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Outline

B Two-stage models
O Theoretical results
O Decomposition methods
O Risk aversion
® Multistage stochastic models
O Much harder than the two-stage models
0 Complexity explosion when increasing the number of stages
O Interstage independence can help to reduce complexity
O Risk measures bring new pitfalls

® Basic results and notation from Shapiro, Dentcheva and
Ruszczynski (2009)




Two-stage stochastic model

m Data vector £ = (q,h, T, W)

® Decision vectors x, y

® Probability distribution of &: P

= We consider following stochastic program (SP):

min ¢'x +E [Q(x, £)]
st. Ax=Db
x >0,
where Q(x, &) is given by (REC):
min qu
y
st. Tx+ Wy =h
y > 0.




Two-stage stochastic model

® The program giving a value of Q(x, &) is called second-stage
problem

® |t's dual version (DUAL):
max 7' (h — Tx)
y
s.t. W < ¢

Proposition

For any given & the function Q(-,&) is convex. Moreover, if the set of
dual feasible solutions is nonempty and problem (REC) is feasible for
at least one x, then the function Q(-,&) is polyhedral.




Two-stage stochastic model

Proposition

Suppose that for given x = xo and & the value Q(xo, &) is finite.
Then Q(-, &) is subdifferentiable at xo and

9Q(xo0,€) = =T 'D(xo, &)

where D(xg, £) is the set of optimal solutions of the dual problem
(DUAL).

= We have a polyhedral function

® We know how to calculate a subgradient

® This provides a basic block for further development




Two-stage stochastic model

® Suppose that the distribution IP of £ is discrete
o Scenarios £k = (qk,hk,Tk,Wk) with probabilities p¥, k =1,..., K
® |f the distribution IP is not discrete, we can obtain it's discrete

version P by Monte Carlo sampling

O But we are not solving the original problem!
O The quality of solutions has to be controlled, the sampling process

repeated
O See Bayraksan and Morton (2009) for further details

B The expectation is replaced by sum:

K
E[Q(x,€)] = p*Q(x,£¥)

k=1




Two-stage stochastic model

® The whole program can be combined into one large-scale linear

programming problem:

min ¢ x—i—Zpk kT k
X7y1"' 7y

s.t. Ax:b
Thx + Whyk = hk,
x>0,y>0, k=1,...

k=1,...,K
K.

ER)s,

® This program can be solved by a standard solver like CPLEX
= However, the computation times and memory requirements «\C’*

are extensive for a large number of scenarios



Two-stage stochastic model

® Denote ¢(x) = E[Q(x,&)]

Proposition
Suppose that the probability distribution of € has finite support with
scenarios &1, ..., €K, Suppose that the expected recourse cost o(+)

has a finite value in at least one point x € R". Then the function ¢(-)
is polyhedral and for any xo € dom ¢:

K
db(x0) = Y p*0Q(x0,€")
k=1

PhYs

= The function is polyhedral and we know how to calculate a ¢’
e

subgradient b

= These properties are important for algorithm development A
K
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Benders’ decomposition

® The expectation E [Q(x, &)] is hard to compute, but since we know
it's properties, we replace it with a lower bounding approximation ¢

= Assume relatively complete recourse

® As we will solve the master problem and it's subproblems, we will
be collecting cuts for the variable 0

® We add some lower bound for the recourse value, e.g. § >0

® Suppose we have collected C cuts so far, then the master problem
is given by:

min c'x + 6
X
st. Ax=Db

02Qj—|—(gj) (x—x;), j=1,...,C
x>0,6>0




Benders’ decomposition

= At iteration j, we will have some suboptimal decision x; of the
master program along with it's optimal value z;

= For each of the scenarios &1, ..., & we will solve following
subproblem:

Qf = min q“Ty
s.t. Tkxj + WKy = h*

y>0.
® Along with the optimal value Qj‘ we also calculate subgradient gj’-‘:
gf = T D(x;, &)

where D(x;, £¥) is the optimal solution
of the problem above




Benders’ decomposition

® We average the optimal values and subgradients:
K K

Q=) rQf g => rf
k=1 k=1

= We append a cut defined by QJ- and g; to the master program and
solve it again with new solution x; 1 and optimal solution zj;

