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� Risk measures bring new pitfalls

� Basic results and notation from Shapiro, Dentcheva and
Ruszczynski (2009)



Two-stage stochastic model

� Data vector ξ = (q,h,T,W)
� Decision vectors x, y
� Probability distribution of ξ: P
� We consider following stochastic program (SP):

min
x

c>x + E [Q(x, ξ)]

s.t. Ax = b

x ≥ 0,

where Q(x, ξ) is given by (REC):

min
y

q>y

s.t. Tx + Wy = h

y ≥ 0.



Two-stage stochastic model

� The program giving a value of Q(x, ξ) is called second-stage
problem

� It’s dual version (DUAL):

max
y

π> (h− Tx)

s.t. Wπ ≤ q

Proposition

For any given ξ the function Q(·, ξ) is convex. Moreover, if the set of
dual feasible solutions is nonempty and problem (REC) is feasible for
at least one x, then the function Q(·, ξ) is polyhedral.



Two-stage stochastic model

Proposition

Suppose that for given x = x0 and ξ the value Q(x0, ξ) is finite.
Then Q(·, ξ) is subdifferentiable at x0 and

∂Q(x0, ξ) = −T>D(x0, ξ)

where D(x0, ξ) is the set of optimal solutions of the dual problem
(DUAL).

� We have a polyhedral function

� We know how to calculate a subgradient

� This provides a basic block for further development



Two-stage stochastic model

� Suppose that the distribution P of ξ is discrete

� Scenarios ξk =
(

qk ,hk ,Tk ,Wk
)

with probabilities pk , k = 1, . . . ,K

� If the distribution P is not discrete, we can obtain it’s discrete
version P̂ by Monte Carlo sampling
� But we are not solving the original problem!
� The quality of solutions has to be controlled, the sampling process

repeated
� See Bayraksan and Morton (2009) for further details

� The expectation is replaced by sum:

E [Q(x, ξ)] =
K∑

k=1

pkQ(x, ξk)



Two-stage stochastic model

� The whole program can be combined into one large-scale linear
programming problem:

min
x,y1,...,yK

c>x +
K∑

k=1

pkqk>yk

s.t. Ax = b

Tkx + Wkyk = hk , k = 1, . . . ,K

x ≥ 0, yk ≥ 0, k = 1, . . . ,K .

� This program can be solved by a standard solver like CPLEX

� However, the computation times and memory requirements
are extensive for a large number of scenarios



Two-stage stochastic model

� Denote φ(x) = E [Q(x, ξ)]

Proposition

Suppose that the probability distribution of ξ has finite support with
scenarios ξ1, . . . , ξK . Suppose that the expected recourse cost φ(·)
has a finite value in at least one point x̄ ∈ Rn. Then the function φ(·)
is polyhedral and for any x0 ∈ dom φ:

∂φ(x0) =
K∑

k=1

pk∂Q(x0, ξ
k)

� The function is polyhedral and we know how to calculate a
subgradient

� These properties are important for algorithm development
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Benders’ decomposition

� The expectation E [Q(x, ξ)] is hard to compute, but since we know
it’s properties, we replace it with a lower bounding approximation θ

� Assume relatively complete recourse
� As we will solve the master problem and it’s subproblems, we will

be collecting cuts for the variable θ
� We add some lower bound for the recourse value, e.g. θ ≥ 0
� Suppose we have collected C cuts so far, then the master problem

is given by:

min
x

c>x + θ

s.t. Ax = b

θ ≥ Q̂j +
(
gj

)>
(x − xj) , j = 1, . . . ,C

x ≥ 0, θ ≥ 0



Benders’ decomposition

� At iteration j , we will have some suboptimal decision xj of the
master program along with it’s optimal value zj

� For each of the scenarios ξ1, . . . , ξK we will solve following
subproblem:

Qk
j = min

y
qk>y

s.t. Tkxj + Wky = hk

y ≥ 0.

