Zero-sum games of two players

Martin Branda

Charles University
Faculty of Mathematics and Physics
Department of Probability and Mathematical Statistics

COMPUTATIONAL ASPECTS OF OPTIMIZATION

Martin Branda (KPMS MFF UK)

2017-05-22 1 / 24

Zero-sum games of two players

Definition

For the zero-sum games $\{X, Y, K\}$ we define

- upper value of the game $uv^* = \inf_{y \in Y} \sup_{x \in X} K(x, y)$,
- lower value of the game $lv^* = \sup_{x \in X} \inf_{y \in Y} K(x, y)$,
- upper price of the game $up = \min_{y \in Y} \sup_{x \in X} K(x, y)$,
- lower price of the game $lp = \max_{x \in X} \inf_{y \in Y} K(x, y)$.

If the lower and upper prices exist and it holds up=lp, then we say that the game has the **price** p=up=lp.

Upper value can be seen as the lowest payoff of P1, if P1 knows strategy of P2 before his/her move.

Zero-sum games of two players

Definition

A triplet $\{X,Y,K\}$ is called a game of two rational players with zero sum, if

- ① X is a set of strategies of Player 1 (P1),
- 2 Y is a set of strategies of Player 2 (P2),
- **③** $K: X \times Y \to \mathbb{R}$ is a payoff function of player 1, i.e. if P1 plays $x \in X$ and P2 plays $y \in Y$, then P1 gets K(x, y) and P2 gets -K(x, y).

Martin Branda (KPMS MFF UK)

2017-05-22 2 / 24

Zero-sum games of two players

Definition

We say that

- $\hat{x} \in X$ is an optimal strategy of P1, if $K(\hat{x}, y) > lv^*$ for all $y \in Y$.
- $\hat{y} \in Y$ is an optimal strategy of P2, if $K(x, \hat{y}) \leq uv^*$ for all $x \in X$.

Martin Branda (KPMS MFF UK) 2017-05-22 3 / 24 Martin Branda (KPMS MFF UK) 2017-05-22 4 / 24

Zero-sum games of two players

Proposition

For each zero-sum game $\{X,Y,K\}$ the upper and lower value exits and it holds

$$lv^* \leq uv^*$$
.

For each $\tilde{x} \in X$ and $\tilde{y} \in Y$ it holds

$$\inf_{y \in Y} K(\tilde{x}, y) \le K(\tilde{x}, \tilde{y}),$$

$$\sup_{x \in X} \inf_{y \in Y} K(x, y) \le \sup_{x \in X} K(x, \tilde{y}),$$

$$\operatorname{lv}^* = \sup_{x \in X} \inf_{y \in Y} K(x, y) \le \inf_{y \in Y} \sup_{x \in X} K(x, y) = \operatorname{uv}^*.$$
(1)

Martin Branda (KPMS MFF UK)

2017-05-22 5 / 24

Zero-sum games of two players

Proposition

Let $\{X, Y, K\}$ be a zero-sum game with X, Y compact and K continuous. Then the upper and lower prices exist.

Zero-sum games of two players

Proposition

For each zero-sum game $\{X,Y,K\}$ is holds that

- There is at least one optimal strategy of P1, if and only if the lower price exists.
- There is at least one optimal strategy of P2, if and only if the upper price exists.

" \Rightarrow ": Let $\hat{x} \in X$ be an optimal strategy of P1, i.e. $K(\hat{x},y) \ge lv^*$ for all $y \in Y$. Then

$$\operatorname{lv}^* \le \inf_{y \in Y} K(\hat{x}, y) \le \sup_{x \in X} \inf_{y \in Y} K(x, y) = \operatorname{lv}^*.$$
 (2)

Thus

$$\operatorname{lv}^* = \inf_{y \in Y} K(\hat{x}, y) = \max_{x \in X} \inf_{y \in Y} K(x, y) = \operatorname{lp}.$$
 (3)

Martin Branda (KPMS MFF UK)

2017-05-22 6 / 24

Zero-sum games of two players

Theorem

A zero-sum game $\{X, Y, K\}$ has a price if and only if the payoff function has a saddle point, i.e. there is a pair^a (\hat{x}, \hat{y}) such that

$$K(x,\hat{y}) \leq K(\hat{x},\hat{y}) \leq K(\hat{x},y)$$

for all $x \in X$ and $y \in Y$. Then \hat{x} is an optimal strategy for P1, \hat{y} is an optimal strategy for P2, and $p = K(\hat{x}, \hat{y})$ is the price of the game.

