
Erin C. Carson

Faculty of Mathematics and Physics, Charles University

May 4, 2022

47th Spring Lecture Series

University of Arkansas

We acknowledge funding from Charles Univ. PRIMUS project No. PRIMUS/19/SCI/11, Charles Univ. Research Program No. UNCE/SCI/023, and the Exascale
Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Admin.

Exploiting Mixed Precision in
Numerical Linear Algebra

Floating Point Formats

2

exponent (11 bits) fraction (52 bits)

IEEE double (FP64)

IEEE single (FP32)

IEEE half (FP16)

exponent (8 bits) fraction (23 bits)

exponent (5 bits) fraction (10 bits)

−1 sign × 2(exponent−offset) × 1. fraction

size range 𝑢

fp64 64 bits 10±308 1 × 10−16

fp32 32 bits 10±38 6 × 10−8

fp16 16 bits 10±5 5 × 10−4

bfloat16 16 bits 10±38 4 × 10−3

exponent (8 bits) fraction (7 bits)

bfloat16

Hardware Support for Multiprecision Computation

3

• Half precision (FP16) defined as storage format in 2008 IEEE standard

• ARM NEON: SIMD architecture, instructions for 8x16-bit, 4x32-bit, 2x64-bit

• AMD Radeon Instinct MI25 GPU, 2017:

• single: 12.3 TFLOPS, half: 24.6 TFLOPS

• NVIDIA Tesla P100, 2016: native ISA support for 16-bit FP arithmetic

• NVIDIA Tesla V100, 2017: tensor cores for half precision;

4x4 matrix multiply in one clock cycle

• double: 7 TFLOPS, half+tensor: 112 TFLOPS (16x!)

• Google's Tensor processing unit (TPU)

• NVIDIA A100, 2020: tensor cores with multiple supported precisions: FP16,
FP64, Binary, INT4, INT8, bfloat16

• NVIDIA H100, 2022: now with quarter-precision (FP8) tensor cores

• Future exascale supercomputers: (~2021) Expected extensive support for
reduced-precision arithmetic (32/16/8-bit)

Use of low precision in machine learning has driven emergence of low-
precision capabilities in hardware:

Performance of LU factorization on an NVIDIA V100 GPU

4[Haidar, Tomov, Dongarra, Higham, 2018]

Mixed Precision Capabilities on Supercomputers

5

From TOP500:

November 2021

27

Mixed Precision Capabilities on Supercomputers

5

From TOP500:

June 2019

November 2021

27

14.6

“Exascale”: An exaflop of what?

• When will victory be declared?

• When a supercomputer reaches exaflop performance on the HPL
(LINPACK) benchmark (TOP500)

• Solving dense 𝐴𝑥 = 𝑏 using Gaussian elimination with partial
pivoting in double precision (FP64)

6

“Exascale”: An exaflop of what?

• When will victory be declared?

• When a supercomputer reaches exaflop performance on the HPL
(LINPACK) benchmark (TOP500)

• Solving dense 𝐴𝑥 = 𝑏 using Gaussian elimination with partial
pivoting in double precision (FP64)

• HPL benchmark is typically a compute-bound problem ("BLAS-3")

• Not a good indication of performance for a large number of applications!

• Lots of remaining work even after exascale performance is achieved

• Has led to incorporation of other benchmarks into the TOP500 ranking

• e.g., HPCG: Solving sparse 𝐴𝑥 = 𝑏 iteratively using the conjugate
gradient method

6

“Exascale”: An exaflop of what?

• HPL doesn’t make use of modern mixed precision hardware

• We can already achieve “exaflop” performance today if we allow for mixed
precision computations

7

https://www.olcf.ornl.gov/2018/06/08/genomics-code-exceeds-exaops-on-summit-supercomputer/

“Exascale”: An exaflop of what?

• HPL doesn’t make use of modern mixed precision hardware

• We can already achieve “exaflop” performance today if we allow for mixed
precision computations

=>HPL-AI: A new mixed precision benchmark

7

https://www.olcf.ornl.gov/2018/06/08/genomics-code-exceeds-exaops-on-summit-supercomputer/

HPL-AI Benchmark

• Highlights confluence of HPC+AI workloads

• Like HPL, solves dense Ax=b, results still to double precision accuracy

• Achieves this via mixed-precision iterative refinement

• may be implemented in a way that takes advantage of the current
and upcoming devices for accelerating AI workloads

8

HPL-AI Benchmark

8
More information: https://icl.bitbucket.io/hpl-ai/
Reference implementation: https://bitbucket.org/icl/hpl-ai/src/

https://icl.bitbucket.io/hpl-ai/
https://bitbucket.org/icl/hpl-ai/src/

HPL-AI Benchmark

8
More information: https://icl.bitbucket.io/hpl-ai/
Reference implementation: https://bitbucket.org/icl/hpl-ai/src/

https://icl.bitbucket.io/hpl-ai/
https://bitbucket.org/icl/hpl-ai/src/

HPL-AI Benchmark

8
More information: https://icl.bitbucket.io/hpl-ai/
Reference implementation: https://bitbucket.org/icl/hpl-ai/src/

https://icl.bitbucket.io/hpl-ai/
https://bitbucket.org/icl/hpl-ai/src/

Mixed precision in NLA

• BLAS: cuBLAS, MAGMA, [Agullo et al. 2009], [Abdelfattah et al., 2019], [Haidar et al., 2018]

• Iterative refinement:

• Long history: [Wilkinson, 1963], [Moler, 1967], [Stewart, 1973], …

• More recently: [Langou et al., 2006], [C., Higham, 2017], [C., Higham, 2018], [C.,
Higham, Pranesh, 2020], [Amestoy et al., 2021]

• Matrix factorizations: [Haidar et al., 2017], [Haidar et al., 2018], [Haidar et al., 2020],
[Abdelfattah et al., 2020]

• Eigenvalue problems: [Dongarra, 1982], [Dongarra, 1983], [Tisseur, 2001], [Davies et al.,
2001], [Petschow et al., 2014], [Alvermann et al., 2019]

• Sparse direct solvers: [Buttari et al., 2008]

• Orthogonalization: [Yamazaki et al., 2015]

• Multigrid: [Tamstorf et al., 2020], [Richter et al., 2014], [Sumiyoshi et al., 2014], [Ljungkvist,
Kronbichler, 2017, 2019]

• (Preconditioned) Krylov subspace methods: [Emans, van der Meer, 2012], [Yamagishi,
Matsumura, 2016], [C., Gergelits, Yamazaki, 2021], [Clark, 2019], [Anzt et al., 2019], [Clark et
al., 2010], [Gratton et al., 2020], [Arioli, Duff, 2009], [Hogg, Scott, 2010]

9For survey and references, see [Abdelfattah et al., IJHPC, 2021]

Challenges of low precision

• Do error bounds still apply?

• Error bound with constant 𝑛𝑢 provides no information if 𝑛𝑢 > 1

• One solution: probabilistic approach [Higham, Mary, 2019], [Higham, Mary, 2020]

10

Challenges of low precision

• Do error bounds still apply?

• Error bound with constant 𝑛𝑢 provides no information if 𝑛𝑢 > 1

• One solution: probabilistic approach [Higham, Mary, 2019], [Higham, Mary, 2020]

• Smaller range of representable numbers

• Limited range of lower precision might cause overflow when rounding

• Quantities rounded to lower precision may lose important numerical properties
(e.g., positive definiteness)

• One solution: scaling and shifting approach [Higham, Pranesh, 2019]

10

Challenges of low precision

• Do error bounds still apply?

