Optimization theory - practicals - sample test

Example 1. [3 p.] Is the following function quasiconvex?

$$
f(x, y)=\frac{1}{x y} \text { on }(0, \infty)^{2} .
$$

Provide at least one definition of quasiconvex functions.
Example 2. [3 p.] Formulate the definition of the subgradient for the following function

$$
h(x)=|x-1|
$$

defined on \mathbb{R}. Does it hold $0 \in \partial h(1)$?
Example 3. [4 p.] Prove the inclusion between the set of improving directions for a differentiable function f and its (outer) approximation using the gradient, i.e. $F_{f}(x) \subseteq F_{f, 0}^{\prime}(x)$.

Example 4. [5 p.] Consider the problem

$$
\begin{aligned}
& \min -x \\
& \text { s.t. } x^{2}+y^{2} \leq 1 \\
& \quad(x-1)^{3}-y \leq 0 .
\end{aligned}
$$

Using the KKT optimality conditions find all stationary points. Using the SOSC verify if some of the points corresponds to a (strict) local minimum.

Example 5. [5 p.] Using the KKT conditions find the closest point to $(0,0)$ in the set defined by

$$
M=\left\{x \in \mathbb{R}^{2}: x_{1}+x_{2} \geq 4,2 x_{1}+x_{2} \geq 5\right\} .
$$

Can several points (solutions) exist?

