Zero-sum games of two players

Martin Branda

Charles University in Prague Faculty of Mathematics and Physics Department of Probability and Mathematical Statistics

Computational Aspects of Optimization

16-05-2016 1 / 24

< 日 > < 同 > < 三 > < 三 >

A triplet $\{X, Y, K\}$ is called a game of two rational players with zero sum, if

- **()** X is a set of strategies of Player 1 (P1),
- Y is a set of strategies of Player 2 (P2),
- **③** $K : X \times Y \to \mathbb{R}$ is a payoff function of player 1, i.e. if P1 plays $x \in X$ and P2 plays $y \in Y$, then P1 gets K(x, y) and P2 gets -K(x, y).

For the zero-sum games $\{X, Y, K\}$ we define

- upper value of the game $uv^* = \inf_{y \in Y} \sup_{x \in X} K(x, y)$,
- lower value of the game $lv^* = \sup_{x \in X} \inf_{y \in Y} K(x, y)$,
- upper price of the game $up = \min_{y \in Y} \sup_{x \in X} K(x, y)$,
- lower price of the game $lp = \max_{x \in X} \inf_{y \in Y} K(x, y)$.

If the lower and upper prices exist and it holds up = lp, then we say that the game has the **price** p = up = lp.

Upper value can be seen as the lowest payoff of P1, if P1 knows strategy of P2 before his/her move.

イロト 不得 トイヨト イヨト 二日

We say that

- $\hat{x} \in X$ is an optimal strategy of P1, if $K(\hat{x}, y) \ge lv^*$ for all $y \in Y$.
- $\hat{y} \in Y$ is an optimal strategy of P2, if $K(x, \hat{y}) \leq uv^*$ for all $x \in X$.

イロト イ団ト イヨト イヨト 三臣

For each zero-sum game $\{X, Y, K\}$ the upper and lower value exits and it holds

 $lv^* \le uv^*$.

For each $\tilde{x} \in X$ and $\tilde{y} \in Y$ it holds

$$\inf_{y \in Y} K(\tilde{x}, y) \leq K(\tilde{x}, \tilde{y}),$$

$$\sup_{x \in X} \inf_{y \in Y} K(x, y) \leq \sup_{x \in X} K(x, \tilde{y}),$$

$$lv^* = \sup_{x \in X} \inf_{y \in Y} K(x, y) \leq \inf_{y \in Y} \sup_{x \in X} K(x, y) = uv^*.$$
(1)

Zero-sum games of two players

Proposition

For each zero-sum game $\{X, Y, K\}$ is holds that

- There is at least one optimal strategy of P1, if and only if the lower price exists.
- There is at least one optimal strategy of P2, if and only if the upper price exists.

" \Rightarrow ": Let $\hat{x} \in X$ be an optimal strategy of P1, i.e. $K(\hat{x}, y) \ge lv^*$ for all $y \in Y$. Then

$$\operatorname{lv}^* \leq \inf_{y \in Y} K(\hat{x}, y) \leq \sup_{x \in X} \inf_{y \in Y} K(x, y) = \operatorname{lv}^*.$$
(2)

Thus

$$\operatorname{lv}^* = \inf_{y \in Y} K(\hat{x}, y) = \max_{x \in X} \inf_{y \in Y} K(x, y) = \operatorname{lp}.$$
(3)

Let $\{X, Y, K\}$ be a zero-sum game with X, Y compact and K continuous. Then the upper and lower prices exist.

Martin Branda (KPMS MFF UK)

16-05-2016 7 / 24

Theorem

A zero-sum game $\{X, Y, K\}$ has a price if and only if the payoff function has a saddle point, i.e. there is a pair^a (\hat{x}, \hat{y}) such that

 $K(x, \hat{y}) \leq K(\hat{x}, \hat{y}) \leq K(\hat{x}, y)$

for all $x \in X$ and $y \in Y$. Then \hat{x} is an optimal strategy for P1, \hat{y} is an optimal strategy for P2, and $p = K(\hat{x}, \hat{y})$ is the price of the game.

^aSuch pair can be seen as a Nash equilibrium for two player games.

" \Rightarrow ": $K(x, \hat{y}) \leq p \leq K(\hat{x}, y).$

イロト 不得 とうせい かほとう ほ

John Forbes Nash (1928–2015)

A Beautiful Mind (2001)

Martin Branda (KPMS MFF UK)

(日)

Theorem

Let $\{X, Y, K\}$ be a zero-sum game where X, Y are nonempty convex compact sets and K(x, y) is continuous, concave in x and convex in y. Then, there exists the price of the game, i.e.

$$\min_{y\in Y} \max_{x\in X} K(x, y) = \max_{x\in X} \min_{y\in Y} K(x, y).$$

Applicable also out of the game theory, e.g. in robustness.

