Dynamic programming in discrete time - examples

Martin Branda

Charles University in Prague
Faculty of Mathematics and Physics
Department of Probability and Mathematical Statistics
Computational Aspects of Optimization

Dynamic programming

Finite T or infinite ∞ time horizon

$$
\begin{array}{ll}
\max _{A_{t}, c_{t}} & \sum_{t=1}^{T \vee \infty}\left(\frac{1}{1+i}\right)^{t-1} u\left(c_{t}\right) \\
\text { s.t. }
\end{array}
$$

$$
A_{t}=(1+r) A_{t-1}+Y_{t}-c_{t}
$$

- u - utility function
- A_{t} - state variables representing total amount of resources available to the consumer.
- c_{t} - control variables maximizing the consumer's utility. It affects the resources available in the next period.
- Y_{t} - exogenous income
- $1 /(1+i)$ - discount factor, r - exogenous interest rate

Dynamic programming

If we assume that there is a finite terminal period T :

$$
\begin{aligned}
V_{1}\left(A_{0}\right)= & \max _{A_{t}, c_{t}} \sum_{t=1}^{T}\left(\frac{1}{1+i}\right)^{t-1} u\left(c_{t}\right) \\
= & \max _{A_{t}, c_{t}} u\left(c_{1}\right)+\frac{1}{1+i} u\left(c_{2}\right)+\cdots+\left(\frac{1}{1+i}\right)^{T-1} u\left(c_{T}\right) \\
= & \max _{A_{t}, c_{t}} u\left(c_{1}\right)+\frac{1}{1+i}\left[\sum_{t=2}^{T}\left(\frac{1}{1+i}\right)^{t-2} u\left(c_{t}\right)\right] \\
& \text { s.t. } \\
& A_{t}=(1+r) A_{t-1}+Y_{t}-c_{t} .
\end{aligned}
$$

Dynamic programming

We rewrite the maximization problem recursively and obtain the Bellman equation

$$
V_{t}\left(A_{t-1}\right)=\max _{A_{t}, c_{t}} u\left(c_{t}\right)+\frac{1}{1+i} V_{t+1}\left(A_{t}\right)
$$

where $A_{t}=(1+r) A_{t-1}+Y_{t}-c_{t}$.

Moreover, since u does not depend on the time period, we can write

$$
\begin{aligned}
V\left(A_{t-1}\right) & =\max _{A_{t}, c_{t}} u\left(c_{t}\right)+\frac{1}{1+i} V\left(A_{t}\right), \\
& =\max _{c_{t}} u\left(c_{t}\right)+\frac{1}{1+i} V\left((1+r) A_{t-1}+Y_{t}-c_{t}\right),
\end{aligned}
$$

with $V_{T+1}\left(A_{T}\right)=V\left(A_{T}\right) \equiv 0$.

Dynamic programming

First order optimality conditions

$$
\begin{aligned}
& \frac{\partial V\left(A_{t-1}\right)}{\partial c_{t}}=0 \\
& \frac{\partial V\left(A_{t-1}\right)}{\partial A_{t-1}}=0 .
\end{aligned}
$$

In particular,

$$
\begin{aligned}
& \frac{\partial V\left(A_{t-1}\right)}{\partial c_{t}}=u^{\prime}\left(c_{t}\right)+\frac{1}{1+i} V^{\prime}\left(A_{t}\right) \frac{\partial A_{t}}{\partial c_{t}} \\
& \frac{\partial V\left(A_{t-1}\right)}{\partial A_{t-1}}=\frac{1}{1+i} V^{\prime}\left(A_{t}\right) \frac{\partial A_{t}}{\partial A_{t-1}},
\end{aligned}
$$

where using $A_{t}=(1+r) A_{t-1}+Y_{t}-c_{t}$ we have

$$
\frac{\partial A_{t}}{\partial c_{t}}=-1, \quad \frac{\partial A_{t}}{\partial A_{t-1}}=1+r .
$$

Example: Cake eating problem

Cake eating problem:

- $u(c)=2 c^{1 / 2}$,
- $\Pi_{0}=1, \Pi_{T}=0$,
- $\Pi_{t}=\Pi_{t-1}-c_{t} \ldots$

Example: Cake eating problem

Bellman equation

$$
\begin{aligned}
V\left(\Pi_{t-1}\right)= & \max _{c_{t}} u\left(c_{t}\right)+\frac{1}{1+i} V\left(\Pi_{t}\right) \\
& \text { s.t. } \Pi_{t}=\Pi_{t-1}-c_{t}
\end{aligned}
$$

Optimality conditions

$$
\begin{aligned}
& \frac{\partial V\left(\Pi_{t-1}\right)}{\partial c_{t}}=u^{\prime}\left(c_{t}\right)+\frac{1}{1+i} V^{\prime}\left(\Pi_{t}\right) \frac{\partial \Pi_{t}}{\partial c_{t}}=0 \\
& \frac{\partial V\left(\Pi_{t-1}\right)}{\partial \Pi_{t-1}}=\frac{1}{1+i} V^{\prime}\left(\Pi_{t}\right) \frac{\partial \Pi_{t}}{\partial \Pi_{t-1}}=0
\end{aligned}
$$

From $\Pi_{t}=\Pi_{t-1}-c_{t}$

$$
\begin{equation*}
\frac{\partial \Pi_{t}}{\partial c_{t}}=-1, \frac{\partial \Pi_{t}}{\partial \Pi_{t-1}}=1 \tag{2}
\end{equation*}
$$

Example: Cake eating problem

Putting them together, we obtain

$$
\begin{align*}
& \frac{\partial V\left(\Pi_{t-1}\right)}{\partial c_{t}}=u^{\prime}\left(c_{t}\right)-\frac{1}{1+i} V^{\prime}\left(\Pi_{t}\right)=0 \tag{3}\\
& \frac{\partial V\left(\Pi_{t-1}\right)}{\partial \Pi_{t-1}}=\frac{1}{1+i} V^{\prime}\left(\Pi_{t}\right)=0 \tag{4}
\end{align*}
$$

Taking (3) for $t-1$

$$
\begin{equation*}
u^{\prime}\left(c_{t-1}\right)-\frac{1}{1+i} V^{\prime}\left(\Pi_{t-1}\right)=0 \tag{5}
\end{equation*}
$$

and plugging it into (4), we have

$$
u^{\prime}\left(c_{t-1}\right)=\frac{1}{1+i} u^{\prime}\left(c_{t}\right)
$$

which represents the optimal path of the cake consumption.

Example: Cake eating problem

For $u(c)=2 c^{1 / 2}$, we have

$$
\begin{aligned}
u^{\prime}\left(c_{t-1}\right) & =\frac{1}{1+i} u^{\prime}\left(c_{t}\right), \\
\left(c_{t-1}\right)^{-1 / 2} & =\frac{1}{1+i}\left(c_{t}\right)^{-1 / 2}, \\
c_{t} & =\left(\frac{1}{1+i}\right)^{2} c_{t-1},
\end{aligned}
$$

with initial and terminal conditions $\Pi_{0}=1, \Pi_{T}=0$. If we denote $\beta=1 /(1+i)^{2}$, we obtain

$$
c_{t}=\beta c_{t-1}=\beta^{t-1} c_{1}
$$

Using

$$
c_{t}=\beta c_{t-1}=\beta^{t-1} c_{1}
$$

and

$$
\Pi_{0}-c_{1}-c_{2}-\ldots-c_{T}=\Pi_{T}=0
$$

we have

$$
\left(1-\beta-\ldots-\beta^{T-1}\right) c_{1}=\Pi_{0}
$$

and finally optimal consumption

$$
\begin{aligned}
& \hat{c}_{1}=\frac{1-\beta}{1-\beta^{T}} \Pi_{0} \\
& \hat{c}_{t}=\beta \hat{c}_{t-1}=\beta^{t-1} \hat{c}_{1} .
\end{aligned}
$$

Literature

- M. C. Sunny Wong: Dynamic Optimization: An Introduction, Lecture Notes University of Houston, 2013.