• Error bound with constant 𝑛𝑢 provides no information if 𝑛𝑢 > 1

• One solution: probabilistic approach [Higham, Mary, 2019], [Higham, Mary, 2020]

• Smaller range of representable numbers

• Limited range of lower precision might cause overflow when rounding

• Quantities rounded to lower precision may lose important numerical properties
(e.g., positive definiteness)

• One solution: scaling and shifting approach [Higham, Pranesh, 2019]

• Larger unit roundoff

• Lose something small when storing: 𝑓𝑙 𝑥 = 𝑥 1 + 𝛿 , 𝛿 ≤ 𝑢

• Lose something small when computing: 𝑓𝑙 𝑥 op 𝑦 = 𝑥 op 𝑦 1 + 𝛿 , 𝛿 ≤ 𝑢

10

Challenges of low precision

• Do error bounds still apply?

• Error bound with constant 𝑛𝑢 provides no information if 𝑛𝑢 > 1

• One solution: probabilistic approach [Higham, Mary, 2019], [Higham, Mary, 2020]

• Smaller range of representable numbers

• Limited range of lower precision might cause overflow when rounding

• Quantities rounded to lower precision may lose important numerical properties
(e.g., positive definiteness)

• One solution: scaling and shifting approach [Higham, Pranesh, 2019]

• Larger unit roundoff

• Lose something small when storing: 𝑓𝑙 𝑥 = 𝑥 1 + 𝛿 , 𝛿 ≤ 𝑢

• Lose something small when computing: 𝑓𝑙 𝑥 op 𝑦 = 𝑥 op 𝑦 1 + 𝛿 , 𝛿 ≤ 𝑢

Does it matter?
10

Inexact computations

• In real computations we have many sources of
inexactness

• Imperfect data, measurement error

• Modeling error, discretization error

• Intentional approximation to improve
performance

• Reduced models, Low-rank
representations, sparsification,
randomization

11

[Schilders, van der Vorst, Rommes, 2008]

Model Reduction

[Sinha, 2018]

Sparsification, Randomized algorithms

Low-rank (hierarchical) approximation

𝐴 ≈

Inexact computations

• In real computations we have many sources of
inexactness

• Imperfect data, measurement error

• Modeling error, discretization error

• Intentional approximation to improve
performance

• Reduced models, Low-rank
representations, sparsification,
randomization

• Given that we are already working with so much
inexactness, does it matter if we use lower
precision?

11

• Analysis of accuracy in techniques that use intentional approximation almost
always assume that roundoff error is small enough to be ignored

• Is this true? Is it true even if we use low precision?

[Schilders, van der Vorst, Rommes, 2008]

Model Reduction

[Sinha, 2018]

Sparsification, Randomized algorithms

Low-rank (hierarchical) approximation

𝐴 ≈

Example: Randomized Algorithms

• Given 𝑚× 𝑛 𝐴, want truncated SVD with parameter 𝑘

12

𝐴 ෡𝑈

෠Σ ෠𝑉𝑇

≈

Example: Randomized Algorithms

• Given 𝑚× 𝑛 𝐴, want truncated SVD with parameter 𝑘

12

𝐴
Ω

𝑌 𝑄

𝑅 𝐵 ෩𝑈 ෠Σ ෠𝑉𝑇

෡𝑈

=
𝑄𝑇

𝐴

=

𝑄

෩𝑈=

=
=

• Randomized SVD:

𝐴 ෡𝑈

෠Σ ෠𝑉𝑇

≈

Assuming exact arithmetic:

If 𝑄 satisfies 𝐴 − 𝑄𝑄𝑇𝐴 ≤ 𝜀, then 𝐴 − ෡𝑈෠Σ ෠𝑉𝑇 ≤ 𝜀

What happens in finite precision?

Let’s try different types of randsvd matrices from the MATLAB gallery:

A = gallery('randsvd',[100,40],1e6,mode); k=15;

𝑈, 𝑆, 𝑉 = svd(𝐴) : non-randomized SVD, exact arithmetic

෡𝑈, መ𝑆, ෠𝑉 = rsvd(𝐴) : randomized SVD, exact arithmetic

෡𝑈𝑑, መ𝑆𝑑 , ෠𝑉𝑑 = rsvd(𝐴) : randomized SVD, double precision

෡𝑈ℎ, መ𝑆ℎ, ෠𝑉ℎ = rsvd(𝐴) : randomized SVD, half precision

13

What happens in finite precision?

Let’s try different types of randsvd matrices from the MATLAB gallery:

A = gallery('randsvd',[100,40],1e6,mode); k=15;

𝑈, 𝑆, 𝑉 = svd(𝐴) : non-randomized SVD, exact arithmetic

෡𝑈, መ𝑆, ෠𝑉 = rsvd(𝐴) : randomized SVD, exact arithmetic

෡𝑈𝑑, መ𝑆𝑑 , ෠𝑉𝑑 = rsvd(𝐴) : randomized SVD, double precision

෡𝑈ℎ, መ𝑆ℎ, ෠𝑉ℎ = rsvd(𝐴) : randomized SVD, half precision

13

Mode 3: Geometrically distributed singular values

𝐴 − 𝑈𝑆𝑉𝑇
2 = 4.92e-03

𝐴 − ෡𝑈 መ𝑆 ෠𝑉𝑇
2

= 4.92e-03

𝐴 − ෡𝑈𝑑 መ𝑆𝑑 ෠𝑉𝑑
𝑇

2
= 4.92e-03

𝐴 − ෡𝑈ℎ መ𝑆ℎ ෠𝑉ℎ
𝑇

2
= 4.92e-03

What happens in finite precision?

Let’s try different types of randsvd matrices from the MATLAB gallery:

A = gallery('randsvd',[100,40],1e6,mode); k=15;

𝑈, 𝑆, 𝑉 = svd(𝐴) : non-randomized SVD, exact arithmetic

෡𝑈, መ𝑆, ෠𝑉 = rsvd(𝐴) : randomized SVD, exact arithmetic

෡𝑈𝑑, መ𝑆𝑑 , ෠𝑉𝑑 = rsvd(𝐴) : randomized SVD, double precision

෡𝑈ℎ, መ𝑆ℎ, ෠𝑉ℎ = rsvd(𝐴) : randomized SVD, half precision

13

Mode 3: Geometrically distributed singular values

𝐴 − 𝑈𝑆𝑉𝑇
2 = 4.92e-03

𝐴 − ෡𝑈 መ𝑆 ෠𝑉𝑇
2

= 4.92e-03

𝐴 − ෡𝑈𝑑 መ𝑆𝑑 ෠𝑉𝑑
𝑇

2
= 4.92e-03

𝐴 − ෡𝑈ℎ መ𝑆ℎ ෠𝑉ℎ
𝑇

2
= 4.92e-03

Mode 1: one large singular value

𝐴 − 𝑈𝑆𝑉𝑇
2 = 1.00e-06

𝐴 − ෡𝑈 መ𝑆 ෠𝑉𝑇
2

= 1.17e-06

𝐴 − ෡𝑈𝑑 መ𝑆𝑑 ෠𝑉𝑑
𝑇

2
= 1.17e-06

𝐴 − ෡𝑈ℎ መ𝑆ℎ ෠𝑉ℎ
𝑇

2
= 1.11e-05

What happens in finite precision?

Let’s try different types of randsvd matrices from the MATLAB gallery:

A = gallery('randsvd',[100,40],1e6,mode); k=15;

𝑈, 𝑆, 𝑉 = svd(𝐴) : non-randomized SVD, exact arithmetic

෡𝑈, መ𝑆, ෠𝑉 = rsvd(𝐴) : randomized SVD, exact arithmetic

෡𝑈𝑑, መ𝑆𝑑 , ෠𝑉𝑑 = rsvd(𝐴) : randomized SVD, double precision

෡𝑈ℎ, መ𝑆ℎ, ෠𝑉ℎ = rsvd(𝐴) : randomized SVD, half precision

13

Mode 3: Geometrically distributed singular values

𝐴 − 𝑈𝑆𝑉𝑇
2 = 4.92e-03

𝐴 − ෡𝑈 መ𝑆 ෠𝑉𝑇
2

= 4.92e-03

𝐴 − ෡𝑈𝑑 መ𝑆𝑑 ෠𝑉𝑑
𝑇

2
= 4.92e-03

𝐴 − ෡𝑈ℎ መ𝑆ℎ ෠𝑉ℎ
𝑇

2
= 4.92e-03

Mode 1: one large singular value

𝐴 − 𝑈𝑆𝑉𝑇
2 = 1.00e-06

𝐴 − ෡𝑈 መ𝑆 ෠𝑉𝑇
2

= 1.17e-06

𝐴 − ෡𝑈𝑑 መ𝑆𝑑 ෠𝑉𝑑
𝑇

2
= 1.17e-06

𝐴 − ෡𝑈ℎ መ𝑆ℎ ෠𝑉ℎ
𝑇

2
= 1.11e-05

Use of low precision leads to an order magnitude
loss of accuracy! Roundoff error can’t be ignored!

