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Greenhouse gas emissions

based on Kyoto Protocol: several emission allowances markets
(Australia, China, EU, Japan, Korea, New Zealand and the U.S.)
in EU region: EU commission approves national emission caps
for regulated countries, each government then distributes a
national permit allocation to regulated industries (power plants,
combustion plants, oil refineries etc) - domestically issued
allowances
United Nations administrates carbon offset activities - installation
of environmentally friendly facilities (renewable energy, energy
efficiency improvements, reforestation, nature preservation etc)
in developing countries without emission caps - carbon offset
credits
both allowances and offset credits give right to the holder to emit
certain amount of carbon dioxide
EU commission sets limits on imported offset credits with respect
to the original endowment of allowances (around 13 percent)
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Given real-valued function f and a nonempty set A, consider

minimize f (x)
subject to

x ∈ A.
(1)

let x̄ be a local solution of (1). If x̄ is an interior point of A and f is
differentiable (in some sense) at that point, then Fermat rule specifies
the necessary optimality condition:

f ′(x̄) = 0.

In not an interior point (but still assuming differentiability) the
necessary condition still holds as variational inequality, which for
convex A reads

〈f ′(x̄), x − x̄〉 ≥ 0 for any x ∈ A.

Question: what to do in case of nondifferentiability of f ; nonconvexity
of f or A?
One can eventually rewrite the variational inequality to

0 ∈ ∂f (x̄) + NA(x̄). (2)
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To include the possibility that the function can attain +∞ we often use
the following construction: let B ⊂ Rn be nonempty and convex and
g : B → R be convex. Then the function f : Rn → R̄ is defined by

f (x) =

{
g(x) x ∈ B;

+∞ x /∈ B.

A function f is called proper if f (x) <∞ for at least one x ∈ Rn, i.e.
(effective) domain is nonempty, and f (x) > −∞ everywhere.
However, it is quite pathological for a convex function to attain −∞.

Convexity of function f is equivalent to convexity of its epigraph.

For convex f : Rn → R̄, good substitute for derivative is a subgradient.
If f (x̄) <∞, a vector v ∈ Rn is a (convex) subgradient of f at x̄ if

f (x) ≥ f (x̄) + 〈v , x − x̄〉 for all x .

We write v ∈ ∂f (x̄), where ∂f (·) is a set-valued mapping called
subdifferential of f . If f is differentiable at x̄ then ∂f (x̄) = {∇f (x̄)}.
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A function f : Rn → R̄ is called lower semi-continuous (lsc) at x̄ if
either f (x̄) = −∞ or for every k < f (x̄) there exists a neigborhood U
of x̄ such that

k < f (x) for every x ∈ U.

f is called lsc if it is lsc at every point. It is called upper
semi-continuous (usc) if −f is lsc. It is continuous (in the classical
sense) if it is both lsc and usc. Equivalently, f is lsc if its epigraph is
closed relatively to Rn+1.

If f : Rn → R̄ is proper convex lsc function and interior of its domain is
nonepty, then f is continuous on the interior of its domain.

Attainment of minimum:
If f : Rn → R̄ is proper and lsc then it is bounded from below on each
bounded subset of Rn. Thus, such f attains a minimum relative to any
compact subset of Rn that meets its domain.



Equilibria and modern variational analysis 4
Recall:

∂f (x̄) := {v ∈ Rn| 〈v , x − x̄〉 ≤ f (x)− f (x̄) ∀x ∈ Rn}.

Its main purpose is to detect minimum points x̄ for which, in the
unconstrained case, 0 ∈ ∂f (x̄). In the constrained case, x̄ is a
minimum of f on set A iff x̄ is an unconstrained minimum of f + δA, i.e.
iff 0 ∈ ∂(f + δA)(x̄).

The function δA : Rn → R̄, called the indicator function of A is defined
by

δA(x) :=

{
0 x ∈ A;

+∞ x /∈ A.

δA is proper and convex whenever A is nonempty and convex.

If we could applying the chain rule

∂(f1 + f2)(x̄) ⊂ ∂f1(x̄) + ∂f2(x̄)

and using
∂δA(x̄) := NA(x̄)

we arrive at the generalized equation (2) (the convex case).
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If f : Rn → R̄ is proper convex function, then ∂f (x) is nonempty and
compact at any x ∈int dom f .