� Along with the optimal value Qk
j we also calculate subgradient gk

j :

gk
j = −Tk>D(xj , ξ

k)

where D(xj , ξ
k) is the optimal solution

of the problem above



Benders’ decomposition

� We average the optimal values and subgradients:

Q̂j =
K∑

k=1

pkQk
j , gj =

K∑
k=1

pkgk
j

� We append a cut defined by Q̂j and gj to the master program and
solve it again with new solution xj+1 and optimal solution zj+1

� Q̂j is the objective value of a suboptimal solution, therefore stands
for an upper bound on the true solution

� zj+1 is a solution based on lower outer approximation, therefore
represents a lower bound for the true solution

� If Q̂j − zj+1 < ε we stop, otherwise repeat the steps



Benders’ decomposition

� Benders (1962), Van Slyke and Wets (1969) - also called L-Shaped
method

� The convergence is guaranteed in a finite number of steps
� We can also deal with the case when the assumption of relatively

complete recourse is not fulfilled
� Feasibility cuts

� Many improvements and extensions exist:
� Dropping cuts
� Warm start
� Multicut method - Birge and Louveaux (1988)
� Regularized decomposition - Ruszczynski (1986)

� Other important algorithms:
� Stochastic decomposition - Higle and Sen (1991)
� Progressive hedging - Rockafellar and Wets (1991)



Risk measures

� Similar approach can be applied to more complicated functionals,
for example convex risk measures

� Consider following master program:

min
x

c>x + (1− λ)E [Q(x, ξ)] + λCVaRα [Q(x, ξ)]

s.t. Ax = b

x ≥ 0.

� The subproblem remains the same
� The formula of Rockafellar and Uryasev (2002) can be used to

simplify the problem:

CVaRα [Z ] = min
u

(
u +

1

α
E [Z − u]+

)
,

where [ · ]+ ≡ max{ · , 0}.



Risk measures

� We combine the objectives into one program:

min
x,u

c>x + (1− λ)E [Q(x, ξ)] + λu + λ
1

α
E [Q(x, ξ)− u]+

s.t. Ax = b

x ≥ 0.

� Equivalently

min
x,u

c>x + λu +Q(x)

s.t. Ax = b

x ≥ 0.

with Q(x) = (1− λ)E [Q(x, ξ)] + λ 1
αE [Q(x, ξ)− u]+



Risk measures

� It remains to show how to calculate subgradient of this functional

� Following Shapiro (2011):

gj =

 K∑
k=1

pk(1− λ)gk
j +

λ

α

∑
k∈K∗

pkgk
j , −

λ

α
|K∗|

 ,
where the index set

K∗ =
{

k : Qk
j > u, k = 1, . . . ,K )

}
.

� The algorithm will require slightly more iterations due to the
additional variable u



Multistage stochastic optimization

� Consider T stage stochastic program:
� Data process ξ = (ξ1, ξ2, . . . , ξT )
� Decision process x = (x1, . . . , xT )
� Filtration Ft generated by the projection Πtξ = ξ[t] := (ξ1, . . . , ξt)
� Sequence of decisions at stages 1, . . . , t: Πtx = x[t] := (x1, . . . , xt)
� Probability distribution of ξ: P
� Pt denotes the marginal probability distribution of ξt
� Pt

[
·|ξ[t−1]

]
denotes the conditional probability distribution

� The decision process is nonanticipative:
� Decisions taken at any stage of the process do neither depend on

future realizations of stochastic data nor on future decisions
� xt is Ft-measurable
� The sequence of decisions and observations is:

x1, ξ2, x2(x1, ξ2), . . . , xT (xT−1, ξ2, . . . , ξT )

� its random outcome f (x, ξ)



Multistage stochastic optimization

� Nested form of multistage stochastic linear program (MSLP):

min
x1∈X1

c>1 x1 + EP [Q2(x1, ξ2)] with X1 := {x1|A1x1 = b1, x1 ≥ 0}

� With Qt(xt−1, ξ[t]), t = 2, . . . ,T , defined recursively as

Qt(xt−1, ξ[t]) = min
xt

ct(ξ[t])
>xt + EPt+1[·|ξ[t]]

[
Qt+1(xt , ξ[t+1])

]
� In the case of stagewise independence the conditional distributions

boil down to marginal distributions Pt of ξt
� We assume:

� Constraints involving random elements hold almost surely
� All infima are attained, which is related with the

relatively complete recourse
� All conditional expectations exist



Risk-averse multistage programs

� In the risk-neutral programs possible risks are not reflected

� Risk measure is a functional which assigns a real value to the
random outcome f (x, ξ)

� Risk measures depend on decisions and probability distribution P.
� They should also incorporate the filtration F1 ⊂ · · · ⊂ Ft · · · ⊆ F

� Risk monitoring in individual stages should be incorporated

min
x1

c>1 x1+ρ2

(
min

x2
c2(ξ[1])