What happens in finite precision?

Let’s try different types of randsvd matrices from the MATLAB gallery:

A = gallery('randsvd',[100,40],1e6,mode); k=15;

𝑈, 𝑆, 𝑉 = svd(𝐴) : non-randomized SVD, exact arithmetic

෡𝑈, መ𝑆, ෠𝑉 = rsvd(𝐴) : randomized SVD, exact arithmetic

෡𝑈𝑑, መ𝑆𝑑 , ෠𝑉𝑑 = rsvd(𝐴) : randomized SVD, double precision

෡𝑈ℎ, መ𝑆ℎ, ෠𝑉ℎ = rsvd(𝐴) : randomized SVD, half precision

13

Mode 3: Geometrically distributed singular values

𝐴 − 𝑈𝑆𝑉𝑇
2 = 4.92e-03

𝐴 − ෡𝑈 መ𝑆 ෠𝑉𝑇
2

= 4.92e-03

𝐴 − ෡𝑈𝑑 መ𝑆𝑑 ෠𝑉𝑑
𝑇

2
= 4.92e-03

𝐴 − ෡𝑈ℎ መ𝑆ℎ ෠𝑉ℎ
𝑇

2
= 4.92e-03

Mode 1: one large singular value

𝐴 − 𝑈𝑆𝑉𝑇
2 = 1.00e-06

𝐴 − ෡𝑈 መ𝑆 ෠𝑉𝑇
2

= 1.17e-06

𝐴 − ෡𝑈𝑑 መ𝑆𝑑 ෠𝑉𝑑
𝑇

2
= 1.17e-06

𝐴 − ෡𝑈ℎ መ𝑆ℎ ෠𝑉ℎ
𝑇

2
= 1.11e-05

𝐴 − 𝑄ℎ𝑄ℎ
𝑇𝐴

2
= 3.59e-06

Use of low precision leads to an order magnitude
loss of accuracy! Roundoff error can’t be ignored!

Error bound no longer holds!

Example: Low-Rank Approximation

• Block low-rank approximation and
hierarchical matrix representations arise in a
variety of applications

14

𝐴 ሚ𝐴

• Work on mixed and low precision in block low-rank computations

• [Higham, Mary, 2019]: block low-rank LU factorization preconditioner that
exploits numerically low-rank structure of the error for LU computed in low
precision

• [Higham, Mary, 2019]: Interplay of roundoff error and approximation error in
solving block low-rank linear systems using LU

• [Buttari, et al., 2020]: block low-rank single precision coarse grid solves in
multigrid

• [Amestoy et al., 2021]: Mixed precision low rank approximation and application
to block low-rank LU factorization

Inverse multiquadratic kernel:

𝐴 𝑖, 𝑗 =
1

1 + 0.1 𝑥 − 𝑦 2
, 𝑥, 𝑦 ∈ ℝ2

A is SPD. Low-rank approximation
of A should also be SPD!

𝐴 ሚ𝐴

Example: Low-Rank Approximation

15

16

16

Inverse multiquadratic kernel:

𝐴 𝑖, 𝑗 =
1

1 + 0.1 𝑥 − 𝑦 2
, 𝑥, 𝑦 ∈ ℝ2

A is SPD. Low-rank approximation
of A should also be SPD!

𝐴 ሚ𝐴

Eigenvalues of 𝐴 Eigenvalues of ሚ𝐴

Exact arithmetic SVD:

Example: Low-Rank Approximation

15

16

16

Inverse multiquadratic kernel:

𝐴 𝑖, 𝑗 =
1

1 + 0.1 𝑥 − 𝑦 2
, 𝑥, 𝑦 ∈ ℝ2

A is SPD. Low-rank approximation
of A should also be SPD!

𝐴 ሚ𝐴

Eigenvalues of 𝐴 Eigenvalues of ሚ𝐴

Exact arithmetic SVD: Half precision SVD:

Eigenvalues of 𝐴 Eigenvalues of ሚ𝐴

Example: Low-Rank Approximation

15

16

16

36

Inverse multiquadratic kernel:

𝐴 𝑖, 𝑗 =
1

1 + 0.1 𝑥 − 𝑦 2
, 𝑥, 𝑦 ∈ ℝ2

A is SPD. Low-rank approximation
of A should also be SPD!

𝐴 ሚ𝐴

Eigenvalues of 𝐴 Eigenvalues of ሚ𝐴

Exact arithmetic SVD: Half precision SVD:

Eigenvalues of 𝐴 Eigenvalues of ሚ𝐴

Example: Low-Rank Approximation

15

16

16

37

Inverse multiquadratic kernel:

𝐴 𝑖, 𝑗 =
1

1 + 0.1 𝑥 − 𝑦 2
, 𝑥, 𝑦 ∈ ℝ2

A is SPD. Low-rank approximation
of A should also be SPD!

𝐴 ሚ𝐴

Eigenvalues of 𝐴 Eigenvalues of ሚ𝐴

Exact arithmetic SVD: Half precision SVD:

Eigenvalues of 𝐴 Eigenvalues of ሚ𝐴

Positive definiteness lost!

Example: Low-Rank Approximation

15

16

16

Example: Iterative Methods

16

A = diag(linspace(.001,1,100));

b = ones(n,1);

Example: Iterative Methods

16

b = ones(n,1);

𝑛 = 100, 𝜆1 = 10−3, 𝜆𝑛 = 1

𝜆𝑖 = 𝜆1 +
𝑖−1

𝑛−1
𝜆𝑛 − 𝜆1 (0.65)𝑛−𝑖 , 𝑖 = 2,… , 𝑛 − 1

Takeaway

• Low precision can have massive performance benefits but must be used
with caution!

• Many opportunities for using mixed and low precision computation in
scientific applications

• Need to develop a theoretical understanding of how mixed precision
algorithms behave; need to revisit analyses of algorithms and techniques
that ignore finite precision

17

Iterative Refinement for 𝐴𝑥 = 𝑏

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0:maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

𝐴 is 𝑛 × 𝑛 and nonsingular; 𝑢 is unit roundoff

18

Iterative refinement: well-established method for improving an
approximate solution to 𝐴𝑥 = 𝑏

(in precision 𝒖𝒇)

(in precision 𝒖𝒓)

(in precision 𝒖𝒔)

(in precision 𝒖)

Can we combine the performance benefits of low-precision factorization IR with
the accuracy of traditional IR?

Iterative Refinement in 3 Precisions

Existing analyses only support at most two precisions

19

Can we combine the performance benefits of low-precision factorization IR with
the accuracy of traditional IR?

Iterative Refinement in 3 Precisions

𝑢𝑓 = factorization precision, 𝑢 = working precision, 𝑢𝑟 = residual precision

𝑢𝑓 ≥ 𝑢 ≥ 𝑢𝑟

Existing analyses only support at most two precisions

⇒ 3-precision iterative refinement

19

Can we combine the performance benefits of low-precision factorization IR with
the accuracy of traditional IR?

