Zero-sum games of two players

Martin Branda

Charles University in Prague
Faculty of Mathematics and Physics
Department of Probability and Mathematical Statistics

Computational Aspects of Optimization

Zero-sum games of two players

Definition

A triplet $\{X, Y, K\}$ is called a game of two rational players with zero sum, if
(1) X is a set of strategies of Player 1 (P1),
(2) Y is a set of strategies of Player 2 (P2),
(3) $K: X \times Y \rightarrow \mathbb{R}$ is a payoff function of player 1, i.e. if P1 plays $x \in X$ and P 2 plays $y \in Y$, then P 1 gets $K(x, y)$ and P 2 gets $-K(x, y)$.

Zero-sum games of two players

Definition

For the zero-sum games $\{X, Y, K\}$ we define

- upper value of the game $u v^{*}=\inf _{y \in Y} \sup _{x \in X} K(x, y)$,
- lower value of the game $\mathrm{lv}^{*}=\sup _{x \in X} \inf _{y \in Y} K(x, y)$,
- upper price of the game up $=\min _{y \in Y} \sup _{x \in X} K(x, y)$,
- lower price of the game $\mathrm{lp}=\max _{x \in X} \inf _{y \in Y} K(x, y)$.

If the lower and upper prices exist and it holds $u p=l p$, then we say that the game has the price $p=u p=l p$.

Upper value can be seen as the lowest payoff of P1, if P1 knows strategy of P2 before his/her move.

Zero-sum games of two players

Definition

We say that

- $\hat{x} \in X$ is an optimal strategy of P 1 , if $K(\hat{x}, y) \geq \mathrm{lv}^{*}$ for all $y \in Y$.
- $\hat{y} \in Y$ is an optimal strategy of P 2 , if $K(x, \hat{y}) \leq \mathrm{uv}^{*}$ for all $x \in X$.

Zero-sum games of two players

Proposition

For each zero-sum game $\{X, Y, K\}$ the upper and lower value exits and it holds

$$
\mathrm{lv}^{*} \leq \mathrm{uv}^{*}
$$

For each $\tilde{x} \in X$ and $\tilde{y} \in Y$ it holds

$$
\begin{align*}
& \inf _{y \in Y} K(\tilde{x}, y) \leq K(\tilde{x}, \tilde{y}), \\
& \sup _{x \in X} \inf _{y \in Y} K(x, y) \leq \sup _{x \in X} K(x, \tilde{y}), \tag{1}\\
& l \mathrm{v}^{*}=\sup _{x \in X} \inf _{y \in Y} K(x, y) \leq \inf _{y \in Y} \sup _{x \in X} K(x, y)=\mathrm{uv}^{*} .
\end{align*}
$$

Zero-sum games of two players

Proposition

For each zero-sum game $\{X, Y, K\}$ is holds that

- There is at least one optimal strategy of P1, if and only if the lower price exists.
- There is at least one optimal strategy of P2, if and only if the upper price exists.
" \Rightarrow ": Let $\hat{x} \in X$ be an optimal strategy of P1, i.e. $K(\hat{x}, y) \geq \mathrm{lv}^{*}$ for all $y \in Y$. Then

$$
\begin{equation*}
\mathrm{lv}^{*} \leq \inf _{y \in Y} K(\hat{x}, y) \leq \sup _{x \in X} \inf _{y \in Y} K(x, y)=\mathrm{lv}^{*} . \tag{2}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\operatorname{lv}^{*}=\inf _{y \in Y} K(\hat{x}, y)=\max _{x \in X} \inf _{y \in Y} K(x, y)=\operatorname{lp} \tag{3}
\end{equation*}
$$

Zero-sum games of two players

Proposition

Let $\{X, Y, K\}$ be a zero-sum game with X, Y compact and K continuous. Then the upper and lower prices exist.

Zero-sum games of two players

Theorem

A zero-sum game $\{X, Y, K\}$ has a price if and only if the payoff function has a saddle point, i.e. there is a pair ${ }^{a}(\hat{x}, \hat{y})$ such that

$$
K(x, \hat{y}) \leq K(\hat{x}, \hat{y}) \leq K(\hat{x}, y)
$$

for all $x \in X$ and $y \in Y$. Then \hat{x} is an optimal strategy for $P 1, \hat{y}$ is an optimal strategy for $P 2$, and $p=K(\hat{x}, \hat{y})$ is the price of the game.
${ }^{a}$ Such pair can be seen as a Nash equilibrium for two player games.

$$
" \Rightarrow ": K(x, \hat{y}) \leq p \leq K(\hat{x}, y) .
$$

John Forbes Nash (1928-2015)

A Beautiful Mind (2001)

Minimax theorem

Theorem

Let $\{X, Y, K\}$ be a zero-sum game where X, Y are nonempty convex compact sets and $K(x, y)$ is continuous, concave in x and convex in y. Then, there exists the price of the game, i.e.

$$
\min _{y \in Y} \max _{x \in X} K(x, y)=\max _{x \in X} \min _{y \in Y} K(x, y)
$$

Applicable also out of the game theory, e.g. in robustness.
Generalizations: Rockafellar (1970)

Matrix games

Definition

We say that $\{X, Y, A\}$ is a matrix game if it a zero sum game (of two players), $A \in \mathbb{R}^{n \times m}$ is a matrix, and

$$
\begin{align*}
K(x, y) & =x^{T} A y \\
X & =\left\{x \in \mathbb{R}^{n}: \sum_{i=1}^{n} x_{i}=1, x_{i} \geq 0\right\} \tag{4}\\
Y & =\left\{y \in \mathbb{R}^{m}: \sum_{j=1}^{m} y_{j}=1, y_{j} \geq 0\right\}
\end{align*}
$$

Rock-paper-scissors

R-P-S

$$
A=\left(\begin{array}{ccc}
0 & -1 & 1 \tag{5}\\
1 & 0 & -1 \\
-1 & 1 & 0
\end{array}\right)
$$

Rock-paper-scissors-lizard-Spock

Rock-paper-scissors-lizard-Spock

Matrix games

Definition

For a matrix game $\{X, Y, A\}$, we define a matrix game with pure strategies $\{\bar{X}, \bar{Y}, A\}$, where

$$
\begin{align*}
& \bar{X}=\left\{x \in \mathbb{R}^{n}: \sum_{i=1}^{n} x_{i}=1, x_{i} \in\{0,1\}\right\} \\
& \bar{Y}=\left\{y \in \mathbb{R}^{m}: \sum_{j=1}^{m} y_{j}=1, y_{j} \in\{0,1\}\right\} \tag{6}
\end{align*}
$$

We say that $\{X, Y, A\}$ has a price in pure strategies if both players have optimal pure strategies.

Matrix games

Proposition

Each matrix game has a price and both players have optimal strategies.

Proposition

Matrix game $\{X, Y, A\}$ has a price in pure strategies if and only if $\{\bar{X}, \bar{Y}, A\}$ has a price.

Matrix games

Proposition

Let $\{X, Y, A\}$ be a matrix game and $\hat{x} \in X$ and $\hat{y} \in Y$ with price p. Then
(1) \hat{x} is an optimal strategy of P1 if and only if $\hat{x}^{T} A \geq(p, \ldots, p)$,
(2) \hat{y} is an optimal strategy of P2 if and only if $A \hat{y} \leq(p, \ldots, p)^{T}$.

$$
\begin{aligned}
& \hat{x}^{T} A \geq(p, \ldots, p) \Leftrightarrow \hat{x}^{T} A y \geq p, \forall y \in Y . \\
& \left(" \Rightarrow " \cdot y \& \sum_{i} y_{i}=1, " \Leftarrow " y=\mathrm{e}_{i}\right)
\end{aligned}
$$

Matrix games

Proposition

(Complementarity conditions) Let $\{X, Y, A\}$ be a matrix game with price p and let $\hat{x} \in X$ and $\hat{y} \in Y$ be optimal strategies. Then
(1) if $\hat{x}_{i}>0$, then $(A \hat{y})_{i}=p$
(2) if $\hat{y}_{j}>0$, then $\left(\hat{x}^{T} A\right)_{j}=p$.