>x2 + · · ·+ ρT

(
min
xT

cT (ξ[T−1])
>xT

))

� Different risk measures ρt can be applied in each stage

� Coherence of ρ is mostly expected [Artzner et al., 2007]



Definition (Multiperiod risk measures, Artzner et al., 2007)

A functional ρ on ×T
t=1Lp (Ω,Ft ,P) is called a multi-period coherent

risk measure if it satisfies following:

1. if Zt ≥ Z̃t a.s., t = 1, . . . ,T , then

ρ (Z1, . . . ,ZT ) ≥ ρ
(

Z̃1, . . . , Z̃T

)
(monotonicity);

2. for each r ∈ R we have ρ (Z1 + r , . . . ,ZT + r) = ρ (Z) + r
(translation invariance);

3. ρ
(
µZ1 + (1− µ)Z̃1, . . . , µZT + (1− µ)Z̃T

)
≤

µρ (Z1, . . . ,ZT ) + (1− µ)ρ
(

Z̃1, . . . , Z̃T

)
for µ ∈ [0, 1] (convexity);

4. for µ ≥ 0 we have ρ (µZ1, . . . , µZT ) = µρ (Z1, . . . ,ZT )
(positive homogeneity).



Time consistency

� At every state of the system, optimality of our decisions should not
depend on scenarios which we already know cannot happen in the
future.

� Risk neutral stochastic programs are time constistent

� Risk averse stochastic programs don’t have to be time consistent

� Many slightly different definitions

Definition (Time consistency)

If 1 ≤ t1 < t2 ≤ T and x∗t

(
ξ[t]

)
, t = t1, . . . ,T , is an optimal solution

for t = t1, conditional on a realization ξ1, . . . , ξt1 of the process, then

x∗t

(
ξ[t]

)
, t = t2, . . . ,T , is an optimal solution for t = t2, conditional

on a realization ξ1, . . . , ξt1 , ξt1+1, . . . , ξt2 of the process.



Definition (Conditional risk mappings, Ruszcz., Shapiro, 2006)

Let F ⊂ F ′ be σ-fields of subsets of Ω and Z and Z ′ be linear
spaces of real-valued functions f (ω), ω ∈ Ω measurable with respect
to F and F ′ , respectively. We say that mapping ρ : Z ′ → Z is a
conditional risk mapping if the following properties hold:

1. Convexity. If α ∈ [0, 1] and X ,Y ∈ Z ′ , then

αρ (X ) + (1− α)ρ (Y ) � ρ (αX + (1− α)Y ) .

2. Monotonicity. If Y � X , then ρ (Y ) � ρ (X ) .

3. Predictable Translation Equivariance. If Y ∈ Z and X ∈ Z ′ , then

ρ (X + Y ) = ρ (X ) + Y .



Composite risk measures

Consider conditional risk mappings ρ2, . . . , ρT and a risk function
ρ : Z1 × · · · × ZT → R given by:

ρ (Z1, . . . ,ZT ) = Z1 + ρ2 (Z2 + · · · ρT−1 (ZT−1 + ρT (ZT ))) .

Using Predictable Translation Equivariance we get

ρT−1 (ZT−1 + ρT (ZT )) = ρT−1 ◦ ρT (ZT−1 + ZT ) .

By continuing this process we end up with a composite risk measure
ρ̄ := ρ2 ◦ · · · ◦ ρT . It holds

ρ̄(Z1 + · · ·+ ZT ) = ρ (Z1, . . . ,ZT ) .



Nested CVaR risk measure

� Given by following equation:

ρn (Z) = CVaRα [·|F1] ◦ · · · ◦ CVaRα [·|FT−1]

(
T∑
t=1

Zt

)

� The interpretation is not straightforward
� can be viewed as the cost we would be willing to pay at the first stage

instead of incurring the sequence of random costs Z1, . . . ,ZT

� cf. Ruszczynski [2010]

� Satisfies the time consistency property by construction



Nested CVaR model

� Given risk coefficients λt and random loss variable Z we define:

ρt,ξ[t−1]
[Z ] = (1− λt)E

[
Z |ξ[t−1]

]
+ λt CVaRαt

[
Z |ξ[t−1]

]
� Nested model can be written:

min
A1x1=b1,x1≥0

c>1 x1 + ρ2,ξ[1]

[
min

B2x1+A2x2=b2,x2≥0
c>2 x2 + · · ·

· · ·+ ρT ,ξ[T−1]