• New analysis generalizes existing types of IR:

Iterative Refinement in 3 Precisions

Traditional 𝑢𝑓 = 𝑢, 𝑢𝑟 = 𝑢2

Fixed precision 𝑢𝑓 = 𝑢 = 𝑢𝑟

Lower precision factorization 𝑢𝑓
2 = 𝑢 = 𝑢𝑟

[C. and Higham, SIAM
SISC 40(2), 2018]

𝑢𝑓 = factorization precision, 𝑢 = working precision, 𝑢𝑟 = residual precision

𝑢𝑓 ≥ 𝑢 ≥ 𝑢𝑟

Existing analyses only support at most two precisions

⇒ 3-precision iterative refinement

(and improves upon existing analyses in some cases)

19

Can we combine the performance benefits of low-precision factorization IR with
the accuracy of traditional IR?

• New analysis generalizes existing types of IR:

Iterative Refinement in 3 Precisions

Traditional 𝑢𝑓 = 𝑢, 𝑢𝑟 = 𝑢2

Fixed precision 𝑢𝑓 = 𝑢 = 𝑢𝑟

Lower precision factorization 𝑢𝑓
2 = 𝑢 = 𝑢𝑟

[C. and Higham, SIAM
SISC 40(2), 2018]

𝑢𝑓 = factorization precision, 𝑢 = working precision, 𝑢𝑟 = residual precision

𝑢𝑓 ≥ 𝑢 ≥ 𝑢𝑟

Existing analyses only support at most two precisions

⇒ 3-precision iterative refinement

(and improves upon existing analyses in some cases)

• Enables new types of IR: (half, single, double), (half, single, quad),
(half, double, quad), etc. 19

Key Aspects of Analysis I

Typical bounds used in analysis: 𝐴(𝑥 − ො𝑥𝑖) ∞ ≤ 𝐴 ∞ 𝑥 − ො𝑥𝑖 ∞

Obtain tighter upper bounds:

20

Key Aspects of Analysis I

Typical bounds used in analysis: 𝐴(𝑥 − ො𝑥𝑖) ∞ ≤ 𝐴 ∞ 𝑥 − ො𝑥𝑖 ∞

Obtain tighter upper bounds:

Define 𝜇𝑖: 𝐴(𝑥 − ො𝑥𝑖) ∞ = 𝜇𝑖 𝐴 ∞ 𝑥 − ො𝑥𝑖 ∞

20

Key Aspects of Analysis I

𝜇𝑖 ≪ 1

Typical bounds used in analysis: 𝐴(𝑥 − ො𝑥𝑖) ∞ ≤ 𝐴 ∞ 𝑥 − ො𝑥𝑖 ∞

Obtain tighter upper bounds:

Define 𝜇𝑖: 𝐴(𝑥 − ො𝑥𝑖) ∞ = 𝜇𝑖 𝐴 ∞ 𝑥 − ො𝑥𝑖 ∞

For a stable refinement scheme, in early stages we expect

𝑟𝑖
𝐴 ො𝑥𝑖

≈ 𝑢 ≪
𝑥 − ො𝑥𝑖
𝑥

20

Key Aspects of Analysis I

𝜇𝑖 ≪ 1

𝜇𝑖 ≈ 1

Typical bounds used in analysis: 𝐴(𝑥 − ො𝑥𝑖) ∞ ≤ 𝐴 ∞ 𝑥 − ො𝑥𝑖 ∞

Obtain tighter upper bounds:

Define 𝜇𝑖: 𝐴(𝑥 − ො𝑥𝑖) ∞ = 𝜇𝑖 𝐴 ∞ 𝑥 − ො𝑥𝑖 ∞

For a stable refinement scheme, in early stages we expect

𝑟𝑖
𝐴 ො𝑥𝑖

≈ 𝑢 ≪
𝑥 − ො𝑥𝑖
𝑥

But close to convergence,
𝑟𝑖 ≈ 𝐴 𝑥 − ො𝑥𝑖

20

Key Aspects of Analysis II

22

Allow for general solver:

Let 𝒖𝒔 be the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇

Key Aspects of Analysis II

Allow for general solver:

→ normwise relative forward error is bounded
by multiple of 𝑢𝑠 and is less than 1

Let 𝒖𝒔 be the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇

1. መ𝑑𝑖 = 𝐼 + 𝒖𝒔𝐸𝑖 𝑑𝑖 , 𝒖𝒔 𝐸𝑖 ∞ < 1

Assume computed solution መ𝑑𝑖 to 𝐴𝑑𝑖 = Ƹ𝑟𝑖 satisfies:

22

Key Aspects of Analysis II

Allow for general solver:

→ normwise relative forward error is bounded
by multiple of 𝑢𝑠 and is less than 1

𝒖𝒔 𝐸𝑖 ∞ ≤ 3𝑛𝒖𝒇 𝐴−1 ෠𝐿 ෡𝑈
∞

Let 𝒖𝒔 be the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇

1. መ𝑑𝑖 = 𝐼 + 𝒖𝒔𝐸𝑖 𝑑𝑖 , 𝒖𝒔 𝐸𝑖 ∞ < 1

Assume computed solution መ𝑑𝑖 to 𝐴𝑑𝑖 = Ƹ𝑟𝑖 satisfies:

22

example: LU solve:

Key Aspects of Analysis II

Allow for general solver:

→ normwise relative forward error is bounded
by multiple of 𝑢𝑠 and is less than 1

→ normwise relative backward error is at most
max 𝑐1, 𝑐2 𝑢𝑠

Let 𝒖𝒔 be the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇

2. Ƹ𝑟𝑖 − 𝐴 መ𝑑𝑖 ∞
≤ 𝒖𝒔(𝑐1 𝐴 ∞

መ𝑑𝑖 ∞
+ 𝑐2 Ƹ𝑟𝑖 ∞)

1. መ𝑑𝑖 = 𝐼 + 𝒖𝒔𝐸𝑖 𝑑𝑖 , 𝒖𝒔 𝐸𝑖 ∞ < 1

𝒖𝒔 𝐸𝑖 ∞ ≤ 3𝑛𝒖𝒇 𝐴−1 ෠𝐿 ෡𝑈
∞

Assume computed solution መ𝑑𝑖 to 𝐴𝑑𝑖 = Ƹ𝑟𝑖 satisfies:

22

example: LU solve:

Key Aspects of Analysis II

Allow for general solver:

→ normwise relative forward error is bounded
by multiple of 𝑢𝑠 and is less than 1

→ normwise relative backward error is at most
max 𝑐1, 𝑐2 𝑢𝑠

Let 𝒖𝒔 be the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇

2. Ƹ𝑟𝑖 − 𝐴 መ𝑑𝑖 ∞
≤ 𝒖𝒔(𝑐1 𝐴 ∞

መ𝑑𝑖 ∞
+ 𝑐2 Ƹ𝑟𝑖 ∞)

1. መ𝑑𝑖 = 𝐼 + 𝒖𝒔𝐸𝑖 𝑑𝑖 , 𝒖𝒔 𝐸𝑖 ∞ < 1

𝒖𝒔 𝐸𝑖 ∞ ≤ 3𝑛𝒖𝒇 𝐴−1 ෠𝐿 ෡𝑈
∞

max 𝑐1, 𝑐2 𝒖𝒔 ≤
3𝑛𝒖𝒇 ෠𝐿 ෡𝑈

∞

𝐴 ∞

Assume computed solution መ𝑑𝑖 to 𝐴𝑑𝑖 = Ƹ𝑟𝑖 satisfies:

22

example: LU solve:

Key Aspects of Analysis II

Allow for general solver:

→ normwise relative forward error is bounded
by multiple of 𝑢𝑠 and is less than 1

→ normwise relative backward error is at most
max 𝑐1, 𝑐2 𝑢𝑠

→ componentwise relative backward error is
bounded by a multiple of 𝑢𝑠

Let 𝒖𝒔 be the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇

example: LU solve:

