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Conjugate Gradient method for solving Ax = b
double precision (𝜀 = 2−53)

𝑥𝑖 − 𝑥 𝐴 = 𝑥𝑖 − 𝑥 𝑇𝐴(𝑥𝑖 − 𝑥)

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖𝑝𝑖

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖𝐴𝑝𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖
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Krylov subspace methods

• In each iteration, 

• Add a dimension to the Krylov subspace

– Forms nested sequence of Krylov subspaces

𝒦1 𝐴, 𝑟0 ⊂ 𝒦2 𝐴, 𝑟0 ⊂ ⋯ ⊂ 𝒦𝑖(𝐴, 𝑟0)

• Orthogonalize (with respect to some 𝒞𝑖)

• Select approximate solution 𝑥𝑖 ∈ 𝑥0 + 𝒦𝑖(𝐴, 𝑟0)

using 𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖 ⊥ 𝒞𝑖

• Krylov Subspace Method for solving 𝐴𝑥 = 𝑏: projection process onto the Krylov
subspace

𝒦𝑖 𝐴, 𝑟0 = span 𝑟0, 𝐴𝑟0, 𝐴2𝑟0, … , 𝐴𝑖−1𝑟0

where 𝐴 is an 𝑁 × 𝑁 matrix and 𝑟0 = 𝑏 − 𝐴𝑥0 is a length-𝑁 vector

𝒞

𝑟new

𝐴𝛿

𝑟0

0
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• Conjugate gradient method: 𝐴 is symmetric positive definite, 𝒞𝑖 = 𝒦𝑖(𝐴, 𝑟0)

𝑟𝑖 ⊥ 𝒦𝑖 𝐴, 𝑟0 ⟺ 𝑥 − 𝑥𝑖 𝐴 = min
𝑧∈𝑥0+𝒦𝑖(𝐴,𝑟0)

𝑥 − 𝑧 𝐴 ⟹ 𝒓𝑵+𝟏 = 𝟎
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Implementation of CG

• Standard implementation due to Hestenes and Stiefel (1952) (HSCG)

• Uses three 2-term recurrences for updating 𝑥𝑖 , 𝑟𝑖 , 𝑝𝑖

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end
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⇒ CG (and other Krylov subspace methods) are highly nonlinear

• Good for convergence, bad for ease of finite precision analysis 3



Communication in HSCG
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Future exascale systems

Petascale
Systems (2009)

Predicted Exascale
Systems

Factor 
Improvement

System Peak ~1000

Node Memory 
Bandwidth

25 GB/s 0.4-4 TB/s ~10-100

Total Node Interconnect 
Bandwidth

3.5 GB/s 100-400 GB/s ~100

Memory Latency 100 ns 50 ns ~1

Interconnect Latency ~1
*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL) 
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Future exascale systems

Petascale
Systems (2009)

Predicted Exascale
Systems

Factor 
Improvement

System Peak ~1000

Node Memory 
Bandwidth

25 GB/s 0.4-4 TB/s ~10-100

Total Node Interconnect 
Bandwidth

3.5 GB/s 100-400 GB/s ~100

Memory Latency 100 ns 50 ns ~2

Interconnect Latency ~2

• Gaps between communication/computation cost only growing larger in 
future systems

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL) 

• Reducing time spent moving data/waiting for data will be essential for 
applications at exascale! 5



Synchronization-reducing variants

Communication cost has motivated many approaches to reducing 
synchronization in CG:
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• Uses modified coefficients and auxiliary vectors to reduce synchronization points 
to 1 per iteration 

• Modifications also allow decoupling of SpMV and inner products - enables 
overlapping
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Synchronization-reducing variants

Communication cost has motivated many approaches to reducing 
synchronization in CG:

• Early work: CG with a single synchronization point per iteration

• 3-term recurrence CG 

• Using modified computation of recurrence coefficients

• Using auxiliary vectors

• Pipelined CG

• Uses modified coefficients and auxiliary vectors to reduce synchronization points 
to 1 per iteration 

• Modifications also allow decoupling of SpMV and inner products - enables 
overlapping

• s-step CG

• Compute iterations in blocks of s using a different Krylov subspace basis

• Enables one synchronization per s iterations
6



The effects of finite precision

Well-known that roundoff error has 
two effects:

1. Delay of convergence
• No longer have exact Krylov

subspace
• Can lose numerical rank 

deficiency
• Residuals no longer orthogonal 

- Minimization no longer exact!

2. Loss of attainable accuracy
• Rounding errors cause true 

residual 𝑏 − 𝐴𝑥𝑖 and updated 
residual 𝑟𝑖 deviate!
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two effects:

1. Delay of convergence
• No longer have exact Krylov

subspace
• Can lose numerical rank 

deficiency
• Residuals no longer orthogonal 

- Minimization no longer exact!