^aSuch pair can be seen as a Nash equilibrium for two player games.

" \Rightarrow ": $K(x,\hat{y}) \leq p \leq K(\hat{x},y)$.

Martin Branda (KPMS MFF UK) 2017-05-22 7 / 24 Martin Branda (KPMS MFF UK)

John Forbes Nash (1928–2015)

A Beautiful Mind (2001)

Martin Branda (KPMS MFF UK)

2017-05-22 9 / 24

Matrix games

Definition

We say that $\{X, Y, A\}$ is a **matrix game** if it a zero sum game (of two players), $A \in \mathbb{R}^{n \times m}$ is a matrix, and

$$K(x,y) = x^{T} A y,$$

$$X = \left\{ x \in \mathbb{R}^{n} : \sum_{i=1}^{n} x_{i} = 1, \ x_{i} \ge 0 \right\},$$

$$Y = \left\{ y \in \mathbb{R}^{m} : \sum_{j=1}^{m} y_{j} = 1, \ y_{j} \ge 0 \right\}.$$
(4)

Minimax theorem

Theorem

Let $\{X, Y, K\}$ be a zero-sum game where X, Y are nonempty convex compact sets and K(x,y) is continuous, concave in x and convex in y. Then, there exists the price of the game, i.e.

$$\min_{y \in Y} \max_{x \in X} K(x, y) = \max_{x \in X} \min_{y \in Y} K(x, y).$$

Applicable also out of the game theory, e.g. in robustness.

Generalizations: Rockafellar (1970)

Martin Branda (KPMS MFF UK) 2017-05-22 10 / 24

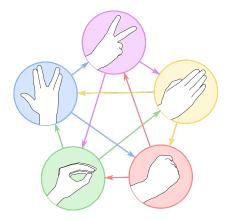
Rock-paper-scissors

R-P-S

$$A = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix}$$
 (5)

Martin Branda (KPMS MFF UK) 2017-05-22 11 / 24 Martin Branda (KPMS MFF UK)

Rock-paper-scissors-lizard-Spock



Martin Branda (KPMS MFF UK)

2017-05-22 13 / 24

Matrix games

Definition

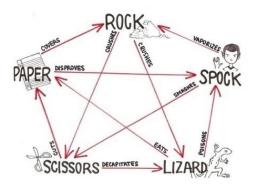
For a matrix game $\{X, Y, A\}$, we define a matrix game with **pure strategies** $\{\overline{X}, \overline{Y}, A\}$, where

$$\overline{X} = \left\{ x \in \mathbb{R}^n : \sum_{i=1}^n x_i = 1, \ x_i \in \{0, 1\} \right\},$$

$$\overline{Y} = \left\{ y \in \mathbb{R}^m : \sum_{j=1}^m y_j = 1, \ y_j \in \{0, 1\} \right\}.$$
(6)

We say that $\{X, Y, A\}$ has a **price in pure strategies** if both players have optimal pure strategies.

Rock-paper-scissors-lizard-Spock



Martin Branda (KPMS MFF UK)

2017-05-22 14 / 24

Matrix games

Proposition

Each matrix game has a price and both players have optimal strategies.

Proposition

Matrix game $\{X, Y, A\}$ has a price in pure strategies if and only if $\{\overline{X}, \overline{Y}, A\}$ has a price.

Martin Branda (KPMS MFF UK) 2017-05-22 15 / 24 Martin Branda (KPMS MFF UK) 2017-05-22 16 / 24

Matrix games

Proposition

Let $\{X, Y, A\}$ be a matrix game and $\hat{x} \in X$ and $\hat{y} \in Y$ with price p. Then

- ① \hat{x} is an optimal strategy of P1 if and only if $\hat{x}^T A \geq (p, \dots, p)$,
- ② \hat{y} is an optimal strategy of P2 if and only if $A\hat{y} \leq (p, ..., p)^T$.

$$\hat{x}^T A \ge (p, \dots, p) \Leftrightarrow \hat{x}^T A y \ge p, \ \forall y \in Y.$$

$$("\Rightarrow" \cdot y \& \sum_i y_i = 1, \ "\Leftarrow" \ y = e_i)$$

Martin Branda (KPMS MFF UK)