3. Ƹ𝑟𝑖 − 𝐴 መ𝑑𝑖 ≤ 𝒖𝒔𝐺𝑖| መ𝑑𝑖|

2. Ƹ𝑟𝑖 − 𝐴 መ𝑑𝑖 ∞
≤ 𝒖𝒔(𝑐1 𝐴 ∞

መ𝑑𝑖 ∞
+ 𝑐2 Ƹ𝑟𝑖 ∞)

1. መ𝑑𝑖 = 𝐼 + 𝒖𝒔𝐸𝑖 𝑑𝑖 , 𝒖𝒔 𝐸𝑖 ∞ < 1

𝒖𝒔 𝐸𝑖 ∞ ≤ 3𝑛𝒖𝒇 𝐴−1 ෠𝐿 ෡𝑈
∞

max 𝑐1, 𝑐2 𝒖𝒔 ≤
3𝑛𝒖𝒇 ෠𝐿 ෡𝑈

∞

𝐴 ∞

Assume computed solution መ𝑑𝑖 to 𝐴𝑑𝑖 = Ƹ𝑟𝑖 satisfies:

22𝐸𝑖 , 𝑐1, 𝑐2, and 𝐺𝑖 depend on 𝐴, Ƹ𝑟𝑖, 𝑛, and 𝒖𝒔

Key Aspects of Analysis II

Allow for general solver:

→ normwise relative forward error is bounded
by multiple of 𝑢𝑠 and is less than 1

→ normwise relative backward error is at most
max 𝑐1, 𝑐2 𝑢𝑠

→ componentwise relative backward error is
bounded by a multiple of 𝑢𝑠

Let 𝒖𝒔 be the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇

example: LU solve:

3. Ƹ𝑟𝑖 − 𝐴 መ𝑑𝑖 ≤ 𝒖𝒔𝐺𝑖| መ𝑑𝑖|

2. Ƹ𝑟𝑖 − 𝐴 መ𝑑𝑖 ∞
≤ 𝒖𝒔(𝑐1 𝐴 ∞

መ𝑑𝑖 ∞
+ 𝑐2 Ƹ𝑟𝑖 ∞)

1. መ𝑑𝑖 = 𝐼 + 𝒖𝒔𝐸𝑖 𝑑𝑖 , 𝒖𝒔 𝐸𝑖 ∞ < 1

𝒖𝒔 𝐸𝑖 ∞ ≤ 3𝑛𝒖𝒇 𝐴−1 ෠𝐿 ෡𝑈
∞

max 𝑐1, 𝑐2 𝒖𝒔 ≤
3𝑛𝒖𝒇 ෠𝐿 ෡𝑈

∞

𝐴 ∞

𝒖𝒔 𝐺𝑖 ∞ ≤ 3𝑛𝒖𝒇 ෠𝐿 ෡𝑈
∞

Assume computed solution መ𝑑𝑖 to 𝐴𝑑𝑖 = Ƹ𝑟𝑖 satisfies:

22𝐸𝑖 , 𝑐1, 𝑐2, and 𝐺𝑖 depend on 𝐴, Ƹ𝑟𝑖, 𝑛, and 𝒖𝒔

Key Aspects of Analysis II

Allow for general solver:

Assume computed solution መ𝑑𝑖 to 𝐴𝑑𝑖 = Ƹ𝑟𝑖 satisfies:

Let 𝒖𝒔 be the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇

example: LU solve:

𝒖𝒔 = 𝒖𝒇

𝐸𝑖 , 𝑐1, 𝑐2, and 𝐺𝑖 depend on 𝐴, Ƹ𝑟𝑖, 𝑛, and 𝒖𝒔

→ normwise relative forward error is bounded
by multiple of 𝑢𝑠 and is less than 1

→ normwise relative backward error is at most
max 𝑐1, 𝑐2 𝑢𝑠

→ componentwise relative backward error is
bounded by a multiple of 𝑢𝑠

𝒖𝒔 𝐸𝑖 ∞ ≤ 3𝑛𝒖𝒇 𝐴−1 ෠𝐿 ෡𝑈
∞

max 𝑐1, 𝑐2 𝒖𝒔 ≤
3𝑛𝒖𝒇 ෠𝐿 ෡𝑈

∞

𝐴 ∞

3. Ƹ𝑟𝑖 − 𝐴 መ𝑑𝑖 ≤ 𝒖𝒔𝐺𝑖| መ𝑑𝑖|

2. Ƹ𝑟𝑖 − 𝐴 መ𝑑𝑖 ∞
≤ 𝒖𝒔(𝑐1 𝐴 ∞

መ𝑑𝑖 ∞
+ 𝑐2 Ƹ𝑟𝑖 ∞)

1. መ𝑑𝑖 = 𝐼 + 𝒖𝒔𝐸𝑖 𝑑𝑖 , 𝒖𝒔 𝐸𝑖 ∞ < 1

𝒖𝒔 𝐺𝑖 ∞ ≤ 3𝑛𝒖𝒇 ෠𝐿 ෡𝑈
∞

22

Forward Error for IR3

• Three precisions:

• 𝑢𝑓: factorization precision

• 𝑢: working precision

• 𝑢𝑟: residual computation precision

𝜅∞ 𝐴 = 𝐴−1 ∞ 𝐴 ∞

cond(𝐴) = 𝐴−1 𝐴 ∞

cond(𝐴, 𝑥) = 𝐴−1 𝐴 𝑥 ∞/ 𝑥 ∞

23

Forward Error for IR3

• Three precisions:

• 𝑢𝑓: factorization precision

• 𝑢: working precision

• 𝑢𝑟: residual computation precision

For IR in precisions 𝒖𝒇 ≥ 𝒖 ≥ 𝒖𝒓 and effective solve precision 𝒖𝒔, if

𝜙𝑖 ≡ 2𝒖𝒔min cond 𝐴 , 𝜅∞ 𝐴 𝜇𝑖 + 𝒖𝒔 𝐸𝑖 ∞

is less than 1, then the forward error is reduced on the 𝑖th iteration by a
factor ≈ 𝜙𝑖 until an iterate ො𝑥𝑖 is produced for which

𝑥 − ො𝑥𝑖 ∞

𝑥 ∞
≲ 4𝑁𝒖𝒓 cond 𝐴, 𝑥 + 𝒖,

where 𝑁 is the maximum number of nonzeros per row in 𝐴.

Theorem [C. and Higham, SISC 40(2), 2018]

𝜅∞ 𝐴 = 𝐴−1 ∞ 𝐴 ∞

cond(𝐴) = 𝐴−1 𝐴 ∞

cond(𝐴, 𝑥) = 𝐴−1 𝐴 𝑥 ∞/ 𝑥 ∞

23

Forward Error for IR3

• Three precisions:

• 𝑢𝑓: factorization precision

• 𝑢: working precision

• 𝑢𝑟: residual computation precision

Analogous traditional bounds: 𝜙𝑖 ≡ 3𝑛𝒖𝒇𝜅∞ 𝐴

𝜅∞ 𝐴 = 𝐴−1 ∞ 𝐴 ∞

cond(𝐴) = 𝐴−1 𝐴 ∞

cond(𝐴, 𝑥) = 𝐴−1 𝐴 𝑥 ∞/ 𝑥 ∞

For IR in precisions 𝒖𝒇 ≥ 𝒖 ≥ 𝒖𝒓 and effective solve precision 𝒖𝒔, if

𝜙𝑖 ≡ 2𝒖𝒔min cond 𝐴 , 𝜅∞ 𝐴 𝜇𝑖 + 𝒖𝒔 𝐸𝑖 ∞

is less than 1, then the forward error is reduced on the 𝑖th iteration by a
factor ≈ 𝜙𝑖 until an iterate ො𝑥𝑖 is produced for which

𝑥 − ො𝑥𝑖 ∞

𝑥 ∞
≲ 4𝑁𝒖𝒓 cond 𝐴, 𝑥 + 𝒖,

where 𝑁 is the maximum number of nonzeros per row in 𝐴.