Sum rule for convex subdifferential (Moreau-Rockafellar:
Let f1, f2 : Rn → R̄ be proper convex functions. Then for every x ∈ Rn

∂(f1 + f2)(x) ⊃ ∂f1(x) + ∂f2(x).

Further, assuming int dom f1∩ dom f2 6= ∅, also

∂(f1 + f2)(x) ⊂ ∂f1(x) + ∂f2(x).

For A ⊂ Rn, the (negative) polar cone of A is

A◦ := {x∗ ∈ Rn| 〈x∗, x〉 ≤ 0∀x ∈ A}.

For A convex, the (convex) tangent cone TA(x̄) at x̄ ∈ A is given by

TA(x̄) := cl (R+(A− x̄)) = {x ∈ Rn|∃hk ↓ 0∃xk → x : x̄ + hk xk ∈ A ∀k},

and the (convex) normal cone NA(x̄) at x̄ ∈ A by

NA(x̄) := (A− x̄)◦ = {v ∈ Rn| 〈v , x − x̄〉 ≤ 0 ∀x ∈ A}

. Also, NA(x̄) = (TA(x̄))◦ = ∂δA(x̄).
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Recall optimization problem (1). Consider

A = {x ∈ Rn|gi (x) ≤ 0, i = 1, . . . ,m; x ∈ C}.

If C is nonempty convex subset of dom f∩ dom g1 ∩ · · · ∩ dom gm
and f and gi , i = 1, . . . ,m, are proper convex, then (1) is convex
optimization problem.
Define the (enhanced) Lagrange function

L(x , λ, µ1, . . . , µm) := λf (x) +
m∑

i=1

µigi (x).

Under the Slater condition

∃x0 ∈ C : gi (x0) < 0 ∀i ∈ {1, . . . ,m},

the following is equivalent:
(L) there exists a vector of multipliers (λ̄, µ̄1, . . . , µ̄m) ∈ Rm+1

+ \ {0} such that
x̄ minimizes L(·, λ̄, µ̄1, . . . , µ̄m) on C and µ̄igi (x̄) = 0, i = 1, . . . ,m.

(SP) there exists µ̄ ∈ Rm
+ such that (x̄ , µ̄) is a saddle point of L for λ̄ = 1 with

respect to C × Rm
+, i.e.,

L(x̄ , 1, u) ≤ L(x̄ , 1, ū) ≤ L(x , 1, ū) ∀(x , µ) ∈ C × RM
+ .

(Min) x̄ is a global solution of (1).
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The previous are called global Karush-Kuhn-Tucker conditions. The
following are local optimality conditions for (1)

(F-J) there exists a vector of multipliers (λ̄, µ̄1, . . . , µ̄m) ∈ Rm+1
+ \ {0}

such that

0 ∈ λ̄∂f (x̄) + µ̄1∂g1(x̄) + · · ·+ µ̄m∂gm(x̄) + NC(x̄),

0 = µ̄igi (x̄) i = 1, . . . ,m.

(KKT) there exists a vector (µ̄1, . . . , µ̄m) ∈ Rm
+ such that

0 ∈ ∂f (x̄) + µ̄1∂g1(x̄) + · · ·+ µ̄m∂gm(x̄) + NC(x̄),

0 = µ̄igi (x̄) i = 1, . . . ,m.

Under Slater condition, both Fritz-John conditions and (local) KKT
conditions are equivalent to x̄ ∈ A being local minimum of (1).

Conditions ensuing λ̄ 6= 0 are called regularity conditions. Since
these conditions are generally conditions on constraint functions,
these conditions are also called constraint qualifications (CQs).
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E.g., in case of C = Rn, and all functions gi , i = 1, . . . ,m continuously
differentiable, the following are weaker CQs than Slater:

LICQ (linear independence CQ) vectors ∇gj (x̄) are linearly
independent for j ∈ {1, . . . ,m} such that gj (x̄) = 0.

MFCQ (Mangasarian-Fromowitz CQ) there exists y ∈ Rm such that

〈∇gj (x̄), y〉 < 0 ∀j : gj (x̄) = 0.

Slater implies LICQ, which in turn implies MFCQ. MFCQ can be also
reformulated as positive linear independence of gradients of active
constraints.

There is a broad range of even weaker CQs, like CR CQ, CPLD CQ,
calmness CQ, Abadie CQ, Guignard CQ. The Giugnard CQ (involving
polar to linearization cone to the constraint set) is known to be the
(technically) weakest condition to ensure λ̄ 6= 0.
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Consider A defined by

A = {x ∈ C|gi (x) ≤ 0, i = 1, . . . ,m}.

