The project inEXASCALE aims to change the way people think about designing and analyzing algorithms in the exascale era. On supercomputers that exist today, achieving even close to the peak performance is incredibly difficult if not impossible for many applications.
Techniques designed to improve performance - making computations less expensive by reorganizing an algorithm, making intentional approximations, and using lower precision - all introduce what we can generally call "inexactness". The question is, with all this inexactness involved, does the algorithm still get close enough to the right answer?
The effects of these sources of inexactness have been studied separately, but never together in a holistic way. By studying the combination of different sources of inexactness, we will reveal not only the limitations of these techniques, but also reveal new opportunities for developing algorithms that are both fast and provably accurate.
Analyzing and Exploiting Inexactness in Exascale Matrix
Computations
PI: Erin Carson
Charles University
Prague, Czech Republic
PI: Erin C. Carson
Postdocs:
PhD Students:
Graduated PhD Students:
Former Postdocs: