Solving Global Optimization Problems by Interval Computation

Milan Hladík

Department of Applied Mathematics, Faculty of Mathematics and Physics,

Charles University in Prague,
Czech Republic, http://kam.mff.cuni.cz/~hladik/

Seminar on Computational Aspects of Optimisation April 27, 2015

Example

rastriginsfcn($(x / 10, y / 10])$

One of the Rastrigin functions.

Global Optimization Questions

Questions

- Can we find global minimum?
- Can we prove that the found solution is optimal?
- Can we prove uniqueness?

Answer

- Yes (under certain assumption) by using Interval Computations.

Interval Computations

Notation

An interval matrix

$$
\mathbf{A}:=[\underline{A}, \bar{A}]=\left\{A \in \mathbb{R}^{m \times n} \mid \underline{A} \leq A \leq \bar{A}\right\} .
$$

The center and radius matrices

$$
A^{c}:=\frac{1}{2}(\bar{A}+\underline{A}), \quad A^{\Delta}:=\frac{1}{2}(\bar{A}-\underline{A}) .
$$

The set of all $m \times n$ interval matrices: $\mathbb{R} \mathbb{R}^{m \times n}$.

Main Problem

Let $f: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}$ and $\mathbf{x} \in \mathbb{R}^{n}$. Determine the image

$$
f(\mathbf{x})=\{f(x): x \in \mathbf{x}\}
$$

or at least its tight interval enclosure.

Interval Arithmetic

Interval Arithmetic (proper rounding used when implemented)

For arithmetical operations $(+,-, \cdot, \div)$, their images are readily computed

$$
\begin{aligned}
\mathbf{a}+\mathbf{b} & =[\underline{a}+\underline{b}, \bar{a}+\bar{b}], \\
\mathbf{a}-\mathbf{b} & =[\underline{a}-\bar{b}, \bar{a}-\underline{b}] \\
\mathbf{a} \cdot \mathbf{b} & =[\min (\underline{a b}, \underline{a} \bar{b}, \bar{a} \underline{b}, \bar{a} \bar{b}), \max (\underline{a b}, \underline{a} \bar{b},, \bar{a} \underline{a}, \bar{a} \bar{b})], \\
\mathbf{a} \div \mathbf{b} & =[\min (\underline{a} \div \underline{b}, \underline{a} \div \bar{b}, \bar{a} \div \underline{b}, \bar{a} \div \bar{b}), \max (\underline{a} \div \underline{b}, \underline{a} \div \bar{b}, \bar{a} \div \underline{b}, \bar{a} \div \bar{b})] .
\end{aligned}
$$

Some basic functions $\mathbf{x}^{2}, \exp (\mathbf{x}), \sin (\mathbf{x}), \ldots$, too.
Can we evaluate every arithmetical expression on intervals? Yes, but with overestimation in general due to dependencies.

Example (Evaluate $f(x)=x^{2}-x$ on $\mathbf{x}=[-1,2]$)

$$
\begin{aligned}
\mathbf{x}^{2}-\mathbf{x} & =[-1,2]^{2}-[-1,2]=[-2,5], \\
\mathbf{x}(\mathbf{x}-1) & =[-1,2]([-1,2]-1)=[-4,2], \\
\left(\mathbf{x}-\frac{1}{2}\right)^{2}-\frac{1}{4} & =\left([-1,2]-\frac{1}{2}\right)^{2}-\frac{1}{4}=\left[-\frac{1}{4}, 2\right] .
\end{aligned}
$$

Mean value form

Theorem

Let $f: \mathbb{R}^{n} \mapsto \mathbb{R}, \mathbf{x} \in \mathbb{R}^{n}$ and $a \in \mathbf{x}$. Then

$$
f(\mathbf{x}) \subseteq f(a)+\nabla f(\mathbf{x})^{T}(\mathbf{x}-a)
$$

Proof.

