj : Rn → R

min
x

f (x) s.t. gj(x) ≤ 0, j = 1, . . . ,m.

(Extension including equality constraints is straightforward.)

New slack decision variables s ∈ Rm

min
x ,s

f (x)

s.t. gj(x) + sj = 0, j = 1, . . . ,m,

sj ≥ 0.

(3)
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Interior point method and barrier functions

Interior point methods

Barrier problem

min
x ,s

f (x)− µ
m∑
j=1

log sj

s.t. g(x) + s = 0.

(4)

The barrier term prevents the components of s from becoming too close to
zero.

Lagrangian function

L(x , s, z) = f (x)− µ
m∑
j=1

log sj −
m∑
j=1

zj(gj(x) + sj).
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Interior point method and barrier functions

Interior point methods

KKT conditions for barrier problem (matrix notation)

∇f (x)−∇gT (x)z = 0,

−µS−1e − z = 0,

g(x) + s = 0,

S = diag{s1, . . . , sm}, Z = diag{z1, . . . , zm}, ∇g(x) is the Jacobian
matrix (components of function in rows?)

Multiply the second equality by S

∇f (x)−∇gT (x)z = 0,

−SZe = µe,

g(x) + s = 0,

= Nonlinear system of equalities → Newton’s method
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Interior point method and barrier functions

Newton’s method

∇f (x + v) = ∇f (x) +∇2f (x)v = 0

with the solution (under ∇2f (x) � 0)

v = −
(
∇2f (x)

)−1∇f (x)
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Interior point method and barrier functions

Interior point methods

Use Newton’s method to obtain a step (∆x ,∆s,∆z) H(x , z) 0 −∇gT

0 −Z −S
∇g I 0

 ∆x
∆s
∆z

 =

 −∇f (x) +∇gT (x)z
SZe + µe
−g(x)− s


H(x , z) = ∇2f (x)−

∑m
j=1 zj∇2gj(x), ∇2f denotes the Hessian matrix.
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Interior point method and barrier functions

Interior point methods

Stopping criterion:

E = max
{∥∥∥∇f (x)−∇gT (x)z

∥∥∥ , ‖SZe + µe‖ , ‖g(x) + s‖
}
≤ ε,

ε > 0 small.
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Interior point method and barrier functions

Interior point methods

ALGORITHM:

0. Choose x0 and s0 > 0, and compute initial values for the multipliers
z0 > 0. Select an initial barrier parameter µ0 > 0 and parameter
σ ∈ (0, 1), set k = 1.

1. Repeat until a stopping test for the nonlinear program (19.1) is
satisfied:

Solve the nonlinear system of equalities using Newton’s method and
obtain (xk , sk , zk).
Decrease barrier parameter µk+1 = σµk , set k = k + 1.
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Interior point method and barrier functions

Interior point methods

Convergence of the method (Nocedal and Wright 2006, Theorem 19.1):
continuously differentiable f , gj , LICQ at any limit point, then the limits
are stationary points of the original problem
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Interior point method and barrier functions

Interior point method – Example

min
x

(x1 − 2)4 + (x1 − 2x2)2

s.t. x21 − x2 ≤ 0.
(5)

min
x ,s

(x1 − 2)4 + (x1 − 2x2)2

s.t. x21 − x2 + s = 0,

s ≥ 0.

(6)

min
x ,s

(x1 − 2)4 + (x1 − 2x2)2 − µ log s

s.t. x21 − x2 + s = 0.
(7)
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Interior point method and barrier functions

Interior point method – Example

Lagrange function

L(x1, x2, s, z) = (x1 − 2)4 + (x1 − 2x2)2 − µ log s − z(x21 − x2 + s).

Optimality conditions together with feasibility

∂L

∂x1
= 4(x1 − 2)3 + 2(x1 − 2x2)− 2zx1 = 0,

∂L

∂x2
= −4(x1 − 2x2) + z = 0,

∂L

∂s
= −µ

s
− z = 0,

∂L

∂z
= x21 − x2 + s = 0.

