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Global Optimization Questions

Questions
@ Can we find global minimum?

@ Can we prove that the found solution is optimal?

@ Can we prove uniqueness?

Answer

@ Yes (under certain assumption) by using Interval Computations.




Interval Computations

Notation
An interval matrix
A= [A,Z]:{AeR”’“\AgAgZ}.

The center and radius matrices

A = %(Z+A), AL = %(Z —A).
The set of all m x n interval matrices: TR™*".

Main Problem
Let f : R" — R™ and x € TR". Determine the image
f(x) = {f(x): x € x},

or at least its tight interval enclosure.




Interval Arithmetic

Interval Arithmetic (proper rounding used when implemented)

For arithmetical operations (+, —, -, =), their images are readily computed
a+b=[a+b3+b],
a—b=[a—b3a—b]

a-b = [min(ab, ab, ab, ab), max(ab, ab, ab, ab)],
a<+b=[min(a+b,a+b,a+b,a~+b),max(a+b,a~+b,a~+b,a= b)
Some basic functions x2, exp(x), sin(x), ..., too.

Can we evaluate every arithmetical expression on intervals?
Yes, but with overestimation in general due to dependencies.

Example (Evaluate f(x) = x> — x on x = [—1,2])
X2 —X= [ 1 2]2 [_172] = [_275]7
x(x—1)=[-1,2]([-1,2] - 1) = [-4, 2],
G e )




Mean value form

Theorem
Let f : R"— R, x € IR" and a € x. Then
f(x) C f(a) + Vf(x)T(x —a),

Proof.
By the mean value theorem, for any x € x there is ¢ € x such that

f(x) = f(a)+ VFf(c) (x — a) € f(a) + VF(x) T (x — a). O
Improvements

@ successive mean value form
f(x) C f(a) + £ (x1,a2,...,an)(x1 — a1)
+ f):z(xl,xz, az...,an)(xa—ax)+...
+ fo (X125 - - s Xp—1,Xn)(Xn — ap).

@ replace derivatives by slopes




Interval Linear Equations

Interval linear equations
Let A € IR™*" and b € IR™. The family of systems

Ax=b, A€A, beb.

is called interval linear equations and abbreviated as Ax = b.

Solution set
The solution set is defined

2 ={xeR":JAe Adbeb: Ax = b}.

Theorem (Oettli-Prager, 1964)

The solution set X is a non-convex polyhedral set described by

|ASx — b| < AB|x| + b2,




Interval Linear Equations

Example (Barth & Nuding, 1974))
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Interval Linear Equations

Enclosure

Since ¥ is hard to determine and deal with, we seek for enclosures
x € IR" such that > C x.

Many methods for enclosures exists, usually employ preconditioning. J

Preconditioning (Hansen, 1965)

Let R € R"*". The preconditioned system of equations:
(RA)x = Rb.

Remark
@ the solution set of the preconditioned systems contains X
@ usually, we use R ~ (A°)~1

@ then we can compute the best enclosure (Hansen, 1992, Bliek, 1992,
Rohn, 1993)




Interval Linear Equations

Example (Barth & Nuding, 1974))
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Interval Linear Equations

Example (typical case)
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Nonlinear Equations

System of nonlinear equations

Let £ : R?” — R". Solve
f(x)=0, xex,

where x € IR" is an initial box.

Interval Newton method (Moore, 1966)
o letting x° € x, the Interval Newton operator reads
N(x) := x® — V£(x) "1 (x°)
@ N(x) is computed from interval linear equations
V£(x)(x° — N(x)) = £(x°).
@ iterations: x :=xN N(x)

o fast (loc. quadratically convergent) and rigorous (omits no root in x)
e if N(x) C intx, then there is a unique root in x
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Interval Newton method

Example

f(x) =x3—-x+0.2
10}

m_
20 -15 L10 -05 §W1.o
05}

—1.0}

15

In six iterations precision 10~ (quadratic convergence).
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Eigenvalues of Interval Matrices

Eigenvalues
o For Ac R™" A= AT denote its eigenvalues \;(A) > --- > )\, (A).
@ Let for A € IR"™", denote its eigenvalue sets

Ni(A)={N(A):AcA A=AT}, i=1,...,n

Theorem
o Checking whether 0 € X;(A) for some i =1,...,n is NP-hard.