By the mean value theorem, for any $x \in \mathbf{x}$ there is $c \in \mathbf{x}$ such that

$$
f(x)=f(a)+\nabla f(c)^{T}(x-a) \in f(a)+\nabla f(\mathbf{x})^{T}(\mathbf{x}-a) .
$$

Improvements

- successive mean value form

$$
\begin{aligned}
f(\mathbf{x}) \subseteq f(a) & +f_{x_{1}}^{\prime}\left(\mathbf{x}_{1}, a_{2}, \ldots, a_{n}\right)\left(\mathbf{x}_{1}-a_{1}\right) \\
& +f_{x_{2}}^{\prime}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, a_{3} \ldots, a_{n}\right)\left(\mathbf{x}_{2}-a_{2}\right)+\ldots \\
& +f_{x_{n}}^{\prime}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n-1}, \mathbf{x}_{n}\right)\left(\mathbf{x}_{n}-a_{n}\right)
\end{aligned}
$$

- replace derivatives by slopes

Interval Linear Equations

Interval linear equations

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^{m}$. The family of systems

$$
A x=b, \quad A \in \mathbf{A}, b \in \mathbf{b}
$$

is called interval linear equations and abbreviated as $\mathbf{A} x=\mathbf{b}$.

Solution set

The solution set is defined

$$
\Sigma:=\left\{x \in \mathbb{R}^{n}: \exists A \in \mathbf{A} \exists b \in \mathbf{b}: A x=b\right\} .
$$

Theorem (Oettli-Prager, 1964)
The solution set Σ is a non-convex polyhedral set described by

$$
\left|A^{c} x-b^{c}\right| \leq A^{\Delta}|x|+b^{\Delta}
$$

Interval Linear Equations

Example (Barth \& Nuding, 1974))

$$
\left(\begin{array}{cc}
{[2,4]} & {[-2,1]} \\
{[-1,2]} & {[2,4]}
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{[-2,2]}{[-2,2]}
$$

Interval Linear Equations

Enclosure

Since Σ is hard to determine and deal with, we seek for enclosures

$$
\mathbf{x} \in \mathbb{R}^{n} \text { such that } \Sigma \subseteq \mathbf{x}
$$

Many methods for enclosures exists, usually employ preconditioning.

Preconditioning (Hansen, 1965)

Let $R \in \mathbb{R}^{n \times n}$. The preconditioned system of equations:

$$
(R \mathbf{A}) x=R \mathbf{b} .
$$

Remark

- the solution set of the preconditioned systems contains Σ
- usually, we use $R \approx\left(A^{c}\right)^{-1}$
- then we can compute the best enclosure (Hansen, 1992, Bliek, 1992, Rohn, 1993)

Interval Linear Equations

Example (Barth \& Nuding, 1974))

$$
\left(\begin{array}{cc}
{[2,4]} & {[-2,1]} \\
{[-1,2]} & {[2,4]}
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{[-2,2]}{[-2,2]}
$$

Interval Linear Equations

Example (typical case)

$$
\left(\begin{array}{cc}
{[6,7]} & {[2,3]} \\
{[1,2]} & -[4,5]
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{[6,8]}{-[7,9]}
$$

Nonlinear Equations

System of nonlinear equations
Let $f: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$. Solve

$$
f(x)=0, \quad x \in \mathbf{x}
$$

where $\mathbf{x} \in \mathbb{R}^{n}$ is an initial box.

Interval Newton method (Moore, 1966)

- letting $x^{0} \in \mathbf{x}$, the Interval Newton operator reads

$$
N(\mathbf{x}):=x^{0}-\nabla f(\mathbf{x})^{-1} f\left(x^{0}\right)
$$

- $N(\mathbf{x})$ is computed from interval linear equations

$$
\nabla f(\mathbf{x})\left(x^{0}-N(\mathbf{x})\right)=f\left(x^{0}\right)
$$

- iterations: $\mathbf{x}:=\mathbf{x} \cap N(\mathbf{x})$
- fast (loc. quadratically convergent) and rigorous (omits no root in \mathbf{x})
- if $N(\mathbf{x}) \subseteq$ int \mathbf{x}, then there is a unique root in \mathbf{x}

Interval Newton method

Example

In six iterations precision 10^{-11} (quadratic convergence).

Eigenvalues of Interval Matrices

Eigenvalues

- For $A \in \mathbb{R}^{n \times n}, A=A^{T}$, denote its eigenvalues $\lambda_{1}(A) \geq \cdots \geq \lambda_{n}(A)$.
- Let for $\mathbf{A} \in \mathbb{R}^{n \times n}$, denote its eigenvalue sets

$$
\lambda_{i}(\mathbf{A})=\left\{\lambda_{i}(A): A \in \mathbf{A}, A=A^{T}\right\}, \quad i=1, \ldots, n
$$

