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Dynamic programming

Finite T or infinite ∞ time horizon

max
At ,ct

T∨∞∑
t=1

(
1

1 + i

)t−1
u(ct)

s.t.

At = (1 + r)At−1 + Yt − ct .

(1)

u – utility function

At – state variables representing total amount of resources available
to the consumer.

ct – control variables maximizing the consumer’s utility. It affects
the resources available in the next period.

Yt – exogenous income

1/(1 + i) – discount factor, r – exogenous interest rate
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Dynamic programming

If we assume that there is a finite terminal period T :

V1(A0) = max
At ,ct

T∑
t=1

(
1

1 + i

)t−1
u(ct)

= max
At ,ct

u(c1) +
1

1 + i
u(c2) + · · ·+

(
1

1 + i

)T−1
u(cT )

= max
At ,ct

u(c1) +
1

1 + i

[
T∑
t=2

(
1

1 + i

)t−2
u(ct)

]
s.t.

At = (1 + r)At−1 + Yt − ct .
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Dynamic programming

We rewrite the maximization problem recursively and obtain the Bellman
equation

Vt(At−1) = max
At ,ct

u(ct) +
1

1 + i
Vt+1(At),

where At = (1 + r)At−1 + Yt − ct .

Moreover, since u does not depend on the time period, we can write

V (At−1) = max
At ,ct

u(ct) +
1

1 + i
V (At),

= max
ct

u(ct) +
1

1 + i
V
(

(1 + r)At−1 + Yt − ct
)
,

with VT+1(AT ) = V (AT ) ≡ 0.
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Bellman principle of optimality

An optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision.

This principle is applied recursively (forward/backward recursion)...
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Dynamic programming

First order optimality conditions

∂V (At−1)

∂ct
= 0,

∂V (At−1)

∂At−1
= 0.

In particular,

∂V (At−1)

∂ct
= u′(ct) +

1

1 + i
V ′(At)

∂At

∂ct
,

∂V (At−1)

∂At−1
=

1

1 + i
V ′(At)

∂At

∂At−1
,

where using At = (1 + r)At−1 + Yt − ct we have

∂At

∂ct
= −1,

∂At

∂At−1
= 1 + r .
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Example: Cake eating problem

Cake eating problem:

u(c) = 2c1/2,

Π0 = 1, ΠT = 0,

Πt = Πt−1 − ct ...
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Example: Cake eating problem

Bellman equation

V (Πt−1) = max
ct

u(ct) +
1

1 + i
V (Πt),

s.t. Πt = Πt−1 − ct .

Optimality conditions

∂V (Πt−1)

∂ct
= u′(ct) +

1

1 + i
V ′(Πt)

∂Πt

∂ct
= 0,

∂V (Πt−1)

∂Πt−1
=

1

1 + i
V ′(Πt)

∂Πt

∂Πt−1
= 0,

From Πt = Πt−1 − ct

∂Πt

∂ct
= −1,

∂Πt

∂Πt−1
= 1. (2)
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Example: Cake eating problem

Putting them together, we obtain

∂V (Πt−1)

∂ct
= u′(ct)−

1

1 + i
V ′(Πt) = 0, (3)

∂V (Πt−1)

∂Πt−1
=

1

1 + i
V ′(Πt) = 0, (4)

Taking (3) for t − 1

u′(ct−1)− 1

1 + i
V ′(Πt−1) = 0, (5)

and plugging it into (4), we have

u′(ct−1) =
1

1 + i
u′(ct),

which represents the optimal path of the cake consumption.
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Example: Cake eating problem

For u(c) = 2c1/2, we have

u′(ct−1) =
1

1 + i
u′(ct),

(ct−1)−1/2 =
1

1 + i
(ct)

−1/2,

ct =

(
1

1 + i

)2

ct−1,

with initial and terminal conditions Π0 = 1, ΠT = 0. If we denote
β = 1/(1 + i)2, we obtain

ct = βct−1 = βt−1c1.
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Using

ct = βct−1 = βt−1c1.

and

Π0 − c1 − c2 − · · · − cT = ΠT = 0,

we have

(1− β − · · · − βT−1)c1 = Π0,

and finally optimal consumption

ĉ1 =
1− β

1− βT
Π0,

ĉt = βĉt−1 = βt−1ĉ1.
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