Matrix games - Example

Consider

$$
A=\left(\begin{array}{ll}
5 & 1 \\
0 & 7
\end{array}\right)
$$

$5 x_{1} \geq p, x_{1}+7 x_{2} \geq p, x_{1}+x_{2}=1, x_{1} \geq 0, x_{2} \geq 0$

$$
\max _{x \in X} \min \left\{5 x_{1}, x_{1}+7 x_{2}\right\}=p
$$

and using $x_{1}+x_{2}=1$

$$
\max _{x_{1} \geq 0} \min \left\{5 x_{1}, 7-6 x_{1}\right\}=p
$$

Maximum is attained at $\hat{x}_{1}=7 / 11, \hat{x}_{2}=4 / 11$ with the price $p=35 / 11$. Using complementarity conditions, we obtain $\hat{y}_{1}=6 / 11, \hat{y}_{2}=5 / 11$.

Matrix games

Let $a, b \in \mathbb{R}^{n}$. We say that a strictly dominates b (b is strictly dominated by a), if $a_{i}>b_{i}$ for all $i=1, \ldots, n$.

Proposition

Let $\{X, Y, A\}$ be a matrix game.
(1) If a row $A_{k, \text {, }}$ is strictly dominated by a convex combination of other rows, then each optimal strategy of P1 fulfills $\hat{x}_{k}=0$.
(2) If a column A.,k strictly dominates a convex combination of other columns, then each optimal strategy of P2 fulfills $\hat{y}_{k}=0$.

Matrix games

$$
\left(\begin{array}{llll}
3 & 2 & 4 & 0 \\
3 & 4 & 2 & 3 \\
6 & 5 & 5 & 1 \\
1 & 4 & 0 & 7
\end{array}\right)
$$

Show that $(0,0,7 / 11,4 / 11)^{T}$ is optimal strategy for P 1 , $(0,0,6 / 11,5 / 11)^{T}$ for P 2 , and the price is $p=35 / 11$.

Matrix games

Proposition

Matrix game $\{X, Y, A\}$ has a price p in pure strategies if and only if matrix A has a saddle point, i.e. there is a pair of indices $\{k, I\}$ such that

$$
A_{k l}=\min \left\{A_{k j}: j=1, \ldots, m\right\}=\max \left\{A_{i l}: i=1, \ldots, n\right\} .
$$

(minimum in the row, maximum in the column)
$\mathrm{e}_{k}, \mathrm{e}_{/}$are optimal strategies of P1, P2
\Leftrightarrow

$$
\begin{align*}
\left(\mathrm{e}_{k}^{T} A\right)_{j} & =A_{k j} \geq p, \forall j, \\
\left(A \mathrm{e}_{l}\right)_{i} & =A_{i l} \leq p, \forall i, \tag{7}
\end{align*}
$$

\Leftrightarrow

$$
A_{k l}=\min \left\{A_{k j}: j=1, \ldots, m\right\}=\max \left\{A_{i l}: i=1, \ldots, n\right\} .
$$

Matrix games - Example

Find the saddle point(s) ..

$$
\left(\begin{array}{lll}
1 & 2 & 3 \tag{8}\\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right),\left(\begin{array}{lll}
2 & 2 & 2 \\
2 & 1 & 1 \\
3 & 2 & 2
\end{array}\right)
$$

Literature

- Lachout, P. (2011). Matematické programování. Skripta k (zaniklé) přednášce Optimalizace I (IN CZECH).
- Rockafellar, R.T. (1970). Convex Analysis. Princeton University Press, Princeton (N.Y.).
- Webb, J.N. Game Theory (2007). Decisions, Interactions and Evolution. Springer-Verlag, London.