@ WWe have the following enclosures for the eigenvalue sets
N(A) C [M(A) = p(AB), N(A) + p(AB)], i=1,....n.
@ By Hertz (1992)

A A)= o A(ASidivs(z) A® diag(2)),

A (A) = Zer?iirl}n An(A€ — diag(z) A diag(z2)).
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Global Optimization

Global optimization problem

Compute global (not just local!) optima to
min f(x) subject to g(x) <0, h(x) =0, x € x°,

where x € TR” is an initial box.

Theorem (Zhu, 2005)

There is no algorithm solving global optimization problems using
operations +, X, sin.

Proof.
From Matiyasevich's theorem solving the 10th Hilbert problem. O

Remark

Using the arithmetical operations only, the problem is decidable by Tarski's
theorem (1951).

4
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Global Optimization by Interval Techniques

Basic idea

@ Split the initial box x° into sub-boxes.

@ If a sub-box does not contain an optimal solution, remove it.

Otherwise split it into sub-boxes and repeat.
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Motivating Example — System Solving

Example

x* 4 y? < 16,
x2+y?>>9

Figure: Exact solution set Figure: Subpaving approximation

17 /32



Motivating Example — System Solving

Example (thanks to Elif Garajova)

1 1

e=1.0 e=0.5 e =0.125
time: 0.952 s time: 2.224 s time: 9.966 s

18/32



Interval Approach to Global Optimization

Branch & prune scheme

1 L= {x°}, [set of boxes]
2: ¢* =00, [upper bound on the minimal value]
3: while £ 75 (Z) do
choose x € £ and remove x from L,
contract x,
find a feasible point x € x and update c¥,
if max; x® > ¢ then
split x into sub-boxes and put them into L,
else
10: give x to the output boxes,
11:  end if
12: end while

© o & o gl B

It is a rigorous method to enclose all global minima in a set of boxes. J
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Box Selection

Which box to choose?
@ the oldest one
@ the one with the largest edge, i.e., for which max; x,-A is maximal

@ the one with minimal f(x).
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Division Directions

How to divide the box?
© Take the widest edge of x, that is

k :=arg max xP.
i=1,...,n

@ (Walster, 1992) Choose a coordinate in which f varies possibly mostly

A
k :=arg max £L(x) "X
1= n

=1,...,

O (Ratz, 1992) It is similar to the previous one, but uses
k := arg max (f);,(x)x,-)A
i=1,...,n

Remarks
@ by Ratschek & Rokne (2009) there is no best strategy for splitting

@ combine several of them

@ the splitting strategy influences the overall performance
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Contracting and Pruning
Aim

Shrink x to a smaller box (or completely remove) such that no global
minimum is removed.

Simple techniques

@ if 0 & h;j(x) for some i, then remove x
e if 0 < gj(x) for some j, then remove x
e if 0 < f;(x) for some i, then fix x; := x;

o if 0 > f;(x) for some i, then fix x; := X;

Optimality conditions
@ employ the Fritz—John (or the Karush—-Kuhn—Tucker) conditions
upVF(x) +u"Vh(x) + v Vg(x) =0,
h(x) =0, vege(x) =0V, |(uo,u,v)||=1.

@ solve by the Interval Newton method

v
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Contracting and Pruning

Inside the feasible region
Suppose there are no equality constraints and gj(x) < 0 Vj.
@ (monotonicity test) if 0 ¢ £, (x) for some 7, then remove x
@ apply the Interval Newton method to the additional constraint
Vi(x)=0
@ (nonconvexity test) if the interval Hessian V2f(x) contains no
positive semidefinite matrix, then remove x
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Contracting and Pruning

Constraint propagation

Iteratively reduce domains for variables such that no feasible solution is
removed by handling the relations and the domains.

Example

Consider the constraint

x+yz=17, x€l0,3], y€[3,5], z€[2,4]

@ eliminate x
x=T—yzeT—[3,5[24] = [-13,1]
thus, the domain for x is [0,3] N [—13,1] = [0, 1]
@ eliminate y
y=(7—-x)/ze (7-10,1])/[2,4] = [1.5, 3.5]
thus, the domain for y is [3,5] N [1.5, 3.5] = [3, 3.5]
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Feasibility Test

Aim

Find a feasible point x*, and update ¢* := min(c*, f(x*)).

@ if no equality constraints, take e.g. x* := x¢

o if k equality constraints, fix n — k variables x; := x and solve system
of equations by the interval Newton method

o if k =1, fix the variables corresponding to the smallest absolute

values in Vh(x€)
\_’:/ h(x) =0
|
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Feasibility Test

Aim

Find a feasible point x*, and update ¢* := min(c*, f(x*)).

