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Example

One of the Rastrigin functions.
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Global Optimization Questions

Questions

Can we find global minimum?

Can we prove that the found solution is optimal?

Can we prove uniqueness?

Answer

Yes (under certain assumption) by using Interval Computations.
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Interval Computations

Notation

An interval matrix

A := [A,A] = {A ∈ R
m×n | A ≤ A ≤ A}.

The center and radius matrices

Ac :=
1

2
(A+ A), A∆ :=

1

2
(A− A).

The set of all m × n interval matrices: IRm×n.

Main Problem

Let f : Rn 7→ R
m and x ∈ IR

n. Determine the image

f (x) = {f (x) : x ∈ x},

or at least its tight interval enclosure.
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Interval Arithmetic

Interval Arithmetic (proper rounding used when implemented)

For arithmetical operations (+,−, ·,÷), their images are readily computed

a+ b = [a+ b, a + b],

a− b = [a− b, a − b],

a · b = [min(ab, ab, ab, ab),max(ab, ab, ab, ab)],

a÷ b = [min(a÷ b, a ÷ b, a÷ b, a ÷ b),max(a ÷ b, a÷ b, a÷ b, a÷ b)].

Some basic functions x2, exp(x), sin(x), . . . , too.

Can we evaluate every arithmetical expression on intervals?
Yes, but with overestimation in general due to dependencies.

Example (Evaluate f (x) = x
2 − x on x = [−1, 2])

x2 − x = [−1, 2]2 − [−1, 2] = [−2, 5],

x(x− 1) = [−1, 2]([−1, 2]− 1) = [−4, 2],

(x − 1
2)

2 − 1
4 = ([−1, 2]− 1

2 )
2 − 1

4 = [− 1
4 , 2].
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Mean value form

Theorem

Let f : Rn 7→ R, x ∈ IR
n and a ∈ x. Then

f (x) ⊆ f (a) +∇f (x)T (x− a),

Proof.

By the mean value theorem, for any x ∈ x there is c ∈ x such that

f (x) = f (a) +∇f (c)T (x − a) ∈ f (a) +∇f (x)T (x− a).

Improvements

successive mean value form

f (x) ⊆ f (a) + f ′x1(x1, a2, . . . , an)(x1 − a1)

+ f ′x2(x1, x2, a3 . . . , an)(x2 − a2) + . . .

+ f ′xn(x1, . . . , xn−1, xn)(xn − an).

replace derivatives by slopes
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Interval Linear Equations

Interval linear equations

Let A ∈ IR
m×n and b ∈ IR

m. The family of systems

Ax = b, A ∈ A, b ∈ b.

is called interval linear equations and abbreviated as Ax = b.

Solution set

The solution set is defined

Σ := {x ∈ R
n : ∃A ∈ A∃b ∈ b : Ax = b}.

Theorem (Oettli–Prager, 1964)

The solution set Σ is a non-convex polyhedral set described by

|Acx − bc | ≤ A∆|x |+ b∆.
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Interval Linear Equations

Example (Barth & Nuding, 1974))

(

[2, 4] [−2, 1]
[−1, 2] [2, 4]

)(

x1
x2

)

=

(

[−2, 2]
[−2, 2]

)

1

2

3

4

−1

−2

−3

−4

1 2 3 4−1−2−3−4 x1

x2
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Interval Linear Equations

Enclosure

Since Σ is hard to determine and deal with, we seek for enclosures

x ∈ IR
n such that Σ ⊆ x.

Many methods for enclosures exists, usually employ preconditioning.

Preconditioning (Hansen, 1965)

Let R ∈ R
n×n. The preconditioned system of equations:

(RA)x = Rb.

Remark

the solution set of the preconditioned systems contains Σ

usually, we use R ≈ (Ac)−1

then we can compute the best enclosure (Hansen, 1992, Bliek, 1992,
Rohn, 1993)
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Interval Linear Equations

Example (Barth & Nuding, 1974))

(

[2, 4] [−2, 1]
[−1, 2] [2, 4]

)(

x1
x2

)

=

(

[−2, 2]
[−2, 2]

)

7

14

−7

−14

7 14−7−14 x1

x2
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Interval Linear Equations

Example (typical case)

(

[6, 7] [2, 3]
[1, 2] −[4, 5]

)(

x1
x2

)

=

(

[6, 8]
− [7, 9]

)

2.5

1.5

0.5 1.0−0.5 x1

x2
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Nonlinear Equations

System of nonlinear equations

Let f : Rn 7→ R
n. Solve

f (x) = 0, x ∈ x,

where x ∈ IR
n is an initial box.

