An introduction to dynamic programming in discrete time

Martin Branda

Charles University Faculty of Mathematics and Physics Department of Probability and Mathematical Statistics

Computational Aspects of Optimization

2017-05-22 1 / 12

< 日 > < 同 > < 三 > < 三 >

Dynamic programming

Finite ${\mathcal T}$ or infinite ∞ time horizon

$$\max_{A_t,c_t} \sum_{t=1}^{T \vee \infty} \left(\frac{1}{1+i}\right)^{t-1} u(c_t)$$

s.t.
$$A_t = (1+r)A_{t-1} + Y_t - c_t.$$
 (1)

- *u* utility function
- *A_t* **state variables** representing total amount of resources available to the consumer.
- c_t control variables maximizing the consumer's utility. It affects the resources available in the next period.
- Y_t exogenous income
- 1/(1+i) discount factor, r exogenous interest rate

If we assume that there is a finite terminal period T:

$$V_{1}(A_{0}) = \max_{A_{t},c_{t}} \sum_{t=1}^{T} \left(\frac{1}{1+i}\right)^{t-1} u(c_{t})$$

$$= \max_{A_{t},c_{t}} u(c_{1}) + \frac{1}{1+i} u(c_{2}) + \dots + \left(\frac{1}{1+i}\right)^{T-1} u(c_{T})$$

$$= \max_{A_{t},c_{t}} u(c_{1}) + \frac{1}{1+i} \left[\sum_{t=2}^{T} \left(\frac{1}{1+i}\right)^{t-2} u(c_{t})\right]$$
s.t.
$$A_{t} = (1+r)A_{t-1} + Y_{t} - c_{t}.$$

We rewrite the maximization problem recursively and obtain the **Bellman** equation

$$V_t(A_{t-1}) = \max_{A_t,c_t} u(c_t) + \frac{1}{1+i} V_{t+1}(A_t),$$

where $A_t = (1 + r)A_{t-1} + Y_t - c_t$.

Moreover, since u does not depend on the time period, we can write

$$V(A_{t-1}) = \max_{A_t, c_t} u(c_t) + \frac{1}{1+i} V(A_t),$$

= $\max_{c_t} u(c_t) + \frac{1}{1+i} V((1+r)A_{t-1} + Y_t - c_t),$

with $V_{T+1}(A_T) = V(A_T) \equiv 0$.

An optimal policy has the property that whatever the initial state and initial decision are, the remaining decisions must constitute an optimal policy with regard to the state resulting from the first decision.

This principle is applied recursively (forward/backward recursion)...

Dynamic programming

First order optimality conditions

$$\begin{array}{rcl} \displaystyle \frac{\partial V(A_{t-1})}{\partial c_t} & = & 0, \\ \displaystyle \frac{\partial V(A_{t-1})}{\partial A_{t-1}} & = & 0. \end{array}$$

In particular,

$$\begin{array}{lll} \displaystyle \frac{\partial V(A_{t-1})}{\partial c_t} & = & u'(c_t) + \frac{1}{1+i}V'(A_t)\frac{\partial A_t}{\partial c_t}, \\ \displaystyle \frac{\partial V(A_{t-1})}{\partial A_{t-1}} & = & \frac{1}{1+i}V'(A_t)\frac{\partial A_t}{\partial A_{t-1}}, \end{array}$$

where using $A_t = (1 + r)A_{t-1} + Y_t - c_t$ we have

$$\frac{\partial A_t}{\partial c_t} = -1, \quad \frac{\partial A_t}{\partial A_{t-1}} = 1 + r.$$

イロト 不得 トイヨト イヨト 二日

Cake eating problem:

- $u(c) = 2c^{1/2}$,
- $\Pi_0 = 1, \ \Pi_T = 0,$
- $\Pi_t = \Pi_{t-1} c_t \dots$

イロト 不得 とうせい かほとう ほ

Example: Cake eating problem

Bellman equation

$$V(\Pi_{t-1}) = \max_{c_t} u(c_t) + \frac{1}{1+i} V(\Pi_t),$$

s.t. $\Pi_t = \Pi_{t-1} - c_t.$

Optimality conditions

$$\begin{aligned} \frac{\partial V(\Pi_{t-1})}{\partial c_t} &= u'(c_t) + \frac{1}{1+i}V'(\Pi_t)\frac{\partial \Pi_t}{\partial c_t} = 0, \\ \frac{\partial V(\Pi_{t-1})}{\partial \Pi_{t-1}} &= \frac{1}{1+i}V'(\Pi_t)\frac{\partial \Pi_t}{\partial \Pi_{t-1}} = 0, \end{aligned}$$

From $\Pi_t = \Pi_{t-1} - c_t$

$$\frac{\partial \Pi_t}{\partial c_t} = -1, \ \frac{\partial \Pi_t}{\partial \Pi_{t-1}} = 1.$$
(2)

イロト 不得 トイヨト イヨト 二日

Example: Cake eating problem

Putting them together, we obtain

$$\frac{\partial V(\Pi_{t-1})}{\partial c_t} = u'(c_t) - \frac{1}{1+i}V'(\Pi_t) = 0,$$
(3)
$$\frac{\partial V(\Pi_{t-1})}{\partial \Pi_{t-1}} = \frac{1}{1+i}V'(\Pi_t) = 0,$$
(4)

Taking (3) for t-1

$$u'(c_{t-1}) - \frac{1}{1+i}V'(\Pi_{t-1}) = 0,$$
(5)

and plugging it into (4), we have

$$u'(c_{t-1}) = \frac{1}{1+i}u'(c_t),$$

which represents the optimal path of the cake consumption.

Martin Branda (KPMS MFF UK)

Example: Cake eating problem

For $u(c) = 2c^{1/2}$, we have

$$u'(c_{t-1}) = \frac{1}{1+i}u'(c_t),$$

$$(c_{t-1})^{-1/2} = \frac{1}{1+i}(c_t)^{-1/2},$$

$$c_t = \left(\frac{1}{1+i}\right)^2 c_{t-1},$$

with initial and terminal conditions $\Pi_0 = 1$, $\Pi_T = 0$. If we denote $\beta = 1/(1+i)^2$, we obtain

$$c_t = \beta c_{t-1} = \beta^{t-1} c_1.$$

Using

$$c_t = \beta c_{t-1} = \beta^{t-1} c_1.$$

and

$$\Pi_0-c_1-c_2-\cdots-c_T=\Pi_T=0,$$

we have

$$(1-\beta-\cdots-\beta^{T-1})c_1=\Pi_0,$$

and finally optimal consumption

$$\hat{c}_1 = \frac{1-\beta}{1-\beta^T} \Pi_0,$$

$$\hat{c}_t = \beta \hat{c}_{t-1} = \beta^{t-1} \hat{c}_1.$$

イロン イロン イヨン イヨン

- P. Kall, S.W. Wallace: Stochastic Programming, John Wiley & Sons, Chichester.
- M. C. Sunny Wong: Dynamic Optimization: An Introduction, Lecture Notes University of Houston, 2013.

< ロ > < 同 > < 回 > <