@ if no equality constraints, take e.g. x* := x¢

o if k equality constraints, fix n — k variables x; := x and solve system
of equations by the interval Newton method

o if k =1, fix the variables corresponding to the smallest absolute
values in Vh(x€)

@ in general, if k > 1, transform the matrix Vh(x¢) to a row echelon
form by using a complete pivoting, and fix components corresponding
to the right most columns

@ we can include f(x) < c¢* to the constraints

26 /32



Aim

Given a box x € IR", determine a lower bound to f(x).

Why?
o if f(x) > c*, we can remove x

@ minimum over all boxes gives a lower bound on the optimal value

Methods
@ interval arithmetic
@ mean value form
@ Lipschitz constant approach
@ aBB algorithm
o ...

27 /32



Lower Bounds: aBB algorithm

Special cases: bilinear terms

For every y € y € IR and z € z € IR we have

yz > max{yz+zy — yz, yz+zZy — yz}.

aBB algorithm (Androulakis, Maranas & Floudas, 1995)

o Consider an underestimator g(x) < f(x) in the form
g(x) = f(x) +a(x —x)T(x = X), where a > 0.
@ We want g(x) to be convex to easily determine g(x) < f(x).
@ In order that g(x) is convex, its Hessian
V2g(x) = V3f(x) + 2al,

must be positive semidefinite on x € x. Thus we put

Qf— _%Amin(vzf(x))'

28 /32
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Example (The COPRIN examples, 2007, precision ~ 107°)
o tf12 (origin: COCONUT, solutions: 1, computation time: 60s)
min x; + %xz + %X::,
st. —x—1x —(L)2g +tan(£) <0, i=1,...,m(m=101).
@ 032 (origin: COCONUT, solutions: 1, computation time: 2.04s)

min 37.293239x; + 0.8356891xsx; + 5.3578547x2 — 40792.141

S.t. —0.0022053x3x5 + 0.0056858x2 x5 4 0.0006262x1 x4 — 6.665593 < 0,
—0.0022053x3 x5 — 0.0056858x2 x5 — 0.0006262x1 x4 — 85.334407 < 0,
0.0071317x2x5 + 0.0021813x3 + 0.0029955x; x, — 29.48751 < 0,
—0.0071317x,x5 — 0.0021813x3 — 0.0029955x1 x> + 9.48751 < 0,
0.0047026x3x5 + 0.0019085x3 x4 4+ 0.0012547x1 x3 — 15.699039 < 0,
—0.0047026x3 x5 — 0.0019085x3 x4 — 0.0012547x1 x3 + 10.699039 < 0.

@ Rastrigin (origin: Myatt (2004), solutions: 1 (approx.), time: 2.07s)
min 100 + 377, (% — 1)> — 10 cos(2m(x; — 1))
where n =10, x; € [-5.12,5.12].

30 /32




References

[ C. A. Floudas and P. M. Pardalos, editors.
Encyclopedia of optimization. 2nd ed.
Springer, New York, 20009.

[l E.R. Hansen and G. W. Walster.
Global optimization using interval analysis.
Marcel Dekker, New York, second edition, 2004.

@ R. B. Kearfott.
Rigorous Global Search: Continuous Problems, volume 13 of
Nonconvex Optimization and Its Applications.
Kluwer, Dordrecht, 1996.

@ A. Neumaier.
Complete search in continuous global optimization and constraint
satisfaction.
Acta Numerica, 13:271-369, 2004.

31/32



Rigorous Global Optimization Software

@ GlobSol (by R. Baker Kearfott), written in Fortran 95, open-source
exist conversions from AMPL and GAMS representations,
http://interval.louisiana.edu/

o Alias (by Jean-Pierre Merlet, COPRIN team),

A C++ library for system solving, with Maple interface,
http://www-sop.inria.fr/coprin/logiciels/ALIAS/

@ COCONUT Environment, open-source C++ classes
http://www.mat.univie.ac.at/~coconut/coconut-environment/

@ GLOBAL (by Tibor Csendes), for Matlab / Intlab, free for academic
http://www.inf .u-szeged.hu/~csendes/linkek_en.html

@ PROFIL /BIAS (by O. Kniippel et al.), free C++ class
http://www.ti3.tu-harburg.de/Software/PROFILEnglisch.html

See also
@ C.A. Floudas (http://titan.princeton.edu/tools/)

@ A. Neumaier (http://www.mat.univie.ac.at/~neum/glopt.html)
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