[
min

BT xT−1+AT xT=bT ,xT≥0
c>TxT

]]



Nested CVaR model

� Allows to develop dynamic programming equations, using:

CVaRα [Z ] = min
u

[
u +

1

α
E [Z − u]+

]
� Denote Qt(xt−1, ξ[t]), t = 2, . . . ,T as the optimal value of:

Qt(xt−1, ξ[t]) = min
xt ,ut

c>t xt + λt+1ut +Qt+1(xt , ut , ξ[t])

s.t. Atxt = bt − Btxt−1

xt ≥ 0,

� Recourse function Qt+1(xt , ut , ξ[t]) is given by (QT+1(·) ≡ 0):

EPt+1[·|ξ[t]]

[
(1− λt+1) Qt+1(xt , ξ[t+1]) +

λt+1

αt+1

[
Qt+1(xt , ξ[t+1])− ut

]
+

]
.



Comparison with risk-neutral model

� Consider an additive utility with contribution ut(·)
� For expectation we have:

E
[
u2(Z2) + E

[
u3(Z3)|ξ[2]

]]
= E [u2(Z2)] + E [u3(Z3)]

� However, this additive form does not hold for CVaR

� We only have:

CVaRα
[
CVaRα

[
Z2 + Z3|ξ[2]

]]
= CVaRα

[
Z2 + CVaRα

[
Z3|ξ[2]

]]
≤ CVaRα [Z2] + CVaRα

[
CVaRα

[
Z3|ξ[2]

]]



SDDP algorithm properties

� First designed to solve hydro-scheduling problems

� Relies on the stage-independence assumption

� Each iteration runs with linear complexity
� Provides approximate solution using Benders’ cuts

� Cuts provide polyhedral approximation of the recourse function
� LP duality - subgradient computed from the dual variables
� Lower bound

� Policy evaluation procedure
� Upper bound

� Upper bound requires estimation
� Precise calculation is impossible for large number of stages
� Algorithm stops if lower bound is close enough to confidence

interval for the upper bound
� rarely done in a statistically rigorous manner



SDDP scheme

stage 1 stage 2 stage 3 stage 4

Forward pass
Backward pass



SDDP algorithm outline

� Because of the stage independence, cuts collected at any node
from the stage t are valid for all nodes from that stage

� Algorithm consists of forward and backward iterations
� Forward iteration

� Samples ξ1, . . . , ξJ sample paths
� Policy is evaluated using all the cuts collected so far
� Value of the policy gives the upper bound

� Backward iteration
� Subset of the scenarios from the forward iteration is chosen
� For every chosen node the Benders’ cut is calculated

� Using all of its immediate descendants (not just scenarios from the
forward pass)

� Optimal value of the root problem gives the lower bound

� The bounds are compared and the process is repeated



Our SDDP implementation

� Using the nested CVaR model

� Using own software developed in C++

� CPLEX and COIN-OR used as solvers for the LPs

� Stock assets allocation problem used as the example

� SDDP applied to a sampled tree from the continuous problem
� The algorithm can be implemented for parallel processing

� We have not done so

� Testing data from Czech Stock Market

� Log-normal distribution of returns is assumed

� Risk aversion coefficients set to λt = t−1
T , λt = 1

2
� Tail probability for CVaR set to 5% for all stages

� May be set differently for each stage



Inter-stage independence

� In order to use SDDP some form of independence is required
� Efficient algorithms usually rely on an inter-stage independence

assumption
� Otherwise, memory issues arise even for modest number of stages

� This assumption can be weakened
� One extension is to incorporate an additive dependence model

� See Infanger & Morton [1996]

� Another approach to bring dependence into the model is the use of a
Markov chain in the model
� See Philpott & Matos [2012]

� Yet another approach couples a “small” scenario tree with general
dependence structure with a second tree that SDDP can handle
� See Rebennack et al. [2012]



Asset allocation model

� At stage t we observe the price ratio between the new price and
the old price pt

� xt contains the optimal allocation (in USD, say)

� The total portfolio value is tracked as a multiple of the initial value

� Dynamic programming equations are very simple:

min
xt ,ut

− 1>xt + λt+1ut +Qt+1(xt , ut)

s.t. p>t xt−1 − 1>xt = 0

xt ≥ 0



Asset allocation model with transaction costs

� Relative fee ft (e.g., 0.3% of the asset price)

� Transaction costs of ft1
>|xt − xt−1|

� Linearizing we obtain the following model:

Qt(xt−1, ξt) = min
xt ,zt ,ut

− 1>xt + λt+1ut +Qt+1(xt , ut)

s.t. 1>xt + ft1
>zt = p>t xt−1

zt − xt ≥ −xt−1

zt + xt ≥ xt−1

xt ≥ 0



Empirical study

� Week-to-week ratios from Prague Stock Exchange, November
2007 to March 2012

asset mean std. deviation
AAA 0.9980 0.0716

CETV 0.9929 0.0995

ČEZ 0.9994 0.0406

ERSTE GROUP BANK 0.9983 0.0795

KOMERČŃI BANKA 1.0018 0.0543

ORCO 0.9899 0.0938

PEGAS NONWOVENS 0.9995 0.0398

PHILIP MORRIS ČR 1.0035 0.0368

TELEFÓNICA C.R. 1.0004 0.0266

UNIPETROL 0.9986 0.0506



Empirical study

� Two different settings of risk coefficients, λt = 1
2 and λt = t−1

T

� Both cases, with transaction costs of 0.3% and without transaction
costs considered

� In all the testing cases, only three assets play a significant role in
our portfolio: ČEZ, PHILIP MORRIS ČR and TELEFÓNICA C.R.

stages descendants per node total scenarios
2 50, 000 50, 000

3 1, 000 1, 000, 000

5 1, 000 1012



Empirical study

stages ČEZ PHILL TELE
2 0.0663 (0.0087) 0.3169 (0.0081) 0.6168 (0.0092)

3 0.0510 (0.0459) 0.3112 (0.0537) 0.6273 (0.0707)

5 0.0450 (0.0307) 0.3340 (0.0268) 0.6043 (0.0571)

Table : Optimal decisions (std. deviations) with ft = 0 and λt = 1
2

stages ČEZ PHILL TELE
2 0.0663 (0.0087) 0.3169 (0.0081) 0.6168 (0.0092)

3 0.0597 (0.0645) 0.3429 (0.0650) 0.5792 (0.0920)

5 0.0392 (0.0415) 0.4325 (0.0678) 0.4975 (0.0652)

Table : Optimal decisions (std. deviations) with ft = 0 and λt = t−1
T



Empirical study

stages ČEZ PHILL TELE
2 0.0663 (0.0087) 0.3169 (0.0081) 0.6168 (0.0092)

3 0.0405 (0.0279) 0.2977 (0.0322) 0.6438 (0.0409)

5 0.0643 (0.0208) 0.3115 (0.0231) 0.6149 (0.0323)

Table : Optimal decisions (std. deviations) with ft = 0.3% and λt = 1
2

stages ČEZ PHILL TELE
2 0.0663 (0.0087) 0.3169 (0.0081) 0.6168 (0.0092)

3 0.0412 (0.0389) 0.3175 (0.0258) 0.6192 (0.0403)

5 0.0493 (0.0240) 0.3274 (0.0346) 0.6168 (0.0293)

Table : Optimal decisions (std. deviations) with ft = 0.3% and λt = t−1
T



Empirical study

� Zero transaction costs
� No significant difference between the optimal portfolios for 2, 3 or 5

stage in the constant risk coefficients setting
� In the second case we can see a slight movement to the riskier asset in

the first-stage decision (PHILIP MORRIS ČR)

� Nonzero transaction costs
� In accordance with our model transaction costs have no effect in

2-stage models
� Presence of the transaction costs reduces the differences found in the

previous case with varying risk coefficients
� Varying risk coefficients require the investor to change the portfolio in

every stage significantly
� Impact of transaction costs should be weaker in cases where stages

cover longer time periods instead of just weeks



Upper bound overview

� Risk-neutral problems
� The value of the current optimal policy can be estimated easily
� Expectation at each node can be estimated by single chosen

descendant
� Risk-averse problems

� To estimate the CVaR value we need more descendants in practice
� Leads to intractable estimators with exponential computational

complexity
� Current solution (to our knowledge)

� Run the risk-neutral version of the same problem and determine the
number of iterations needed to stop the algorithm, then run the same
number of iterations on the risk-averse problem

� Inner approximation scheme proposed by Philpott et al. [2013]
� Works with different policy than the outer approximation
� Probably the best alternative so far

� New solution by Kozḿık & Morton



Conclusion

Thank you for your attention!

Václav Kozḿık
vaclav@kozmik.cz
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