L] Qj is the objective value of a suboptimal solution, therefore stands
for an upper bound on the true solution

® z;1 is a solution based on lower outer approximation, therefore
represents a lower bound for the true solution

m|f Qj — Zj+1 < € we stop, otherwise repeat the steps




Benders’ decomposition

® Benders (1962), Van Slyke and Wets (1969) - also called L-Shaped
method

® The convergence is guaranteed in a finite number of steps
= We can also deal with the case when the assumption of relatively
complete recourse is not fulfilled
O Feasibility cuts
® Many improvements and extensions exist:
0 Dropping cuts
O Warm start
0 Multicut method - Birge and Louveaux (1988)
01 Regularized decomposition - Ruszczynski (1986)
m QOther important algorithms:

O Stochastic decomposition - Higle and Sen (1991)
O Progressive hedging - Rockafellar and Wets (1991)




Risk measures

® Similar approach can be applied to more complicated functionals,
for example convex risk measures
m Consider following master program:

min c'x + (1 - NE[Q(x,€)] + ACVaR, [Q(x, £)]
st. Ax=Db
x > 0.

® The subproblem remains the same
® The formula of Rockafellar and Uryasev (2002) can be used to
simplify the problem:

) 1
CVaR, [Z] = min (u+ EE [Z - u]+> ,

where [-]+ = max{ -, 0}.




Risk measures

® We combine the objectives into one program:

min ¢ x + (1 = A\E [Q(x, &)] + \u + )\é]E [Q(x,&) — u] .

X,U
st. Ax=Db
x > 0.

= Equivalently
min ¢'x + Au+ Q(x)
X,U

st. Ax=Db
x > 0.

with Q(x) = (1 = ME[Q(x, £)] + AE[Q(x,€) — u,




Risk measures

® |t remains to show how to calculate subgradient of this functional

= Following Shapiro (2011):

A
Zp gJ+ Zpgf’_a‘K*‘ )

keK*

where the index set
K*:{k: Q> u, k:l,...,K)}.

® The algorithm will require slightly more iterations due to the

additional variable u




Multistage stochastic optimization

m Consider T stage stochastic program:
* Data process £ = (£;.&,....£7)

O Decision process x = (X1, ...,XT)

o Filtration F; generated by the projection M:£ = &y := (&1, ..., &;)
0 Sequence of decisions at stages 1,...,t: Mx = X[y = (X1,...,X¢)
O Probability distribution of &: P

O P, denotes the marginal probability distribution of &,

o P, [-|£[t_1]} denotes the conditional probability distribution
® The decision process is nonanticipative:
O Decisions taken at any stage of the process do neither depend on
future realizations of stochastic data nor on future decisions
0 X; is Fy-measurable
O The sequence of decisions and observations is:

X1,€2,X2(X1,£2), s 7XT(XT—1,£27 s ,éT)

B jts random outcome f(x, &)




Multistage stochastic optimization

® Nested form of multistage stochastic linear program (MSLP):

mei)n( CIXl + Ep [QQ(X1,€2)] with X = {X1| Aix; = by, x1 > 0}
x1€X1

0 With Qt(xt_l,ﬁ[t]), t=2,..., T, defined recursively as

Qe(xe-1,€py) = min ce(€pg) Txe + Ep [ €] [Qt+1(xt, £[t+1])j|

® In the case of stagewise independence the conditional distributions
boil down to marginal distributions P+ of &,
= We assume:
0 Constraints involving random elements hold almost surely
O All infima are attained, which is related with the
relatively complete recourse
0 All conditional expectations exist




Risk-averse multistage programs

In the risk-neutral programs possible risks are not reflected

Risk measure is a functional which assigns a real value to the
random outcome f(x, &)

Risk measures depend on decisions and probability distribution IP.
0 They should also incorporate the filtration /1 C --- C F;--- C F