Then under LICQ

NA(x̄) =

 ∑
j:gj (x̄)=0

µj∇gj (x̄) + z

∣∣∣∣∣∣µj ≥ 0, j : gj (x) = 0; z ∈ NC(x̄)

 .

This follows from the fact that for C = C1 × · · · × Cn, where each Cj is
a closed interval in R,

NC(x̄) = NC1 (x̄1)× · · · × NCn (x̄n),

where

NCj (x̄j ) =



[0,∞) x̄j is the right endpoint of Cj

(−∞,0] x̄j is the left endpoint of Cj

{0} x̄j is the interior of Cj

∅ x̄j /∈ Cj

(−∞,∞) Cj is singleton set
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The generalized equation (2) fits into a broader picture in cases when
∂f (or ∇f ) is replaced by any mapping F : D → Rn. This format has
applications beyond characterization of a minimum relative to a set,
namely in description of equilibrium.

For a convex set D ⊂ Rn and any mapping F : D → Rn the
generalized equation

0 ∈ F (x) + ND(x),

variational condition for D and F , can be equivalently written in the
form of variational inequality problem VI(D,F ): find x ∈ D such that

〈F (x),u − x〉 ≥ 0 ∀u ∈ D.

Its special case, where D = Rn
+ is known as the complementarity

problem
x ≥ 0,F (x) ≥ 0, 〈F (x), x〉 = 0.

It is sometimes summarized vectorially by notation 0 ≤ x ⊥ F (x) ≥ 0.
For F = ∇f the complementarity conditions are KKT conditions of
optimization problem (1) for A = Rn

+.
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Existence of solutions of VIs
Let D ⊂ Rn be compact and convex set and F : D → Rn be
continuous mapping. Then VI(D,F ) has (at least one) a solution.

Results of this type (existence of equilibria) is (often) based on fixed
point theorem. E.g., Brouwer fixed point theorem:
Every continuous function from convex compact set C of Euclidean
space to C itself has a fixed point.

In cases when D is not compact but only closed, one can add a
condition of coercivity of F to ensure existence of solution to VI.
Mapping F : Rn → Rn is coercive if

〈F (x), x〉
||x ||

→ +∞ as ||x || → ∞.

Function f : Rn → R̄ is coercive whenever f (x)→ +∞ as ||x || → ∞.



Problem formulation
Consider an oligopolistic market with m producers, where each of
them solves the profit-maximization problem

minimize ci (yi ) + πxi − p(T )yi

subject to
(yi , xi ) ∈ (Ai × R) ∩ Bi .

(3)

yi is the amount of commodity produced by the i th firm,
xi is the amount of purchased (sold) rare resource,
π is the price of the rare resource,
ci [R+ → R+] specifies the production costs,
p[ int R+ → R+] is the inverse demand function,

T =
m∑

i=1
yi signifies the overall production,

Ai = [ai , bi ] specifies the production bounds and
Bi = {(yi , xi )|qi (yi ) ≤ xi + ei}

ei is the initial endowment with the rare resource
qi [R+ → R+] is a (technological) function assigning each
production value the corresponding (needed) amount of rare
resource.



Assumptions:

A1: All functions ci can be extended to open intervals containing the
sets Ai . These extensions are convex and twice continuously
differentiable.

A2: p is strictly convex and twice continuously differentiable on int R+.
A3: αp(α) is a concave function of α.
A4: ∀ i one has 0 ≤ ai < bi and ∃ i0 : ai0 > 0.
A5: All functions qi fulfill qi (0) = 0 and can be extended to open

intervals containing Ai . These extensions are convex, increasing
and twice continuously differentiable.

A6: ∀ i one has qi (ai ) ≤ ei and ∃ i0 : qi0 (ai0 ) < ei0 .
A7: π ≥ 0.
By virtue of the above assumptions

(yi , xi ) ∈ (Ai × R) ∩ Bi ⇒ xi ≥ −ei .

In what follows

Ji (π, y1, y2, . . . , ym, xi ) := ci (yi ) + πxi − p(T )yi .

and x := (x1, x2, . . . , xm) and y := (y1, y2, . . . , ym) are the cumulative
vectors of the strategies xi , yi , i = 1,2, . . . ,m.