Theorem [C. and Higham, SISC 40(2), 2018]

23

Normwise Backward Error for IR3

For IR in precisions 𝒖𝒇 ≥ 𝒖 ≥ 𝒖𝒓 and effective solve precision 𝒖𝒔, if

𝜙𝑖 ≡ 𝑐1𝜅∞ 𝐴 + 𝑐2 𝒖𝒔

is less than 1, then the residual is reduced on the 𝑖th iteration by a factor
≈ 𝜙𝑖 until an iterate ො𝑥𝑖 is produced for which

𝑏 − 𝐴ො𝑥𝑖 ∞ ≲ 𝑁𝒖 𝑏 ∞ + 𝐴 ∞ ො𝑥𝑖 ∞ ,

where 𝑁 is the maximum number of nonzeros per row in 𝐴.

Theorem [C. and Higham, SISC 40(2), 2018]

24

IR3: Summary

25

Standard (LU-based) IR in three precisions (𝒖𝒔 = 𝒖𝒇)

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16,Quad ≈ 10−34

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

H S S 104 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

H S D 104 10−8 10−8 10−8

H D D 104 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

H D Q 104 10−16 10−16 10−16

S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16

IR3: Summary

Standard (LU-based) IR in three precisions (𝒖𝒔 = 𝒖𝒇)

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16,Quad ≈ 10−34

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

H S S 104 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

H S D 104 10−8 10−8 10−8

H D D 104 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

H D Q 104 10−16 10−16 10−16

S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16

LP fact.

LP fact.

LP fact.

25

IR3: Summary

Standard (LU-based) IR in three precisions (𝒖𝒔 = 𝒖𝒇)

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16,Quad ≈ 10−34

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

H S S 104 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

H S D 104 10−8 10−8 10−8

H D D 104 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

H D Q 104 10−16 10−16 10−16

S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16

Fixed

LP fact.

LP fact.

LP fact.

25

IR3: Summary

Standard (LU-based) IR in three precisions (𝒖𝒔 = 𝒖𝒇)

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16,Quad ≈ 10−34

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

H S S 104 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

H S D 104 10−8 10−8 10−8

H D D 104 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

H D Q 104 10−16 10−16 10−16

S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16

Trad.

Fixed

LP fact.

LP fact.

LP fact.

25

IR3: Summary

Standard (LU-based) IR in three precisions (𝒖𝒔 = 𝒖𝒇)

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16,Quad ≈ 10−34

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

H S S 104 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

H S D 104 10−8 10−8 10−8

H D D 104 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

H D Q 104 10−16 10−16 10−16

S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16

New

New

New

Trad.

Fixed

LP fact.

LP fact.

LP fact.

25

IR3: Summary

⇒ Benefit of IR3 vs. "LP fact.": no cond(𝐴, 𝑥) term in forward error

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16,Quad ≈ 10−34

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

H S S 104 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

H S D 104 10−8 10−8 10−8

H D D 104 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

H D Q 104 10−16 10−16 10−16

S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16

25

Standard (LU-based) IR in three precisions (𝒖𝒔 = 𝒖𝒇)

New

New

New

Trad.

Fixed

LP fact.

LP fact.

LP fact.

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

H S S 104 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

H S D 104 10−8 10−8 10−8

H D D 104 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

H D Q 104 10−16 10−16 10−16

S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16

IR3: Summary

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16,Quad ≈ 10−34

25

Standard (LU-based) IR in three precisions (𝒖𝒔 = 𝒖𝒇)

⇒ Benefit of IR3 vs. traditional IR: As long as 𝜅∞ 𝐴 ≤ 104, can use lower
precision factorization w/no loss of accuracy!

New

New

New

Trad.

Fixed

LP fact.

LP fact.

LP fact.

A = gallery('randsvd', 100, 1e3)

b = randn(100,1)

𝜿∞ 𝑨 ≈ 1e4

26

100

Standard (LU-based) IR with 𝒖𝒇: single, 𝒖: double, 𝒖𝒓: quad

A = gallery('randsvd', 100, 1e7)

b = randn(100,1)

𝜿∞ 𝑨 ≈ 7e7

26

100

Standard (LU-based) IR with 𝒖𝒇: single, 𝒖: double, 𝒖𝒓: quad

A = gallery('randsvd', 100, 1e9)

b = randn(100,1)

𝜿∞ 𝑨 ≈ 2e10

26

100

Standard (LU-based) IR with 𝒖𝒇: single, 𝒖: double, 𝒖𝒓: quad

A = gallery('randsvd', 100, 1e9)

b = randn(100,1)

𝜿∞ 𝑨 ≈ 2e10

26

100

Standard (LU-based) IR with 𝒖𝒇: single, 𝒖: double, 𝒖𝒓: quad

A = gallery('randsvd', 100, 1e9)

b = randn(100,1)

𝜿∞ 𝑨 ≈ 2e10

26

100

Standard (LU-based) IR with 𝒖𝒇: double, 𝒖: double, 𝒖𝒓: quad

GMRES-Based Iterative Refinement

• Observation [Rump, 1990]: if ෠𝐿 and ෡𝑈 are computed LU factors of 𝐴 in precision 𝒖𝒇, then

𝜅∞ ෡𝑈−1෠𝐿−1𝐴 ≈ 1 + 𝜅∞ 𝐴 𝒖𝒇,

even if 𝜅∞ 𝐴 ≫ 𝑢𝑓
−1.

27

GMRES-Based Iterative Refinement

GMRES-IR [C. and Higham, SISC 39(6), 2017]

• To compute the updates 𝑑𝑖, apply GMRES to ෡𝑈−1 ෠𝐿−1𝐴𝑑𝑖 = ෡𝑈−1 ෠𝐿−1𝑟𝑖

ሚ𝐴 ǁ𝑟𝑖

27

• Observation [Rump, 1990]: if ෠𝐿 and ෡𝑈 are computed LU factors of 𝐴 in precision 𝒖𝒇, then

𝜅∞ ෡𝑈−1෠𝐿−1𝐴 ≈ 1 + 𝜅∞ 𝐴 𝒖𝒇,

even if 𝜅∞ 𝐴 ≫ 𝑢𝑓
−1.

GMRES-Based Iterative Refinement

GMRES-IR [C. and Higham, SISC 39(6), 2017]

• To compute the updates 𝑑𝑖, apply GMRES to ෡𝑈−1 ෠𝐿−1𝐴𝑑𝑖 = ෡𝑈−1 ෠𝐿−1𝑟𝑖

ሚ𝐴 ǁ𝑟𝑖

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0:maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via GMRES on ሚ𝐴𝑑𝑖 = ǁ𝑟𝑖

27

• Observation [Rump, 1990]: if ෠𝐿 and ෡𝑈 are computed LU factors of 𝐴 in precision 𝒖𝒇, then

𝜅∞ ෡𝑈−1෠𝐿−1𝐴 ≈ 1 + 𝜅∞ 𝐴 𝒖𝒇,

even if 𝜅∞ 𝐴 ≫ 𝑢𝑓
−1.

GMRES-Based Iterative Refinement

GMRES-IR [C. and Higham, SISC 39(6), 2017]

• To compute the updates 𝑑𝑖, apply GMRES to ෡𝑈−1 ෠𝐿−1𝐴𝑑𝑖 = ෡𝑈−1 ෠𝐿−1𝑟𝑖

ሚ𝐴 ǁ𝑟𝑖

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0:maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

via GMRES on ሚ𝐴𝑑𝑖 = ǁ𝑟𝑖

𝒖𝒔 = 𝒖

27

• Observation [Rump, 1990]: if ෠𝐿 and ෡𝑈 are computed LU factors of 𝐴 in precision 𝒖𝒇, then

𝜅∞ ෡𝑈−1෠𝐿−1𝐴 ≈ 1 + 𝜅∞ 𝐴 𝒖𝒇,

even if 𝜅∞ 𝐴 ≫ 𝑢𝑓
−1.