Interval Newton method (Moore, 1966)

letting x0 ∈ x, the Interval Newton operator reads

N(x) := x0 −∇f (x)−1f (x0)

N(x) is computed from interval linear equations

∇f (x)
(

x0 − N(x)
)

= f (x0).

iterations: x := x ∩ N(x)

fast (loc. quadratically convergent) and rigorous (omits no root in x)

if N(x) ⊆ int x, then there is a unique root in x
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Interval Newton method

Example

x

y

f (x) = x3 − x + 0.2

0.5

1.0

−0.5

−1.0

0.5 1.0 1.5−0.5−1.0−1.5−2.0

In six iterations precision 10−11 (quadratic convergence).
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Eigenvalues of Interval Matrices

Eigenvalues

For A ∈ R
n×n, A = AT , denote its eigenvalues λ1(A) ≥ · · · ≥ λn(A).

Let for A ∈ IR
n×n, denote its eigenvalue sets

λi (A) = {λi (A) : A ∈ A, A = AT}, i = 1, . . . , n.

Theorem

Checking whether 0 ∈ λi (A) for some i = 1, . . . , n is NP-hard.

We have the following enclosures for the eigenvalue sets

λi (A) ⊆ [λi (A
c)− ρ(A∆), λi (A

c) + ρ(A∆)], i = 1, . . . , n.

By Hertz (1992)

λ1(A) = max
z∈{±1}n

λ1(A
c + diag(z)A∆ diag(z)),

λn(A) = min
z∈{±1}n

λn(A
c − diag(z)A∆ diag(z)).
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Global Optimization

Global optimization problem

Compute global (not just local!) optima to

min f (x) subject to g(x) ≤ 0, h(x) = 0, x ∈ x0,

where x0 ∈ IR
n is an initial box.

Theorem (Zhu, 2005)

There is no algorithm solving global optimization problems using
operations +,×, sin.

Proof.

From Matiyasevich’s theorem solving the 10th Hilbert problem.

Remark

Using the arithmetical operations only, the problem is decidable by Tarski’s
theorem (1951).
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Global Optimization by Interval Techniques

Basic idea

Split the initial box x0 into sub-boxes.

If a sub-box does not contain an optimal solution, remove it.

Otherwise split it into sub-boxes and repeat.
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Motivating Example – System Solving

Example

x2 + y2 ≤ 16,

x2 + y2 ≥ 9

Figure: Exact solution set
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Figure: Subpaving approximation
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Motivating Example – System Solving

Example (thanks to Elif Garajová)

ε = 1.0
time: 0.952 s

ε = 0.5
time: 2.224 s

ε = 0.125
time: 9.966 s

18 / 32



Interval Approach to Global Optimization

Branch & prune scheme

1: L := {x0}, [set of boxes]
2: c∗ := ∞, [upper bound on the minimal value]
3: while L 6= ∅ do

4: choose x ∈ L and remove x from L,
5: contract x,
6: find a feasible point x ∈ x and update c∗,
7: if maxi x

∆
i > ε then

8: split x into sub-boxes and put them into L,
9: else

10: give x to the output boxes,
11: end if

12: end while

It is a rigorous method to enclose all global minima in a set of boxes.
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Box Selection

Which box to choose?

the oldest one

the one with the largest edge, i.e., for which maxi x
∆
i is maximal

the one with minimal f (x).
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Division Directions

How to divide the box?
1 Take the widest edge of x, that is

k := arg max
i=1,...,n

x∆i .

2 (Walster, 1992) Choose a coordinate in which f varies possibly mostly

k := arg max
i=1,...,n

f ′xi (x)
∆
x∆i .

3 (Ratz, 1992) It is similar to the previous one, but uses

k := arg max
i=1,...,n

(f ′xi (x)xi )
∆
.

Remarks

by Ratschek & Rokne (2009) there is no best strategy for splitting

combine several of them

the splitting strategy influences the overall performance
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Contracting and Pruning

Aim

Shrink x to a smaller box (or completely remove) such that no global
minimum is removed.

Simple techniques

if 0 6∈ hi (x) for some i , then remove x

if 0 < gj (x) for some j , then remove x

if 0 < f ′xi (x) for some i , then fix xi := x i

if 0 > f ′xi (x) for some i , then fix xi := x i

Optimality conditions

employ the Fritz–John (or the Karush–Kuhn–Tucker) conditions

u0∇f (x) + uT∇h(x) + vT∇g(x) = 0,

h(x) = 0, vℓgℓ(x) = 0 ∀ℓ, ‖(u0, u, v)‖ = 1.

solve by the Interval Newton method
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Contracting and Pruning

Inside the feasible region

Suppose there are no equality constraints and gj (x) < 0 ∀j .

(monotonicity test) if 0 6∈ f ′xi (x) for some i , then remove x

apply the Interval Newton method to the additional constraint
∇f (x) = 0

(nonconvexity test) if the interval Hessian ∇2f (x) contains no
positive semidefinite matrix, then remove x
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Contracting and Pruning

Constraint propagation

Iteratively reduce domains for variables such that no feasible solution is
removed by handling the relations and the domains.