Theorem

- Checking whether $0 \in \boldsymbol{\lambda}_{i}(\mathbf{A})$ for some $i=1, \ldots, n$ is NP-hard.
- We have the following enclosures for the eigenvalue sets

$$
\lambda_{i}(\mathbf{A}) \subseteq\left[\lambda_{i}\left(A^{c}\right)-\rho\left(A^{\Delta}\right), \lambda_{i}\left(A^{c}\right)+\rho\left(A^{\Delta}\right)\right], \quad i=1, \ldots, n .
$$

- By Hertz (1992)

$$
\begin{aligned}
& \bar{\lambda}_{1}(\mathbf{A})=\max _{z \in\{ \pm 1\}^{n}} \lambda_{1}\left(A^{c}+\operatorname{diag}(z) A^{\Delta} \operatorname{diag}(z)\right), \\
& \underline{\lambda}_{n}(\mathbf{A})=\min _{z \in\{ \pm 1\}^{n}} \lambda_{n}\left(A^{c}-\operatorname{diag}(z) A^{\Delta} \operatorname{diag}(z)\right) .
\end{aligned}
$$

Global Optimization

Global optimization problem
Compute global (not just local!) optima to $\min f(x)$ subject to $g(x) \leq 0, h(x)=0, x \in \mathbf{x}^{0}$, where $\mathbf{x}^{0} \in \mathbb{R}^{n}$ is an initial box.

Theorem (Zhu, 2005)

There is no algorithm solving global optimization problems using operations,$+ \times, \sin$.

Proof.

From Matiyasevich's theorem solving the 10th Hilbert problem.

Remark

Using the arithmetical operations only, the problem is decidable by Tarski's theorem (1951).

Global Optimization by Interval Techniques

Basic idea

- Split the initial box \mathbf{x}^{0} into sub-boxes.
- If a sub-box does not contain an optimal solution, remove it.

Otherwise split it into sub-boxes and repeat.

Motivating Example - System Solving

Example

$$
\begin{aligned}
& x^{2}+y^{2} \leq 16 \\
& x^{2}+y^{2} \geq 9
\end{aligned}
$$

Figure: Exact solution set

Figure: Subpaving approximation

Motivating Example - System Solving

Example (thanks to Elif Garajová)

$\varepsilon=1.0$
time: 0.952 s

$\varepsilon=0.5$
time: 2.224 s

$\varepsilon=0.125$
time: 9.966 s

Interval Approach to Global Optimization

Branch \& prune scheme
1: $\mathcal{L}:=\left\{\mathbf{x}^{0}\right\}$, [set of boxes]
2: $c^{*}:=\infty$, [upper bound on the minimal value]
3: while $\mathcal{L} \neq \emptyset$ do
4: choose $\mathbf{x} \in \mathcal{L}$ and remove \mathbf{x} from \mathcal{L},
5: contract \mathbf{x},
6: find a feasible point $x \in \mathbf{x}$ and update c^{*},
7: if $\max _{i} x_{i}^{\Delta}>\varepsilon$ then split \mathbf{x} into sub-boxes and put them into \mathcal{L},
9: else
10: give \mathbf{x} to the output boxes,
11: end if
12: end while

It is a rigorous method to enclose all global minima in a set of boxes.

Box Selection

Which box to choose?

- the oldest one
- the one with the largest edge, i.e., for which $\max _{i} x_{i}^{\Delta}$ is maximal
- the one with minimal $\underline{f}(\mathbf{x})$.

Division Directions

How to divide the box?

(1) Take the widest edge of \mathbf{x}, that is

$$
k:=\arg \max _{i=1, \ldots, n} x_{i}^{\Delta}
$$

(2) (Walster, 1992) Choose a coordinate in which f varies possibly mostly

$$
k:=\arg \max _{i=1, \ldots, n} f_{x_{i}}^{\prime}(\mathbf{x})^{\Delta} x_{i}^{\Delta}
$$

(3) Ratz, 1992) It is similar to the previous one, but uses

$$
k:=\arg \max _{i=1, \ldots, n}\left(f_{x_{i}}^{\prime}(\mathbf{x}) \mathbf{x}_{i}\right)^{\Delta}
$$

Remarks

- by Ratschek \& Rokne (2009) there is no best strategy for splitting
- combine several of them
- the splitting strategy influences the overall performance

Contracting and Pruning

Aim

Shrink \mathbf{x} to a smaller box (or completely remove) such that no global minimum is removed.

