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1 Point processes – Poisson process

Basic notation a properties for the homogeneous Poisson process with in-
tensity λ:

• Nt – random number of events observed until time t with distribution
Po(λ t),

• σn – random time of n−th event with Erlang distribution with pdf

f(x) =
λn

(n− 1)!
xn−1e−λx, x ≥ 0,

• τi – (independent) random time between events i − 1 and i with ex-
ponential distribution Exp(λ).

Example 1.1. Construct a random sample from Poisson distribution using
the properties of the Poisson process.
Hint. Let {Uk}k=1,2,... be iid with uniform distribution on [0, 1]. Set

Tk :=
k∏
i=1

Ui,

and
N := inf{n : Tn < e−λ}.

Show that N − 1 ∼ Po(λ).

Example 1.2. Let n events of homogenous Poisson process be observed
during the time period [0, T ] at times σ1 = s1, . . . , σn = sn.

i. Derive the maximum-likelihood estimate of the intensity λ.

ii. Verify the properties of the ML estimate: unbiasedness, consistency.

iii. Derive the sufficient statistic(s) for the estimate.

iv. Construct a confidence interval for the intensity.
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Example 1.3. Let n events of homogenous Poisson process with parameter
λ be observed during the time period [0, T ] at times σ1 = s1, . . . , σn = sn
and let n′ events of homogenous Poisson process with parameter λ′ be ob-
served during the time period [0, T ′] at times σ′1 = s′1, . . . , σ

′
n′ = s′n′. Let the

processes be independent. Propose a statistical test of the hypothesis λ = λ′.

Example 1.4. Generalize the above test to k independent homogenous Po-
isson processes, i.e. derive a test of hypothesis λ = λ2 = · · · = λk.

Example 1.5. Let n events of nonhomogenous Poisson process be obser-
ved during the time period [0, T ] at times σ1 = s1, . . . , σn = sn. Consider
intensity

λ(t) = eα+β t.

Derive a statistical test of hypothesis β = β0, and focus on the case β0 = 0,
i.e. construct a test of homogeneity.

2 Collective risk model and ruin probability, su-
bexponential distributions

Example 2.1. Under the standard assumptions (compound Poisson process,
costs, premium, see the Lecture notes for details) derive the adjustment co-
efficient R when the severity distribution follows Γ(12 , β) with pdf

p(x) =

√
β

Γ(12)
x−

1
2 e−βx.

Example 2.2. Derive the Laplace transform of the Beekman’s formula.
Then compute the probability of ruin under the exponential distribution of
claims severity, i.e.

p(x) = a e−ax.

Example 2.3. Verify that the distribution with pdf

p(x) =
a√
2π
x−

3
2 e−

a2

2x

belongs to the subexponential family.
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Example 2.4. Show that the standard criterion does not show that the
lognormal distribution belongs to the subexponential family.

Example 2.5. (*) Derive an asymptotic formula for the ruin probability
under the lognormal distribution of the claim severity.

Example 2.6. Consider Excess of Loss (XL) reinsurance with priority a >
0 and layer L > 0. Let the claims of insurer follow the compound Poisson
process. Elaborate the claims from the point of view of the reinsurer.

Example 2.7. Derive an estimate of the parameter of Pareto distribution
based on the quantiles.

3 Extreme Value Theory

Example 3.1. Consider Fréchet distribution X with cdf

G1,α(x) = exp(−x−α), x > 0, α > 0.

Verify that for the moments it holds

E[Xj ] = Γ(1− j

α
), j < α.

Example 3.2. Verify the max-stability of the extreme value distributions,
i.e. that for cdf G and proper choices of the sequences {cn > 0}, {dn}, it
holds

Gn(cnx+ dn) = G(x), n = 1, 2, . . .

Example 3.3. Show that the extreme value distributions can be used to deal
with the distributions of the minima of a sequence of random variables.
Hint: Show that

P

(
max
i≤n

(−Xi) ≤ anx+ bn

)
= 1− P

(
min
i≤n

(Xi) ≤ −anx− bn
)
,

where an > 0, bn ∈ R.
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Example 3.4. Consider generalized Pareto distribution with cdf

Wγ,µ,σ(x) = 1−
(

1 + γ
x− µ
σ

)− 1
γ

,

where γ 6= 0, µ ∈ R, σ > 0. For γ > 0 the support is x ≥ µ, whereas for
γ < 0 we have µ ≤ x ≤ µ− σ

γ . Show that

E[X] = µ+
σ

1− γ
, if γ < 1,

and
E[X] =∞, if γ ≥ 1.

Example 3.5. Explore the limiting tail behaviour and derive the domain of
attraction for the following distributions:

1. Pareto,

2. Exponential,

3. Beta.

Example 3.6. Consider a sequence of i.i.d. random variables with distri-
bution function F (x). Derive cdf for the maximum over random number of
random variables, where the random number follows Poisson distribution
with parameter λ. Then consider the case when F (x) corresponds to gene-
ralized Pareto distribution with parameters (γ, 0, σ).

4 Copula functions

Example 4.1. Consider bivariate discrete distribution with realization and
probabilities

P (X1 = 0, X2 = 0) =
1

8
, P (X1 = 1, X2 = 1) =

3

8
,

P (X1 = 0, X2 = 1) =
2

8
, P (X1 = 1, X2 = 0) =

2

8
.

Derive the marginal distributions and discuss the (non)uniqueness of the
copula function which represents the dependence.
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Example 4.2. Consider the multivariate and bivariate Gaussian copula.
Derive an explicit formula for ρ ∈ {−1, 0, 1}.

Example 4.3. Consider the bivariate Gumbel copula with parameter θ ∈
[1,∞). Compute the limit for θ →∞.

Example 4.4. Consider the bivariate Clayton copula with parameter θ ∈
(0,∞). Compute the limit for θ →∞ and θ → 0+.
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