Standard (LU-based) IR with 𝒖𝒇: single, 𝒖: double, 𝒖𝒓: quad

28

100

A = gallery('randsvd', 100, 1e9, 2)

b = randn(100,1)

𝜅∞ 𝐴 ≈ 2e10, cond 𝐴, 𝑥 ≈ 5e9, 𝜅∞ ሚ𝐴 ≈ 2e4

A = gallery('randsvd', 100, 1e9, 2)

b = randn(100,1)

𝜅∞ 𝐴 ≈ 2e10, cond 𝐴, 𝑥 ≈ 5e9, 𝜅∞ ሚ𝐴 ≈ 2e4

28

100

GMRES-IR with 𝒖𝒇: single, 𝒖: double, 𝒖𝒓: quad

Number of GMRES iterations: (2,3)

GMRES-IR: Summary

Benefits of GMRES-IR:

29

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

LU-IR H S D 104 10−8 10−8 10−8

GMRES-IR H S D 108 10−8 10−8 10−8

LU-IR S D Q 108 10−16 10−16 10−16

GMRES-IR S D Q 1016 10−16 10−16 10−16

LU-IR H D Q 104 10−16 10−16 10−16

GMRES-IR H D Q 1012 10−16 10−16 10−16

GMRES-IR: Summary

Benefits of GMRES-IR:

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

LU-IR H S D 104 10−8 10−8 10−8

GMRES-IR H S D 108 10−8 10−8 10−8

LU-IR S D Q 108 10−16 10−16 10−16

GMRES-IR S D Q 1016 10−16 10−16 10−16

LU-IR H D Q 104 10−16 10−16 10−16

GMRES-IR H D Q 1012 10−16 10−16 10−16

⇒With GMRES-IR, low precision factorization will work for higher 𝜅∞(𝐴)

29

GMRES-IR: Summary

Benefits of GMRES-IR:

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

LU-IR H S D 104 10−8 10−8 10−8

GMRES-IR H S D 108 10−8 10−8 10−8

LU-IR S D Q 108 10−16 10−16 10−16

GMRES-IR S D Q 1016 10−16 10−16 10−16

LU-IR H D Q 104 10−16 10−16 10−16

GMRES-IR H D Q 1012 10−16 10−16 10−16

⇒With GMRES-IR, lower precision factorization will work for higher 𝜅∞(𝐴)

29

𝜅∞ 𝐴 ≤ 𝒖− Τ1 2 𝒖𝒇
−1

GMRES-IR: Summary

Benefits of GMRES-IR:

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

LU-IR H S D 104 10−8 10−8 10−8

GMRES-IR H S D 108 10−8 10−8 10−8

LU-IR S D Q 108 10−16 10−16 10−16

GMRES-IR S D Q 1016 10−16 10−16 10−16

LU-IR H D Q 104 10−16 10−16 10−16

GMRES-IR H D Q 1012 10−16 10−16 10−16

⇒ As long as 𝜅∞ 𝐴 ≤ 1012, can use half precision factorization and still obtain
double precision accuracy!

29

Performance Results (MAGMA)

30

• [Haidar, Tomov, Dongarra, Higham, 2018]
• 2-precision GMRES-IR approach (𝑢 = 𝑢𝑟) on NVIDIA V100
• IR run to FP64 accuracy, max 400 iterations in GMRES
• Tflops/s measured as (2𝑛3/3)/time

Performance Results (MAGMA)

30

• [Haidar, Tomov, Dongarra, Higham, 2018]

Performance Results (MAGMA)

30

• [Haidar, Tomov, Dongarra, Higham, 2018]

Performance Results

31

[Haidar, Tomov, Dongarra, Higham, 2018]

Performance for Matrices from SuiteSparse

2.8×
2.3×
2.6×
2.7×
4.1×

GMRES-IR in Libraries and Applications

• MAGMA: Dense linear algebra routines for heterogeneous/hybrid
architectures

• NVIDIA’s cuSOLVER Library

• In production codes: FK6D/ASGarD code (Oak Ridge National Lab, USA)
for tokomak containment problem

32

Comments and Caveats I

• Convergence tolerance 𝜏 for GMRES?

• Smaller 𝜏 → more GMRES iterations, potentially fewer refinement steps

• Larger 𝜏 → fewer GMRES iterations, potentially more refinement steps

33

Comments and Caveats I

• Convergence tolerance 𝜏 for GMRES?

• Smaller 𝜏 → more GMRES iterations, potentially fewer refinement steps

• Larger 𝜏 → fewer GMRES iterations, potentially more refinement steps

• What about overflow, underflow, subnormal numbers?

• Sophisticated scaling methods can help avoid this

• “Squeezing a Matrix into Half Precision, with an Application to Solving
Linear Systems” [Higham, Pranesh, Zounon, 2019]

33

Comments and Caveats II

• Convergence rate of GMRES?

34

Comments and Caveats II

• Convergence rate of GMRES?

• If 𝐴 is ill conditioned and LU factorization is performed in very low precision, it
can be a poor preconditioner

• e.g., if ሚ𝐴 still has cluster of eigenvalues near origin, GMRES can stagnate
until 𝑛th iteration, regardless of 𝜅∞(𝐴) [Liesen and Tichý, 2004]

• Potential remedies: deflation, Krylov subspace recycling [Oktay, C., 2022], using
additional preconditioner

34

Comments and Caveats II

• Convergence rate of GMRES?

• If 𝐴 is ill conditioned and LU factorization is performed in very low precision, it
can be a poor preconditioner

• e.g., if ሚ𝐴 still has cluster of eigenvalues near origin, GMRES can stagnate
until 𝑛th iteration, regardless of 𝜅∞(𝐴) [Liesen and Tichý, 2004]

• Potential remedies: deflation, Krylov subspace recycling [Oktay, C., 2022], using
additional preconditioner

• Depending on conditioning of A, applying ሚ𝐴 to a vector must be done accurately
(precision 𝑢2) in each GMRES iteration

• Recent development of 5-precision GMRES-IR algorithm [Amestoy et al., 2021]

• Defines working precision 𝑢𝑔 for GMRES and 𝑢𝑝 for preconditioning within
GMRES

34

Comments and Caveats II

• Convergence rate of GMRES?

• If 𝐴 is ill conditioned and LU factorization is performed in very low precision, it
can be a poor preconditioner

• e.g., if ሚ𝐴 still has cluster of eigenvalues near origin, GMRES can stagnate
until 𝑛th iteration, regardless of 𝜅∞(𝐴) [Liesen and Tichý, 2004]

• Potential remedies: deflation, Krylov subspace recycling [Oktay, C., 2022], using
additional preconditioner

• Depending on conditioning of A, applying ሚ𝐴 to a vector must be done accurately
(precision 𝑢2) in each GMRES iteration

• Recent development of 5-precision GMRES-IR algorithm [Amestoy et al., 2021]

• Defines working precision 𝑢𝑔 for GMRES and 𝑢𝑝 for preconditioning within
GMRES

• Why GMRES?