Cournot-Nash equilibrium

Definition 1.
The strategy pair (ȳ , x̄) is a Cournot-Nash equilibrium in the considered
market for a given π ≥ 0 provided for all i one has

Ji (π, ȳ , x̄i ) = min
(yi ,xi )∈(Ai×R)∩Bi

Ji (π, ȳi , ȳ2, . . . , ȳi−1, yi , ȳi+1, . . . , ȳm, xi )

Let Ξ be the overall available amount of the rare resource so that

Ξ ≥
m∑

i=1

ei .

Consequently, the excess demand amounts to

m∑
i=1

(ei + xi )− Ξ.



Cournot-Nash-Walras equilibrium

Definition 2.(Flåm)
The triple (π̄, ȳ , x̄) is a Cournot-Nash-Walras (CNW) equilibrium in the
considered market provided

(i) (ȳ , x̄) is a Cournot-Nash equilibrium for π = π̄, and

(ii) one has

π̄ ≥ 0, Ξ−
m∑

i=1
(ei + x̄i ) ≥ 0,

〈
π̄, (Ξ−

m∑
i=1

(ei + x̄i ))

〉
= 0.

The conditions in (ii) characterize a Walras equilibrium with
respect to the rare resource which determines a price π̄ under
which the (secondary) market with the rare resource is cleared.
From the point of view of the producers the computation of π̄ is a
dynamical process starting after the initial allocation has been
conducted.
From the point of view of the authority, controlling the rare
resource, however, the whole problem can be solved in one step.
The results provide the authority with information about the
influence of the initial allocation on the CNW equilibrium.



Existence of CNW equilibria
Lemma 1.
There is a positive real L such that in all CNW equilibria one has π < L.

Elimination of variable x : We replace the inequality q(yi ) ≤ xi + ei by
equality so that (3) becomes

minimize ci (yi ) + π(qi (yi )− ei )− p(T )yi

subject to
yi ∈ Ai .

(4)

Problems (4) for i = 1, . . . ,m generate likewise a Cournot-Nash
equilibrium in the standard way. It can be characterized by the GE

0 ∈

 ∇c1(y1)− y1∇p(T )− p(T ) + π∇q1(y1)
...

∇cm(ym)− ym∇p(T )− p(T ) + π∇qm(ym)

+

m

X
i=l

NAi (yi ). (5)

Lemma 2.
Let ȳ be a solution of (5). Then the pair (ȳ , x̄) with x̄i = qi (ȳi )− ei ∀i is a
Cournot-Nash equilibrium generated by (3). Conversely, for each
Cournot-Nash equilibrium generated by (3), the component ȳ is a solution of
(5) whenever π > 0.



Existence of CNW equilibria

Theorem 1.
Under the posed assumptions there exists a CNW equilibrium.

Sketch of the proof. Define the mapping Q[Rm → R] by

Q(y) :=
n∑

i=1

qi (yi ).

By virtue of Lemma 2 it suffices to show the existence of a pair (π̄, ȳ)
which solves the (aggregated) GE

0 ∈ Ξ−Q(y) + NR+ (π)

0 ∈

 ∇c1(y1) + π∇q1(y1)− y1∇p(T )− p(T )
...

∇cm(ym) + π∇qm(ym)− ym∇p(T )− p(T )

+
m

X
i=1

NAi (yi )

 (6)

in variables (π, y). Thanks to Lemma 1, R+ in the first line of (6) can
be replaced by a bounded interval [0,L]. So, it remains to apply the
standard existence result for VIs with bounded constraint sets. �



Numerical approaches

(1) Direct solution of the coupled optimization problems (1) together
with the complementarity problem in Def.2 (ii). This structure is
called MOPEC (multiple optimization problems with equilibrium
constraints). It can be solved eg by the PATH solver.

(2) Direct solution of GE (4).
(3) Solution via the mathematical program with equilibrium

constraints (MPEC)

minimize π · (Ξ−Q(y))
subject to

y ∈ S(π) (equilibrium constraint)
π ≥ 0 (control constraint)
Ξ−Q(y) ≥ 0, (state constraint)

(7)

where π is the control variable, y is the state variable and S
assigns each π the corresponding set of Cournot-Nash
equilibria. By virtue of Lemma 1 any solution (π̄, ȳ) of (7)
generates a CNW equilibrium with x̄i = qi (ȳi )− ei provided the
optimal value of the objective in (7) is zero.

The objective of (7) corresponds to the primal gap function [FP].



