Risk Theory (NMFM503) – practicals

Version: 29/11/2020

1 Point processes – Poisson process

Basic notation a properties for the homogeneous Poisson process with intensity λ :

- N_t random number of events observed until time t with distribution $Po(\lambda t)$,
- σ_n random time of *n*-th event with Erlang distribution with pdf

$$f(x) = \frac{\lambda^n}{(n-1)!} x^{n-1} e^{-\lambda x}, \ x \ge 0,$$

• τ_i – (independent) random time between events i - 1 and i with exponential distribution $\text{Exp}(\lambda)$.

Example 1.1. Construct a random sample from Poisson distribution using the properties of the Poisson process. Hint. Let $\{U_k\}_{k=1,2,...}$ be iid with uniform distribution on [0,1]. Set

$$T_k := \prod_{i=1}^k U_i,$$

and

$$N := \inf\{n : T_n < e^{-\lambda}\}.$$

Show that $N - 1 \sim \text{Po}(\lambda)$.

Example 1.2. Let *n* events of homogenous Poisson process be observed during the time period [0,T] at times $\sigma_1 = s_1, \ldots, \sigma_n = s_n$.

- *i.* Derive the maximum-likelihood estimate of the intensity λ .
- ii. Verify the properties of the ML estimate: unbiasedness, consistency.
- iii. Derive the sufficient statistic(s) for the estimate.
- iv. Construct a confidence interval for the intensity.

Example 1.3. Let n events of homogenous Poisson process with parameter λ be observed during the time period [0,T] at times $\sigma_1 = s_1, \ldots, \sigma_n = s_n$ and let n' events of homogenous Poisson process with parameter λ' be observed during the time period [0,T'] at times $\sigma'_1 = s'_1, \ldots, \sigma'_{n'} = s'_{n'}$. Let the processes be independent. Propose a statistical test of the hypothesis $\lambda = \lambda'$.

Example 1.4. Generalize the above test to k independent homogenous Poisson processes, i.e. derive a test of hypothesis $\lambda = \lambda_2 = \cdots = \lambda_k$.

Example 1.5. Let n events of **nonhomogenous** Poisson process be observed during the time period [0,T] at times $\sigma_1 = s_1, \ldots, \sigma_n = s_n$. Consider intensity

$$\lambda(t) = e^{\alpha + \beta t}$$

Derive a statistical test of hypothesis $\beta = \beta_0$, and focus on the case $\beta_0 = 0$, *i.e.* construct a test of homogeneity.

2 Collective risk model and ruin probability, subexponential distributions

Example 2.1. Under the standard assumptions (compound Poisson process, costs, premium, see the Lecture notes for details) derive the adjustment coefficient R when the severity distribution follows $\Gamma(\frac{1}{2},\beta)$ with pdf

$$p(x) = \frac{\sqrt{\beta}}{\Gamma(\frac{1}{2})} x^{-\frac{1}{2}} e^{-\beta x}.$$

Example 2.2. Derive the Laplace transform of the Beekman's formula. Then compute the probability of ruin under the exponential distribution of claims severity, i.e.

$$p(x) = a e^{-ax}.$$

Example 2.3. Verify that the distribution with pdf

$$p(x) = \frac{a}{\sqrt{2\pi}} x^{-\frac{3}{2}} e^{-\frac{a^2}{2x}}$$

belongs to the subexponential family.

Example 2.4. Show that the standard criterion does not show that the lognormal distribution belongs to the subexponential family.

Example 2.5. (*) Derive an asymptotic formula for the ruin probability under the lognormal distribution of the claim severity.

Example 2.6. Consider Excess of Loss (XL) reinsurance with priority a > 0 and layer L > 0. Let the claims of insurer follow the compound Poisson process. Elaborate the claims from the point of view of the reinsurer.

Example 2.7. Derive an estimate of the parameter of Pareto distribution based on the quantiles.

3 Extreme Value Theory

Example 3.1. Consider Fréchet distribution X with cdf

$$G_{1,\alpha}(x) = \exp(-x^{-\alpha}), \ x > 0, \ \alpha > 0.$$

Verify that for the moments it holds

$$\mathbb{E}[X^j] = \Gamma(1 - \frac{j}{\alpha}), \ j < \alpha.$$

Example 3.2. Verify the max-stability of the extreme value distributions, i.e. that for cdf G and proper choices of the sequences $\{c_n > 0\}, \{d_n\}, it$ holds

$$G^{n}(c_{n}x + d_{n}) = G(x), \ n = 1, 2, \dots$$

Example 3.3. Show that the extreme value distributions can be used to deal with the distributions of the minima of a sequence of random variables. *Hint: Show that*

$$P\left(\max_{i\leq n}(-X_i)\leq a_nx+b_n\right)=1-P\left(\min_{i\leq n}(X_i)\leq -a_nx-b_n\right),$$

where $a_n > 0, b_n \in \mathbb{R}$.

Example 3.4. Consider generalized Pareto distribution with cdf

$$W_{\gamma,\mu,\sigma}(x) = 1 - \left(1 + \gamma \frac{x - \mu}{\sigma}\right)^{-\frac{1}{\gamma}},$$

where $\gamma \neq 0$, $\mu \in \mathbb{R}$, $\sigma > 0$. For $\gamma > 0$ the support is $x \geq \mu$, whereas for $\gamma < 0$ we have $\mu \leq x \leq \mu - \frac{\sigma}{\gamma}$. Show that

$$\mathbb{E}[X] = \mu + \frac{\sigma}{1 - \gamma}, \text{ if } \gamma < 1,$$

and

$$\mathbb{E}[X] = \infty, \text{ if } \gamma \ge 1.$$

Example 3.5. Explore the limiting tail behaviour and derive the domain of attraction for the following distributions:

- 1. Pareto,
- 2. Exponential,
- 3. Beta.

Example 3.6. Consider a sequence of i.i.d. random variables with distribution function F(x). Derive cdf for the maximum over random number of random variables, where the random number follows Poisson distribution with parameter λ . Then consider the case when F(x) corresponds to generalized Pareto distribution with parameters $(\gamma, 0, \sigma)$.

4 Copula functions

Example 4.1. Consider bivariate discrete distribution with realization and probabilities

$$P(X_1 = 0, X_2 = 0) = \frac{1}{8}, P(X_1 = 1, X_2 = 1) = \frac{3}{8},$$

$$P(X_1 = 0, X_2 = 1) = \frac{2}{8}, P(X_1 = 1, X_2 = 0) = \frac{2}{8}.$$

Derive the marginal distributions and discuss the (non)uniqueness of the copula function which represents the dependence.

Example 4.2. Consider the multivariate and bivariate Gaussian copula. Derive an explicit formula for $\rho \in \{-1, 0, 1\}$.

Example 4.3. Consider the bivariate Gumbel copula with parameter $\theta \in [1, \infty)$. Compute the limit for $\theta \to \infty$.

Example 4.4. Consider the bivariate Clayton copula with parameter $\theta \in (0, \infty)$. Compute the limit for $\theta \to \infty$ and $\theta \to 0_+$.