Simple techniques

- if $0 \notin h_{i}(\mathbf{x})$ for some i, then remove \mathbf{x}
- if $0<g_{j}(\mathbf{x})$ for some j, then remove \mathbf{x}
- if $0<f_{x_{i}}^{\prime}(\mathbf{x})$ for some i, then fix $\mathbf{x}_{i}:=\underline{x}_{i}$
- if $0>f_{x_{i}}^{\prime}(\mathbf{x})$ for some i, then fix $\mathbf{x}_{i}:=\bar{x}_{i}$

Optimality conditions

- employ the Fritz-John (or the Karush-Kuhn-Tucker) conditions

$$
\begin{array}{r}
u_{0} \nabla f(x)+u^{T} \nabla h(x)+v^{T} \nabla g(x)=0, \\
h(x)=0, \quad v_{\ell} g_{\ell}(x)=0 \forall \ell, \quad\left\|\left(u_{0}, u, v\right)\right\|=1 .
\end{array}
$$

- solve by the Interval Newton method

Contracting and Pruning

Inside the feasible region

Suppose there are no equality constraints and $g_{j}(\mathbf{x})<0 \forall j$.

- (monotonicity test) if $0 \notin f_{x_{i}}^{\prime}(\mathbf{x})$ for some i, then remove \mathbf{x}
- apply the Interval Newton method to the additional constraint $\nabla f(x)=0$
- (nonconvexity test) if the interval Hessian $\nabla^{2} f(\mathbf{x})$ contains no positive semidefinite matrix, then remove \mathbf{x}

Contracting and Pruning

Constraint propagation

Iteratively reduce domains for variables such that no feasible solution is removed by handling the relations and the domains.

Example

Consider the constraint

$$
x+y z=7, \quad x \in[0,3], y \in[3,5], \quad z \in[2,4]
$$

- eliminate x

$$
x=7-y z \in 7-[3,5][2,4]=[-13,1]
$$

thus, the domain for x is $[0,3] \cap[-13,1]=[0,1]$

- eliminate y

$$
y=(7-x) / z \in(7-[0,1]) /[2,4]=[1.5,3.5]
$$

thus, the domain for y is $[3,5] \cap[1.5,3.5]=[3,3.5]$

Feasibility Test

Aim

Find a feasible point x^{*}, and update $c^{*}:=\min \left(c^{*}, f\left(x^{*}\right)\right)$.

- if no equality constraints, take e.g. $x^{*}:=x^{c}$
- if k equality constraints, fix $n-k$ variables $x_{i}:=x_{i}^{c}$ and solve system of equations by the interval Newton method
- if $k=1$, fix the variables corresponding to the smallest absolute values in $\nabla h\left(x^{c}\right)$

Feasibility Test

Aim

Find a feasible point x^{*}, and update $c^{*}:=\min \left(c^{*}, f\left(x^{*}\right)\right)$.

- if no equality constraints, take e.g. $x^{*}:=x^{c}$
- if k equality constraints, fix $n-k$ variables $x_{i}:=x_{i}^{c}$ and solve system of equations by the interval Newton method
- if $k=1$, fix the variables corresponding to the smallest absolute values in $\nabla h\left(x^{c}\right)$
- in general, if $k>1$, transform the matrix $\nabla h\left(x^{c}\right)$ to a row echelon form by using a complete pivoting, and fix components corresponding to the right most columns
- we can include $f(x) \leq c^{*}$ to the constraints

Lower Bounds

Aim
Given a box $\mathbf{x} \in \mathbb{R}^{n}$, determine a lower bound to $\underline{f}(\mathbf{x})$.

Why?

- if $\underline{f}(\mathbf{x})>c^{*}$, we can remove \mathbf{x}
- minimum over all boxes gives a lower bound on the optimal value

Methods

- interval arithmetic
- mean value form
- Lipschitz constant approach
- $\alpha \mathrm{BB}$ algorithm
- ...

Lower Bounds: $\alpha \mathrm{BB}$ algorithm

Special cases: bilinear terms

For every $y \in \mathbf{y} \in \mathbb{R}$ and $z \in \mathbf{z} \in \mathbb{R}$ we have

$$
y z \geq \max \{\underline{y} z+\underline{z} y-\underline{y} \underline{z}, \bar{y} z+\bar{z} y-\overline{y z}\} .
$$

α BB algorithm (Androulakis, Maranas \& Floudas, 1995)

- Consider an underestimator $g(x) \leq f(x)$ in the form

$$
g(x):=f(x)+\alpha(x-\underline{x})^{T}(x-\bar{x}), \quad \text { where } \alpha \geq 0 .
$$

- We want $g(x)$ to be convex to easily determine $\underline{g}(\mathbf{x}) \leq \underline{f}(\mathbf{x})$.
- In order that $g(x)$ is convex, its Hessian

$$
\nabla^{2} g(x)=\nabla^{2} f(x)+2 \alpha I_{n}
$$

must be positive semidefinite on $x \in \mathbf{x}$. Thus we put

$$
\alpha:=-\frac{1}{2} \lambda_{\min }\left(\nabla^{2} f(\mathbf{x})\right) .
$$

Illustration of a Convex Underestimator

Function $f(x)$ and its convex underestimator $g(x)$.