(8)

We have obtained 4 equations with 4 variables ...
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Interior point method and barrier functions

Interior point method – Example

Slight modification

4(x1 − 2)3 + 2(x1 − 2x2)− 2zx1 = 0, (9)

−4(x1 − 2x2) + z = 0, (10)

−sz − µ = 0, (11)

x21 − x2 + s = 0. (12)

Necessary derivatives

H(x1, x2, z) =

(
12(x1 − 2)2 + 2− 2z −4

−4 8

)
(13)

∇g(x) =

(
2x1
−1

)
(14)
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Interior point method and barrier functions

Interior point method – Example

System of linear equations for Newton’s step
12(x1 − 2)2 + 2− 2z −4 0 −2x1

−4 8 0 1
0 0 −z −s

2x1 −1 1 0




∆x1
∆x2
∆s
∆z

 =

=


−4(x1 − 2)3 − 2(x1 − 2x2) + 2zx1

4(x1 − 2x2)− z
sz + µ

−x21 + x2 − s
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Interior point method and barrier functions

Interior point method – Example

Starting point x0 = (0, 1), z0 = 1, s0 = 1, µ > 0, then the step ...
48 −4 0 0
−4 8 0 1
0 0 −1 −1
0 −1 1 0




∆x1
∆x2
∆s
∆z

 =


36
−9

1 + µ
0
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Interior point method and barrier functions

Interior point method – Example
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Sequential Quadratic Programming

Sequential Quadratic Programming

Nocedal and Wright (2006): Let f , hi : Rn → R be smooth functions,

min
x

f (x)

s.t. hi (x) = 0, i = 1, . . . , l .
(15)

Lagrange function

L(x , v) = f (x) +
l∑

i=1

vihi (x)

and KKT optimality conditions

∇xL(x , v) = ∇x f (x) + A(x)T v = 0,

h(x) = 0,
(16)

where h(x)T = (h1(x), . . . , hl(x)) and
A(x)T = [∇h1(x),∇h2(x), . . . ,∇hl(x)] denotes the Jacobian matrix.
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Sequential Quadratic Programming

Sequential Quadratic Programming

We have system of n + l equations in the n + l unknowns x and v :

∇F (x , v) =

[
∇x f (x) + A(x)T v

h(x)

]
= 0. (17)

ASS. (LICQ) Jacobian matrix A(x) has full row rank.
The Jacobian is given by

∇2F (x , v) =

[
∇2

xxL(x , v) A(x)T

A(x) 0

]
. (18)

We can use the Newton algorithm ..
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Sequential Quadratic Programming

Sequential Quadratic Programming

Setting fk = f (xk), ∇2
xxLk = ∇2

xxL(xk , vk), Ak = A(xk), hk = h(xk), we
obtain the Newton step by solving the system[

∇2
xxLk AT

k

Ak 0

] [
px
pv

]
=

[
−∇fk − AT

k vk
−hk

]
(19)

Then we set xk+1 = xk + px and vk+1 = vk + pv .
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Sequential Quadratic Programming

Sequential Quadratic Programming

ASS. (SOSC) For all d ∈ {d̃ 6= 0 : A(x)d̃ = 0}, it holds

dT∇2
xxL(x , v)d > 0.
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Sequential Quadratic Programming

Sequential Quadratic Programming

Important alternative way to see the Newton iterations: Consider the
quadratic program

min
p

fk + pT∇fk +
1

2
pT∇2

xxLkp

s.t. hk + Akp = 0.

(20)

KKT optimality conditions

∇2
xxLkp +∇fk + AT

k ṽ = 0

hk + Akp = 0,
(21)

[
∇2

xxLk AT
k

Ak 0

] [
px
pṽ

]
=

[
−∇fk
−hk

]
(22)

which is the same as the Newton system if we add AT
k vk to the first

equation. Then we set xk+1 = xk + px and vk+1 = pṽ .
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Sequential Quadratic Programming

Sequential Quadratic Programming

Algorithm: Start with an initial solution (x0, v0) and iterate until a
convergence criterion is met:

1. Evaluate fk = f (xk), hk = h(xk), Ak = A(xk),
∇2

xxLk = ∇2
xxL(xk , vk).

2. Solve the Newton equations OR the quadratic problem to obtain new
(xk+1, vk+1).

If possible, deliver explicit formulas for first and second order derivatives.
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Sequential Quadratic Programming

Sequential Quadratic Programming

f , gj , hi : Rn → R are smooth. We use a quadratic approximation of the
objective function and linearize the constraints, p ∈ Rp

min
p

f (xk) + pT∇x f (xk) +
1

2
pT∇2

xxL(xk , uk , vk)p

s.t. gj(x
k) + pT∇xgj(x

k) ≤ 0, j = 1, . . . ,m,

hi (x
k) + pT∇xhi (x

k) = 0, i = 1, . . . , l .

(23)

Use an algorithm for quadratic programming to solve the problem and set
xk+1 = xk + pk , where uk+1, vk+1 are Lagrange multipliers of the
quadratic problem which are used to compute new ∇2

xxL.

Convergence: Nocedal and Wright (2006), Theorem 18.1
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Sequential Quadratic Programming
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Sequential Quadratic Programming
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