Risk monitoring in individual stages should be incorporated
min ¢} X1+p2 (mm c2(§py) X2+ +pT <m'" cr(§r-1)) XT))
X1 X2 XT

O Different risk measures p; can be applied in each stage

Coherence of p is mostly expected [Artzner et al., 2007]



Definition (Multiperiod risk measures, Artzner et al., 2007)

A functional p on x[_ L, (Q, F¢,P) is called a multi-period coherent
risk measure if it satisfies following:

1. ithEZ as.,t=1,..., T, then
p(Z1,....Z1) > p (21, .. .,27) (monotonicity);

2. foreachr € R we have p(Zy+r,....Z1+r)=p(Z)+r
(translation invariance);

30 (nzi+ (L= w2 nZr + (1 p)2r) <
wp(Zi, ..., Z1)+ (1 —p)p (21, e ZT) for € [0, 1] (convexity);

4. for p >0 we have p(puZy, ..., pZ71) = up(Z1,...,27)
(positive homogeneity ).



Time consistency

® At every state of the system, optimality of our decisions should not
depend on scenarios which we already know cannot happen in the
future.

® Risk neutral stochastic programs are time constistent
® Risk averse stochastic programs don't have to be time consistent

= Many slightly different definitions

Definition (Time consistency)

If1<t; <t <T andxj (g[t]), t=ty,..., T, isan optimal solution
for t = t1, conditional on a realization &, ..., &, of the process, then
X} (E[t]>, t =ty,..., T, is an optimal solution for t = t,, conditional

on a realization £y, ...,&;,&; 41, -, &;, of the process.



Definition (Conditional risk mappings, Ruszcz., Shapiro, 2006)

Let F C F' be o-fields of subsets of Q and Z and Z' be linear
spaces of real-valued functions f(w), w € Q measurable with respect
to F and F , respectively. We say that mapping p : Z 5 Zisa
conditional risk mapping if the following properties hold:

1. Convexity. If a €[0,1] and X, Y € Z', then
ap(X)+(1=a)p(Y) =z p(aX +(1-a)Y).

2. Monotonicity. If Y = X, then p(Y) = p(X).
3. Predictable Translation Equivariance. If Y € Z and X € Z', then

p(X+Y)=p(X)+Y.




Composite risk measures

Consider conditional risk mappings p2, ..., p1 and a risk function
p:Z1x---x Zr — R given by:

p(Z1,. s Zr) =21+ p2(Z2+ - pr-1(Z7-1+ p7(Z7))) -
Using Predictable Translation Equivariance we get
p1-1(Zr-1+p7(Z7)) =pT-10p7 (LT-1+ Z7).

By continuing this process we end up with a composite risk measure
ﬁZ:p20---OpT. It holds

p(L+-+2Zr)=p(4,....27).




Nested CVaR risk measure

® Given by following equation:

;
p"(Z) = CVaR, [-|Fi] o - -+ 0 CVaRy [|Fr_1] (Z Zt>

t=1

® The interpretation is not straightforward

O can be viewed as the cost we would be willing to pay at the first stage
instead of incurring the sequence of random costs Z3,...,Z7
0 cf. Ruszczynski [2010]

m Satisfies the time consistency property by construction




Nested CVaR model

m Given risk coefficients A+ and random loss variable Z we define:

Pegy 121 = (1= X)E |ZI€_y| + X CVaRa, |ZI€jy|

® Nested model can be written:

- T T
min Cq X1 —i—pg,gm [ CoXp+ -

min
A;x3=b1,x;>0 Box1+Azx2=b2,x2>0

min c?xr
Brxr_1+Arxr=b7x7>0

e + pT7£[T—1]




Nested CVaR model

= Allows to develop dynamic programming equations, using:
) 1
CVaR, [Z] = min | u + aE [Z —u],
= Denote Qi(xt-1,€[y), t =2,..., T as the optimal value of:

Qe(xe—1,€[y) = )Tllﬂ ¢! x¢ + Aegrte + Qeqa(Xe, Ue, &)

s.t. Atxt == bt — thtfl
Xt > O,

= Recourse function Qrr1(x¢, ue, &) is given by (Qr41(-) = 0):

A1

Ep, 1 [leg] |1 Arr) Qera(xe, Eeray) + |:Qt+1(xt7€[t+l])



Comparison with risk-neutral model

= Consider an additive utility with contribution u(-)

® For expectation we have:

E [uz(Zz) +E [U3(23)|€[2]H = E [u2(22)] + E [u3(Z3)]

® However, this additive form does not hold for CVaR

= We only have:
CVaR, [CVaR, |2 + Z3fgpy || = CVaRa |2+ CVaR, [ Zslep |

< CVaR, [25] + CVaR, [CVaRa [Z3|£[2]H




SDDP algorithm properties

® First designed to solve hydro-scheduling problems
® Relies on the stage-independence assumption

B Each iteration runs with linear complexity

® Provides approximate solution using Benders' cuts

O Cuts provide polyhedral approximation of the recourse function
O LP duality - subgradient computed from the dual variables
0 Lower bound

® Policy evaluation procedure
O Upper bound
® Upper bound requires estimation

O Precise calculation is impossible for large number of stages

O Algorithm stops if lower bound is close enough to confidence
interval for the upper bound

B rarely done in a statistically rigorous manner




SDDP scheme

stage 2

stage 1
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Backward pass




SDDP algorithm outline

® Because of the stage independence, cuts collected at any node
from the stage t are valid for all nodes from that stage

® Algorithm consists of forward and backward iterations

® Forward iteration
0 Samples 51,...,£J sample paths

O Policy is evaluated using all the cuts collected so far
O Value of the policy gives the upper bound

®m Backward iteration

O Subset of the scenarios from the forward iteration is chosen
0 For every chosen node the Benders' cut is calculated

® Using all of its immediate descendants (not just scenarios from the
forward pass)

0 Optimal value of the root problem gives the lower bound

® The bounds are compared and the process is repeated




Our SDDP implementation

® Using the nested CVaR model

® Using own software developed in C4++

m CPLEX and COIN-OR used as solvers for the LPs

m Stock assets allocation problem used as the example

m SDDP applied to a sampled tree from the continuous problem
® The algorithm can be implemented for parallel processing
o We have not done so

m Testing data from Czech Stock Market

® | og-normal distribution of returns is assumed

m Risk aversion coefficients set to Ay = t;Tl At = %

= Tail probability for CVaR set to 5% for all stages
O May be set differently for each stage




Inter-stage independence

® |n order to use SDDP some form of independence is required
O Efficient algorithms usually rely on an inter-stage independence
assumption
0 Otherwise, memory issues arise even for modest number of stages
® This assumption can be weakened
0 One extension is to incorporate an additive dependence model
B See Infanger & Morton [1996]
O Another approach to bring dependence into the model is the use of a
Markov chain in the model
B See Philpott & Matos [2012]
0 Yet another approach couples a “small” scenario tree with general
dependence structure with a second tree that SDDP can handle
B See Rebennack et al. [2012]




Asset allocation model

® At stage t we observe the price ratio between the new price and
the old price p;

® X, contains the optimal allocation (in USD, say)
® The total portfolio value is tracked as a multiple of the initial value

® Dynamic programming equations are very simple:

min — lTxt + Aep1ue + Qry1(xe, ut)

Xt,Ut

s.t. p;rxt_l —1"x, =0
X¢ Z 0




Asset allocation model with transaction costs

m Relative fee f; (e.g., 0.3% of the asset price)
® Transaction costs of ft1T|xt — X¢—1|
B Linearizing we obtain the following model:
Qe(xt-1,&;) = x”;inu — 1% + Aty + Qeya(Xe, ur)
tyet,Ut
st. 1Tx;+ f17z, = p;rxt_l