Example

Consider the constraint

x + yz = 7, x ∈ [0, 3], y ∈ [3, 5], z ∈ [2, 4]

eliminate x

x = 7− yz ∈ 7− [3, 5][2, 4] = [−13, 1]

thus, the domain for x is [0, 3] ∩ [−13, 1] = [0, 1]

eliminate y

y = (7− x)/z ∈ (7− [0, 1])/[2, 4] = [1.5, 3.5]

thus, the domain for y is [3, 5] ∩ [1.5, 3.5] = [3, 3.5]
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Feasibility Test

Aim

Find a feasible point x∗, and update c∗ := min(c∗, f (x∗)).

if no equality constraints, take e.g. x∗ := xc

if k equality constraints, fix n − k variables xi := xci and solve system
of equations by the interval Newton method

if k = 1, fix the variables corresponding to the smallest absolute
values in ∇h(xc)

x xc

h(x) = 0

∇h(xc)
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Feasibility Test

Aim

Find a feasible point x∗, and update c∗ := min(c∗, f (x∗)).

if no equality constraints, take e.g. x∗ := xc

if k equality constraints, fix n − k variables xi := xci and solve system
of equations by the interval Newton method

if k = 1, fix the variables corresponding to the smallest absolute
values in ∇h(xc)

in general, if k > 1, transform the matrix ∇h(xc) to a row echelon
form by using a complete pivoting, and fix components corresponding
to the right most columns

we can include f (x) ≤ c∗ to the constraints
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Lower Bounds

Aim

Given a box x ∈ IR
n, determine a lower bound to f (x).

Why?

if f (x) > c∗, we can remove x

minimum over all boxes gives a lower bound on the optimal value

Methods

interval arithmetic

mean value form

Lipschitz constant approach

αBB algorithm

. . .
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Lower Bounds: αBB algorithm

Special cases: bilinear terms

For every y ∈ y ∈ IR and z ∈ z ∈ IR we have

yz ≥ max{yz + zy − yz, yz + zy − yz}.

αBB algorithm (Androulakis, Maranas & Floudas, 1995)

Consider an underestimator g(x) ≤ f (x) in the form

g(x) := f (x) + α(x − x)T (x − x), where α ≥ 0.

We want g(x) to be convex to easily determine g(x) ≤ f (x).

In order that g(x) is convex, its Hessian

∇2g(x) = ∇2f (x) + 2αIn

must be positive semidefinite on x ∈ x. Thus we put

α := −1
2λmin(∇

2f (x)).
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Illustration of a Convex Underestimator
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Function f (x) and its convex underestimator g(x).
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Examples

Example (The COPRIN examples, 2007, precision ∼ 10−6)

tf12 (origin: COCONUT, solutions: 1, computation time: 60 s)

min x1 +
1
2x2 +

1
3x3

s.t. − x1 −
i
m
x2 − ( i

m
)2x3 + tan( i

m
) ≤ 0, i = 1, . . . ,m (m = 101).

o32 (origin: COCONUT, solutions: 1, computation time: 2.04 s)

min 37.293239x1 + 0.8356891x5x1 + 5.3578547x23 − 40792.141

s.t. −0.0022053x3x5 + 0.0056858x2x5 + 0.0006262x1x4 − 6.665593 ≤ 0,

−0.0022053x3x5 − 0.0056858x2x5 − 0.0006262x1x4 − 85.334407 ≤ 0,

0.0071317x2x5 + 0.0021813x
2
3 + 0.0029955x1x2 − 29.48751 ≤ 0,

−0.0071317x2x5 − 0.0021813x
2
3 − 0.0029955x1x2 + 9.48751 ≤ 0,

0.0047026x3x5 + 0.0019085x3x4 + 0.0012547x1x3 − 15.699039 ≤ 0,

−0.0047026x3x5 − 0.0019085x3x4 − 0.0012547x1x3 + 10.699039 ≤ 0.

Rastrigin (origin: Myatt (2004), solutions: 1 (approx.), time: 2.07 s)

min 10n+
∑n

j=1(xj − 1)2 − 10 cos(2π(xj − 1))

where n = 10, xj ∈ [−5.12, 5.12].
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Rigorous Global Optimization Software

GlobSol (by R. Baker Kearfott), written in Fortran 95, open-source
exist conversions from AMPL and GAMS representations,
http://interval.louisiana.edu/

Alias (by Jean-Pierre Merlet, COPRIN team),
A C++ library for system solving, with Maple interface,
http://www-sop.inria.fr/coprin/logiciels/ALIAS/

COCONUT Environment, open-source C++ classes
http://www.mat.univie.ac.at/~coconut/coconut-environment/

GLOBAL (by Tibor Csendes), for Matlab / Intlab, free for academic
http://www.inf.u-szeged.hu/~csendes/linkek_en.html

PROFIL /BIAS (by O. Knüppel et al.), free C++ class
http://www.ti3.tu-harburg.de/Software/PROFILEnglisch.html

See also

C.A. Floudas (http://titan.princeton.edu/tools/)

A. Neumaier (http://www.mat.univie.ac.at/~neum/glopt.html)
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