2017-05-22 17 / 24

Matrix games – Example

Consider

$$A = \left(\begin{array}{cc} 5 & 1 \\ 0 & 7 \end{array}\right)$$

 $5x_1 \ge p$, $x_1 + 7x_2 \ge p$, $x_1 + x_2 = 1$, $x_1 \ge 0$, $x_2 \ge 0$

$$\max_{x \in X} \min\{5x_1, x_1 + 7x_2\} = p$$

and using $x_1 + x_2 = 1$

$$\max_{x_1 \ge 0} \min\{5x_1, 7 - 6x_1\} = p$$

Maximum is attained at $\hat{x}_1 = 7/11$, $\hat{x}_2 = 4/11$ with the price p = 35/11. Using complementarity conditions, we obtain $\hat{y}_1 = 6/11$, $\hat{y}_2 = 5/11$.

Matrix games

Proposition

(Complementarity conditions) Let $\{X, Y, A\}$ be a matrix game with price p and let $\hat{x} \in X$ and $\hat{y} \in Y$ be optimal strategies. Then

- **2** if $\hat{y}_i > 0$, then $(\hat{x}^T A)_i = p$.

Martin Branda (KPMS MFF UK)

2017-05-22 18 / 24

Matrix games

Let $a, b \in \mathbb{R}^n$. We say that a strictly dominates b (b is strictly dominated by a), if $a_i > b_i$ for all i = 1, ..., n.

Proposition

Let $\{X, Y, A\}$ be a matrix game.

- ① If a row A_k , is strictly dominated by a convex combination of other rows, then each optimal strategy of P1 fulfills $\hat{\mathbf{x}}_k = 0$.
- ② If a column $A_{\cdot,k}$ strictly dominates a convex combination of other columns, then each optimal strategy of P2 fulfills $\hat{y}_k = 0$.

Martin Branda (KPMS MFF UK) 2017-05-22 19 / 24 Martin Branda (KPMS MFF UK)

Matrix games

$$\left(\begin{array}{ccccc}
3 & 2 & 4 & 0 \\
3 & 4 & 2 & 3 \\
6 & 5 & 5 & 1 \\
1 & 4 & 0 & 7
\end{array}\right)$$

Show that $(0,0,7/11,4/11)^T$ is optimal strategy for P1, $(0,0,6/11,5/11)^T$ for P2, and the price is p=35/11.

Martin Branda (KPMS MFF UK) 2017-05-22 21 / 24

Matrix games – Example

Find the saddle point(s) ..

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}, \begin{pmatrix} 2 & 2 & 2 \\ 2 & 1 & 1 \\ 3 & 2 & 2 \end{pmatrix}, \tag{8}$$

Matrix games

Proposition

Matrix game $\{X, Y, A\}$ has a price p in pure strategies if and only if matrix A has a saddle point, i.e. there is a pair of indices $\{k, l\}$ such that

$$A_{kl} = \min\{A_{kj} : j = 1, ..., m\} = \max\{A_{il} : i = 1, ..., n\}.$$

(minimum in the row, maximum in the column)

 e_k,e_l are optimal strategies of P1, P2

 \Leftrightarrow

$$(\mathbf{e}_{k}^{\mathsf{T}}A)_{j} = A_{kj} \ge p, \forall j, (A\mathbf{e}_{l})_{i} = A_{il} < p, \forall i,$$

$$(7)$$

 \Leftrightarrow

$$A_{kl} = \min\{A_{kj} : j = 1, \dots, m\} = \max\{A_{il} : i = 1, \dots, n\}.$$

Martin Branda (KPMS MFF UK)

2017-05-22 22 / 24

Literature

- Lachout, P. (2011). Matematické programování. Skripta k (zaniklé) přednášce Optimalizace I (IN CZECH).
- Rockafellar, R.T. (1970). Convex Analysis. Princeton University Press, Princeton (N.Y.).
- Webb, J.N. Game Theory (2007). Decisions, Interactions and Evolution. Springer-Verlag, London.

Martin Branda (KPMS MFF UK) 2017-05-22 23 / 24 Martin Branda (KPMS MFF UK) 2017-05-22 23 / 24