Examples

Example (The COPRIN examples, 2007, precision $\sim 10^{-6}$)

- tf12 (origin: COCONUT, solutions: 1 , computation time: 60 s)

$$
\min x_{1}+\frac{1}{2} x_{2}+\frac{1}{3} x_{3}
$$

$$
\text { s.t. } \quad-x_{1}-\frac{i}{m} x_{2}-\left(\frac{i}{m}\right)^{2} x_{3}+\tan \left(\frac{i}{m}\right) \leq 0, \quad i=1, \ldots, m(m=101)
$$

- o32 (origin: COCONUT, solutions: 1, computation time: 2.04 s)

$$
\begin{aligned}
& \min 37.293239 x_{1}+0.8356891 x_{5} x_{1}+5.3578547 x_{3}^{2}-40792.141 \\
& \text { s.t. } \quad-0.0022053 x_{3} x_{5}+0.0056858 x_{2} x_{5}+0.0006262 x_{1} x_{4}-6.665593 \leq 0, \\
&-0.0022053 x_{3} x_{5}-0.0056858 x_{2} x_{5}-0.0006262 x_{1} x_{4}-85.334407 \leq 0, \\
& 0.0071317 x_{2} x_{5}+0.0021813 x_{3}^{2}+0.0029955 x_{1} x_{2}-29.48751 \leq 0, \\
&-0.0071317 x_{2} x_{5}-0.0021813 x_{3}^{2}-0.0029955 x_{1} x_{2}+9.48751 \leq 0, \\
& 0.0047026 x_{3} x_{5}+0.0019085 x_{3} x_{4}+0.0012547 x_{1} x_{3}-15.699039 \leq 0, \\
&-0.0047026 x_{3} x_{5}-0.0019085 x_{3} x_{4}-0.0012547 x_{1} x_{3}+10.699039 \leq 0 .
\end{aligned}
$$

- Rastrigin (origin: Myatt (2004), solutions: 1 (approx.), time: 2.07 s)

$$
\min 10 n+\sum_{j=1}^{n}\left(x_{j}-1\right)^{2}-10 \cos \left(2 \pi\left(x_{j}-1\right)\right)
$$

where $n=10, x_{j} \in[-5.12,5.12]$.

References

(1) C. A. Floudas and P. M. Pardalos, editors.

Encyclopedia of optimization. 2nd ed.
Springer, New York, 2009.

- E. R. Hansen and G. W. Walster.

Global optimization using interval analysis.
Marcel Dekker, New York, second edition, 2004.
R R. B. Kearfott.
Rigorous Global Search: Continuous Problems, volume 13 of Nonconvex Optimization and Its Applications.
Kluwer, Dordrecht, 1996.
A. Neumaier.

Complete search in continuous global optimization and constraint satisfaction.
Acta Numerica, 13:271-369, 2004.

Rigorous Global Optimization Software

- GlobSol (by R. Baker Kearfott), written in Fortran 95, open-source exist conversions from AMPL and GAMS representations, http://interval.louisiana.edu/
- Alias (by Jean-Pierre Merlet, COPRIN team), A C++ library for system solving, with Maple interface, http://www-sop.inria.fr/coprin/logiciels/ALIAS/
- COCONUT Environment, open-source C++ classes http://www.mat.univie.ac.at/~coconut/coconut-environment/
- GLOBAL (by Tibor Csendes), for Matlab / Intlab, free for academic http://www.inf.u-szeged.hu/~csendes/linkek_en.html
- PROFIL / BIAS (by O. Knüppel et al.), free C++ class http://www.ti3.tu-harburg.de/Software/PROFILEnglisch.html

See also

- C.A. Floudas (http://titan.princeton.edu/tools/)
- A. Neumaier (http://www.mat.univie.ac.at/~neum/glopt.html)

