Homework 2 - Integer linear programming and VaR

Martin Branda

Charles University in Prague
Faculty of Mathematics and Physics
Department of Probability and Mathematical Statistics

Computational Aspects of Optimization

Investment problem with VaR

Solve a simple investment problem

$$
\begin{gathered}
\min _{x_{i}} \operatorname{VaR}_{\alpha}\left(-\sum_{i=1}^{n} x_{i} R_{i}\right) \\
\text { s.t. } \mathbb{E}\left[\sum_{i=1}^{n} x_{i} R_{i}\right] \geq r_{0}, \\
\sum_{i=1}^{n} x_{i}=1, x_{i} \geq 0,
\end{gathered}
$$

where we consider n assets with random rate of return R_{i}. The first constraint ensures minimal expected return r_{0}, x_{i} are (nonnegative) portfolio weights which sum to one.

Value at Risk (VaR)

Portfolio optimization problem:

$$
\begin{gathered}
\min z_{z, x} \\
P\left(-\sum_{i=1}^{n} R_{i} x_{i} \leq z\right) \\
\geq \alpha \\
\sum_{i=1}^{n} \mathbb{E}\left[R_{i}\right] \cdot x_{i}
\end{gathered}
$$

where R_{i} is random rate of return of $i-$ th asset and minimal expected return r_{0} is selected in such way that the problem is feasible.

Homework 2

(1) Rewrite the VaR minimization problem under a finite discrete distribution as a mixed-integer LP problem (using big- M).
(2) Use the same dataset as for the CVaR homework, i.e. at least 6 assets, but the number of scenarios is limited to 50 (if you have free GAMS, otherwise you can use all 100 returns).
(3) Consider $\alpha=0.95$ and run the problem for different 11 values $r_{0} \in\left\{\min _{i} \bar{R}_{i}, \ldots, \max _{i} \bar{R}_{i}\right\}$.
(4) Plot the optimal values $\operatorname{VaR}_{\alpha}$ against the corresponding values of r_{0}.