Solution via MPEC

MPEC (7) can be solved
(a) via nonlinear programming solvers (KNITRO, BARON);
(b) via regularization (MATLAB codes of Ch. Kanzow and A.

Schwartz);
(c) via the a variant of the Implicit programming approach (ImP)

which is able to deal with state constraints.
The ImP approach in this case is based on

Lemma 3.
Mapping S is single-valued and locally Lipschitz over R+.



ImP approach
The application of ImP to (7) amounts to the solution of the penalized
(augmented) program

minimize π · (Ξ−Q ◦ S(π)) + R[(Q ◦ S(π)− Ξ)+]
subject to

π ≥ 0
(8)

in variable π, where R > 0 is a suitably chosen penalty parameter.

Theorem 2.
Let (π̄, ȳ) be a solution of MPEC (7) and assume that the perturbation
mapping

M(z) = {π ∈ R+|Ξ−Q ◦ S(π) ≥ z}

is calm at (0, π̄). Then there is a positive real R such that π̄ is a solution of
the (augmented) program (8).

Remarks.
(1) The required calmness ofM at (0, π̄) can be ensured by

non-restrictive conditions (MFCQ) in terms of problem data.
(2) To solve (8) numerically, e.g a bundle method for nonsmooth

optimization can be used.



Test Example (based on example from [MSS])
Consider five firms supplying quantities yi ∈ R+, i = 1, . . . ,5, of some
homogeneous product on the market with the inverse demand
function

p(T ) = 5000
1
γ T−

1
γ ,

where γ is a positive parameter termed demand elasticity. Let the
functions qi be linear in the form qi (yi ) = qiyi . Let all the production
cost functions be in the form

ci (yi ) = ciyi +
βi

1 + βi
K
− 1

βi
i (yi )

1+βi
βi ,

where ci ,Ki and βi , i = 1, . . . ,5, are positive parameters.
Table : Parameter specification

Firm 1 Firm 2 Firm 3 Firm 4 Firm 5
qi 1.63 1.5 1.48 1.5 1.4
ci 10 8 6 4 2
Ki 5 5 5 5 5
βi 1.2 1.1 1.0 0.9 0.8

Further, let γ = 1.3 and ai = 0,bi = 30 and ei = 25 for each
i = 1, . . . ,5. Assume further that there are no extra rare resources
available (Ξ = 125) and R = 50.



In addition, we will consider the following modifications of the
example above (case A):

B Producer 1 has worse technology regarding rare resource such
that q1 = 4

C upper bounds on production are increased to 35 and initial
endowments with rare resource are increased to 45

D initial endowments with rare resource are lowered to 5 and
additional 100 units of rare resource are available

Firm 1 Firm 2 Firm 3 Firm 4 Firm 5
case A π = 6.375

production 6.651 14.018 18.600 21.347 23.988
profit 172.491 217.617 266.497 311.268 374.633
purchased rare resource -14.159 -3.973 2.528 7.021 8.584

case B π = 5.764
production 0 16.215 20.608 23.132 25.342
profit 144.097 220.921 274.314 321.432 383.849
purchased rare resource -25.000 -0.677 5.500 9.699 10.479

case C π = 0
production 21.218 28.081 32.345 33.790 32.664
profit 67.210 125.581 186.056 237.492 272.578
purchased rare resource -6.407 -2.878 2.870 5.685 0.729

case D π = 6.375
production 6.651 14.018 18.600 21.347 23.988
profit 44.983 90.109 138.989 183.760 247.124
purchased rare resource 5.841 16.027 22.528 27.021 28.584



Social equilibrium problem

Further, we are able to establish that the mappings assigning CNW
equilibria to the problem data (Ξ, γ, c,q) behave in the same stable
way.
It follows that the authority (providing the allocation of rare resource)
could, e.g., optimize Ξ in such a way that in the corresponding CNW,
e.g., the overall production and the price π will be close to some
desired values. One obtains the MPEC

minimize 1
2 (Σm

i=1yi − Td )2 + 1
2 (π − πd )2

subject to
(π, y) solves (4),

(9)

where Ξ is now a control variable and can be subject to some
constraints. (9) is in fact a social equilibrium problem and can, by
virtue of the stability results, be solved via the ImP approach.

One can directly apply e.g. derivative-free method to solve (9),
providing the derivative-free algorithm with objective values after
solving (4) via one of the previously discussed approaches.
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