Zy — Xt 2 —X¢-1

Z: + Xp > Xp1
XtZO




Empirical study

= Week-to-week ratios from Prague Stock Exchange, November
2007 to March 2012

asset mean | std. deviation
AAA 0.9980 0.0716
CETV 0.9929 0.0995
CEZ 0.9994 0.0406
ERSTE GROUP BANK | 0.9983 0.0795
KOMERCNI BANKA 1.0018 0.0543
ORCO 0.9899 0.0938
PEGAS NONWOVENS | 0.9995 0.0398
PHILIP MORRIS CR 1.0035 0.0368
TELEFONICA C.R. 1.0004 0.0266
UNIPETROL 0.9986 0.0506




Empirical study

® Two different settings of risk coefficients, A\; = % and A\ = t;Tl

® Both cases, with transaction costs of 0.3% and without transaction

costs considered

® In all the testing cases, only three assets play a signific,ant role in
our portfolio: CEZ, PHILIP MORRIS CR and TELEFONICA C.R.

stages | descendants per node | total scenarios
2 50, 000 50,000
3 1,000 1,000, 000
5 1,000 10%?




Empirical study

stages CEZz PHILL TELE
2 0.0663 (0.0087) | 0.3169 (0.0081) | 0.6168 (0.0092)
3 0.0510 (0.0459) | 0.3112 (0.0537) | 0.6273 (0.0707)
5 0.0450 (0.0307) | 0.3340 (0.0268) | 0.6043 (0.0571)

Table : Optimal decisions (std. deviations) with f; =0 and A\; = %

stages CEZz PHILL TELE
2 0.0663 (0.0087) | 0.3169 (0.0081) | 0.6168 (0.0092)
3 0.0597 (0.0645) | 0.3429 (0.0650) | 0.5792 (0.0920)
5 0.0392 (0.0415) | 0.4325 (0.0678) | 0.4975 (0.0652)

Table : Optimal decisions (std. deviations) with f, = 0 and A; = £




Empirical study

stages CEZz PHILL TELE
2 0.0663 (0.0087) | 0.3169 (0.0081) | 0.6168 (0.0092)
3 0.0405 (0.0279) | 0.2977 (0.0322) | 0.6438 (0.0409)
5 0.0643 (0.0208) | 0.3115 (0.0231) | 0.6149 (0.0323)

Table : Optimal decisions (std. deviations) with f, = 0.3% and A, = %

stages CEZz PHILL TELE
2 0.0663 (0.0087) | 0.3169 (0.0081) | 0.6168 (0.0092)
3 0.0412 (0.0389) | 0.3175 (0.0258) | 0.6192 (0.0403)
5 0.0493 (0.0240) | 0.3274 (0.0346) | 0.6168 (0.0293)

Table : Optimal decisions (std. deviations) with f, = 0.3% and X, = £



Empirical study

m Zero transaction costs

O No significant difference between the optimal portfolios for 2, 3 or 5
stage in the constant risk coefficients setting

O In the second case we can see a slight movement to the riskier asset in
the first-stage decision (PHILIP MORRIS CR)

= Nonzero transaction costs

O In accordance with our model transaction costs have no effect in
2-stage models

0 Presence of the transaction costs reduces the differences found in the
previous case with varying risk coefficients

O Varying risk coefficients require the investor to change the portfolio in
every stage significantly

O Impact of transaction costs should be weaker in cases where stages
cover longer time periods instead of just weeks



Upper bound overview

® Risk-neutral problems

O The value of the current optimal policy can be estimated easily

0 Expectation at each node can be estimated by single chosen
descendant

® Risk-averse problems

O To estimate the CVaR value we need more descendants in practice

0 Leads to intractable estimators with exponential computational
complexity

® Current solution (to our knowledge)

O Run the risk-neutral version of the same problem and determine the
number of iterations needed to stop the algorithm, then run the same
number of iterations on the risk-averse problem

0 Inner approximation scheme proposed by Philpott et al. [2013]

B Works with different policy than the outer approximation
B Probably the best alternative so far

= New solution by Kozmik & Morton



Conclusion

Thank you for your attention!

Viaclav Kozmik
vaclav@kozmik.cz
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