Generalizations: Rockafellar (1970)

We say that $\{X, Y, A\}$ is a **matrix game** if it a zero sum game (of two players), $A \in \mathbb{R}^{n \times m}$ is a matrix, and

$$K(x, y) = x^{T} A y,$$

$$X = \left\{ x \in \mathbb{R}^{n} : \sum_{i=1}^{n} x_{i} = 1, x_{i} \ge 0 \right\},$$

$$Y = \left\{ y \in \mathbb{R}^{m} : \sum_{j=1}^{m} y_{j} = 1, y_{j} \ge 0 \right\}.$$
(4)

<ロト <部ト <きト <きト

Rock-paper-scissors

R-P-S

$$A = \left(\begin{array}{rrrr} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{array}\right)$$

Martin Branda (KPMS MFF UK)

▶ < ≣ ▶ ≣ 16-05-2016 12 / 24

イロン イロン イヨン イヨン

(5)

Rock-paper-scissors-lizard-Spock

・ロト ・日 ・ ・ ヨト

Rock-paper-scissors-lizard-Spock

Martin Branda (KPMS MFF UK)

< 日 > < 同 > < 三 > < 三 >

For a matrix game $\{X, Y, A\}$, we define a matrix game with **pure** strategies $\{\overline{X}, \overline{Y}, A\}$, where

$$\overline{X} = \left\{ x \in \mathbb{R}^{n} : \sum_{i=1}^{n} x_{i} = 1, \ x_{i} \in \{0, 1\} \right\},$$

$$\overline{Y} = \left\{ y \in \mathbb{R}^{m} : \sum_{j=1}^{m} y_{j} = 1, \ y_{j} \in \{0, 1\} \right\}.$$
(6)

We say that $\{X, Y, A\}$ has a **price in pure strategies** if both players have optimal pure strategies.

Each matrix game has a price and both players have optimal strategies.

Proposition

Matrix game $\{X, Y, A\}$ has a price in pure strategies if and only if $\{\overline{X}, \overline{Y}, A\}$ has a price.

イロト 不得 トイヨト イヨト 二日

Let $\{X, Y, A\}$ be a matrix game and $\hat{x} \in X$ and $\hat{y} \in Y$ with price p. Then (1) \hat{x} is an optimal strategy of P1 if and only if $\hat{x}^T A \ge (p, \dots, p)$, (2) \hat{y} is an optimal strategy of P2 if and only if $A\hat{y} \le (p, \dots, p)^T$.

$$\hat{x}^{\mathsf{T}} A \ge (p, \dots, p) \Leftrightarrow \hat{x}^{\mathsf{T}} A y \ge p, \forall y \in Y.$$

("\Rightarrow" \cdot y & $\sum_{i} y_{i} = 1, "\ll" y = e_{i}$)

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

(Complementarity conditions) Let $\{X, Y, A\}$ be a matrix game with price p and let $\hat{x} \in X$ and $\hat{y} \in Y$ be optimal strategies. Then () if $\hat{x}_i > 0$, then $(A\hat{y})_i = p$

イロト イポト イヨト イヨト ニヨ

16-05-2016

18 / 24

2 if
$$\hat{y}_j > 0$$
, then $(\hat{x} | A)_j = p$.

Matrix games – Example

Consider

$$A = \left(\begin{array}{cc} 5 & 1 \\ 0 & 7 \end{array}\right)$$

 $5x_1 \ge p$, $x_1 + 7x_2 \ge p$, $x_1 + x_2 = 1$, $x_1 \ge 0$, $x_2 \ge 0$

$$\max_{x \in X} \min\{5x_1, x_1 + 7x_2\} = p$$

and using $x_1 + x_2 = 1$

$$\max_{x_1 \ge 0} \min\{5x_1, 7 - 6x_1\} = p$$

Maximum is attained at $\hat{x}_1 = 7/11$, $\hat{x}_2 = 4/11$ with the price p = 35/11. Using complementarity conditions, we obtain $\hat{y}_1 = 6/11$, $\hat{y}_2 = 5/11$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ののの

Let $a, b \in \mathbb{R}^n$. We say that a strictly dominates b (b is strictly dominated by a), if $a_i > b_i$ for all i = 1, ..., n.

Proposition

Let $\{X, Y, A\}$ be a matrix game.

- If a row A_{k,}. is strictly dominated by a convex combination of other rows, then each optimal strategy of P1 fulfills x̂_k = 0.
- 2 If a column $A_{,k}$ strictly dominates a convex combination of other columns, then each optimal strategy of P2 fulfills $\hat{y}_k = 0$.

・ロト ・聞 ト ・ 国 ト ・ 国 ト … 国

Show that $(0, 0, 7/11, 4/11)^T$ is optimal strategy for P1, $(0, 0, 6/11, 5/11)^T$ for P2, and the price is p = 35/11.

16-05-2016 21 / 24

< ロ > < 同 > < 回 > < 回 > < □ > <

Matrix game $\{X, Y, A\}$ has a price p in pure strategies if and only if matrix A has a saddle point, i.e. there is a pair of indices $\{k, l\}$ such that

$$A_{kl} = \min\{A_{kj}: j = 1, \dots, m\} = \max\{A_{il}: i = 1, \dots, n\}.$$

(minimum in the row, maximum in the column)

 e_k, e_l are optimal strategies of P1, P2 \Leftrightarrow

$$(e_k^T A)_j = A_{kj} \ge p, \forall j, (Ae_l)_i = A_{il} \le p, \forall i,$$
 (7)

$$A_{kl} = \min\{A_{kj} : j = 1, \dots, m\} = \max\{A_{il} : i = 1, \dots, n\}.$$

Find the saddle point(s) ..

$$\left(\begin{array}{rrrr}1&2&3\\4&5&6\\7&8&9\end{array}\right), \ \left(\begin{array}{rrrr}2&2&2\\2&1&1\\3&2&2\end{array}\right),$$

Martin Branda (KPMS MFF UK)

16-05-2016 23 / 24

(8)

- Lachout, P. (2011). Matematické programování. Skripta k (zaniklé) přednášce Optimalizace I (IN CZECH).
- Rockafellar, R.T. (1970). Convex Analysis. Princeton University Press, Princeton (N.Y.).
- Webb, J.N. Game Theory (2007). Decisions, Interactions and Evolution. Springer-Verlag, London.