• Theoretical purposes: existing analysis and proof of backward stability [Paige,
Rozložník, Strakoš, 2006]

• In practice, use any solver you want!
34

Extension to Least Squares Problems

• Want to solve
min
𝑥

𝑏 − 𝐴𝑥 2

where 𝐴 ∈ ℝ𝑚×𝑛 (𝑚 > 𝑛) has rank 𝑛

• Commonly solved using QR factorization:

𝐴 = 𝑄𝑅 = [𝑄1, 𝑄2]
𝑈
0

where 𝑄 is an 𝑚 ×𝑚 orthogonal matrix and 𝑈 is upper triangular.
𝑥 = 𝑈−1𝑄1

𝑇𝑏, 𝑏 − 𝐴𝑥 2 = 𝑄2
𝑇𝑏

2

35

Extension to Least Squares Problems

• Want to solve
min
𝑥

𝑏 − 𝐴𝑥 2

where 𝐴 ∈ ℝ𝑚×𝑛 (𝑚 > 𝑛) has rank 𝑛

• Commonly solved using QR factorization:

𝐴 = 𝑄𝑅 = [𝑄1, 𝑄2]
𝑈
0

where 𝑄 is an 𝑚 ×𝑚 orthogonal matrix and 𝑈 is upper triangular.
𝑥 = 𝑈−1𝑄1

𝑇𝑏, 𝑏 − 𝐴𝑥 2 = 𝑄2
𝑇𝑏

2

• As in linear system case, for ill-conditioned problems, iterative refinement
often needed to improve accuracy and stability

35

• For inconsistent systems, must simultaneously refine both solution and residual

• (Björck,1967): Least squares problem can be written as a linear system with
square matrix of size (𝑚+ 𝑛):

𝐼 𝐴
𝐴𝑇 0

𝑟
𝑥

=
𝑏
0

Least Squares Iterative Refinement

36

• For inconsistent systems, must simultaneously refine both solution and residual

• (Björck,1967): Least squares problem can be written as a linear system with
square matrix of size (𝑚+ 𝑛):

𝐼 𝐴
𝐴𝑇 0

𝑟
𝑥

=
𝑏
0

• Refinement proceeds as follows:

1. Compute "residuals"

𝑓𝑖
𝑔𝑖

=
𝑏
0

−
𝐼 𝐴
𝐴𝑇 0

𝑟𝑖
𝑥𝑖

=
𝑏 − 𝑟𝑖 − 𝐴𝑥𝑖

−𝐴𝑇𝑟𝑖
2. Solve for corrections

𝐼 𝐴
𝐴𝑇 0

Δ𝑟𝑖
Δ𝑥𝑖

=
𝑓𝑖
𝑔𝑖

3. Update "solution":
𝑟𝑖+1
𝑥𝑖+1

=
𝑟𝑖
𝑥𝑖

+
Δ𝑟𝑖
Δ𝑥𝑖

Least Squares Iterative Refinement

36

• For inconsistent systems, must simultaneously refine both solution and residual

• (Björck,1967): Least squares problem can be written as a linear system with
square matrix of size (𝑚+ 𝑛):

𝐼 𝐴
𝐴𝑇 0

𝑟
𝑥

=
𝑏
0

• Refinement proceeds as follows:

1. Compute "residuals"

𝑓𝑖
𝑔𝑖

=
𝑏
0

−
𝐼 𝐴
𝐴𝑇 0

𝑟𝑖
𝑥𝑖

=
𝑏 − 𝑟𝑖 − 𝐴𝑥𝑖

−𝐴𝑇𝑟𝑖
2. Solve for corrections

𝐼 𝐴
𝐴𝑇 0

Δ𝑟𝑖
Δ𝑥𝑖

=
𝑓𝑖
𝑔𝑖

3. Update "solution":
𝑟𝑖+1
𝑥𝑖+1

=
𝑟𝑖
𝑥𝑖

+
Δ𝑟𝑖
Δ𝑥𝑖

Least Squares Iterative Refinement

ሚ𝐴෤𝑥 = ෨𝑏

36

• For inconsistent systems, must simultaneously refine both solution and residual

• (Björck,1967): Least squares problem can be written as a linear system with
square matrix of size (𝑚+ 𝑛):

𝐼 𝐴
𝐴𝑇 0

𝑟
𝑥

=
𝑏
0

• Refinement proceeds as follows:

1. Compute "residuals"

𝑓𝑖
𝑔𝑖

=
𝑏
0

−
𝐼 𝐴
𝐴𝑇 0

𝑟𝑖
𝑥𝑖

=
𝑏 − 𝑟𝑖 − 𝐴𝑥𝑖

−𝐴𝑇𝑟𝑖
2. Solve for corrections

𝐼 𝐴
𝐴𝑇 0

Δ𝑟𝑖
Δ𝑥𝑖

=
𝑓𝑖
𝑔𝑖

3. Update "solution":
𝑟𝑖+1
𝑥𝑖+1

=
𝑟𝑖
𝑥𝑖

+
Δ𝑟𝑖
Δ𝑥𝑖

Least Squares Iterative Refinement

ሚ𝐴෤𝑥 = ෨𝑏

ǁ𝑟𝑖 = ෨𝑏 − ሚ𝐴෤𝑥𝑖

ሚ𝐴𝑑𝑖 = ǁ𝑟𝑖

෤𝑥𝑖+1 = ෤𝑥𝑖 + 𝑑𝑖

36

Least Squares Iterative Refinement

• For inconsistent systems, must simultaneously refine both solution and residual

• (Björck,1967): Least squares problem can be written as a linear system with
square matrix of size (𝑚+ 𝑛):

𝐼 𝐴
𝐴𝑇 0

𝑟
𝑥

=
𝑏
0

• Refinement proceeds as follows:

1. Compute "residuals"

𝑓𝑖
𝑔𝑖

=
𝑏
0

−
𝐼 𝐴
𝐴𝑇 0

𝑟𝑖
𝑥𝑖

=
𝑏 − 𝑟𝑖 − 𝐴𝑥𝑖

−𝐴𝑇𝑟𝑖
2. Solve for corrections

𝐼 𝐴
𝐴𝑇 0

Δ𝑟𝑖
Δ𝑥𝑖

=
𝑓𝑖
𝑔𝑖

3. Update "solution":
𝑟𝑖+1
𝑥𝑖+1

=
𝑟𝑖
𝑥𝑖

+
Δ𝑟𝑖
Δ𝑥𝑖

ሚ𝐴෤𝑥 = ෨𝑏

ǁ𝑟𝑖 = ෨𝑏 − ሚ𝐴෤𝑥𝑖

ሚ𝐴𝑑𝑖 = ǁ𝑟𝑖

෤𝑥𝑖+1 = ෤𝑥𝑖 + 𝑑𝑖
Results for 3-precision
IR for linear systems
also applies to least
squares problems

36

Extensions and Current Work

• Multistage mixed precision iterative refinement

[Oktay, C., 2021]

• Use of inexact preconditioners: SPAI, etc.

[Amestoy, Buttari, Higham, L'Excellent, Mary, Vieuble, 2022]

[C., Khan, 2022]

• Use of low-precision randomized preconditioners

Ongoing work with I. Daužickaitė

37

The rise of multiprecision hardware

38

• Future machines will support a range of precisions: quarter, half, single,
double, quad

The rise of multiprecision hardware

• Future machines will support a range of precisions: quarter, half, single,
double, quad

• New, non-IEEE compliant floating point formats will appear in
commercially-available hardware

• e.g., bfloat16 (truncated 16-bit version of single precision), posits

38

The rise of multiprecision hardware

• Future machines will support a range of precisions: quarter, half, single,
double, quad

• New, non-IEEE compliant floating point formats will appear in
commercially-available hardware

• e.g., bfloat16 (truncated 16-bit version of single precision), posits

• Lower-precision arithmetic is faster and more energy efficient, but the
potential for its use depends heavily on the particular problem and
algorithm

38

The rise of multiprecision hardware

• Future machines will support a range of precisions: quarter, half, single,
double, quad

• New, non-IEEE compliant floating point formats will appear in
commercially-available hardware

• e.g., bfloat16 (truncated 16-bit version of single precision), posits

• Lower-precision arithmetic is faster and more energy efficient, but the
potential for its use depends heavily on the particular problem and
algorithm

• As numerical analysts, we must determine when and where we can exploit
lower-precision hardware to improve performance

38

Thank you!
carson@karlin.mff.cuni.cz

www.karlin.mff.cuni.cz/~carson/