2. Loss of attainable accuracy
• Rounding errors cause true 

residual 𝑏 − 𝐴𝑥𝑖 and updated 
residual 𝑟𝑖 deviate!

𝐴: bcsstk03 from UFSMC, 𝑏: equal components in 
the eigenbasis of 𝐴 and 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 7e6

Much work on these results for CG; See Meurant and Strakoš (2006) for a thorough 
summary of early developments in finite precision analysis of Lanczos and CG 7
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• Synchronization-reducing variants are designed to reduce the time/iteration

• But this is not the whole story!

• What we really want to minimize is the runtime, subject to some constraint 
on accuracy 

Optimizing high performance iterative solvers

• Changes to how the recurrences are 
computed can exacerbate finite 
precision effects of convergence delay 
and loss of accuracy

• Crucial that we understand and take 
into account how algorithm 
modifications will affect the 
convergence rate and attainable 
accuracy!
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= 𝑓0 +  𝑚=1
𝑖 𝐴𝛿𝑥𝑚 + 𝛿𝑟𝑚

Maximum attainable accuracy of HSCG

𝑓𝑖 ≤ 𝑂(𝜀) 𝐴 𝑥 + max
𝑚=0,…,𝑖

 𝑥𝑚 Greenbaum, 1997

𝑓𝑖 ≤ 𝑂 𝜀  𝑚=0
𝑖 𝑁𝐴 𝐴  𝑥𝑚 +  𝑟𝑚 van der Vorst and Ye, 2000

𝑓𝑖 ≤ 𝑂 𝜀 𝑁𝐴 𝐴 𝐴−1  𝑚=0
𝑖  𝑟𝑚 Sleijpen and van der Vorst, 1995
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• Use 3-term recurrences for 𝑟𝑖 and 𝑥𝑖 (STCG)

• First developed by Stiefel (1952/53), also Rutishauser (1959) and 
Hageman and Young (1981)

• Each iteration can be performed with a single synchronization point on 
parallel computers (Strakoš 1985, 1987)
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Modified recurrence coefficient computation

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝐴𝑟𝑖−1

𝑟𝑖−1
𝑇 𝑟𝑖−1

−
𝛽𝑖−1

𝛼𝑖−2

−1

Example: HSCG with modified 
formula for  𝛼𝑖−1:
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Example: HSCG with modified 
formula for  𝛼𝑖−1:

𝑓𝑖 = 𝑓0 +  𝑚=1
𝑖 𝐴𝛿𝑥𝑚 + 𝛿𝑟𝑚
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Modified recurrence coefficient computation

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝐴𝑟𝑖−1

𝑟𝑖−1
𝑇 𝑟𝑖−1

−
𝛽𝑖−1

𝛼𝑖−2

−1

Example: HSCG with modified 
formula for  𝛼𝑖−1:

𝑓𝑖 = 𝑓0 +  𝑚=1
𝑖 𝐴𝛿𝑥𝑚 + 𝛿𝑟𝑚

• Rounding errors made in computing  𝛼𝑖−1 do not contribute to the residual gap

• But may change computed  𝑥𝑖,  𝑟𝑖, which can affect convergence rate...
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STCG

• Gutknecht and Strakoš
(2000): attainable accuracy 
for STCG can be much 
worse than for HSCG
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• Residual gap bounded by 
sum of local errors PLUS 
local errors multiplied by 
factors which depend on 

• Gutknecht and Strakoš
(2000): attainable accuracy 
for STCG can be much 
worse than for HSCG
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STCG

• Residual gap bounded by 
sum of local errors PLUS 
local errors multiplied by 
factors which depend on 

• Gutknecht and Strakoš
(2000): attainable accuracy 
for STCG can be much 
worse than for HSCG

max
0≤ℓ<𝑗≤𝑖

𝑟𝑗
2

𝑟ℓ
2

⇒ Large residual oscillations can cause these factors to be large!
⇒ Local errors can be amplified!
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Chronopoulos and Gear's CG (ChG CG)
• Chronopoulos and Gear (1989) 

• Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

• Reduces synchronizations/iteration to 1 by changing computation of 𝛼𝑖 and 
using an auxiliary recurrence for 𝐴𝑝𝑖

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0= 𝑟0,

𝑠0 = 𝐴𝑝0, 𝛼0= (𝑟0, 𝑟0)/(𝑝0, 𝑠0)

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝐴𝑟𝑖

𝛽𝑖 =
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

𝛼𝑖 =
(𝑟𝑖,𝑟𝑖)

𝑤𝑖,𝑟𝑖 −(  𝛽𝑖 𝛼𝑖−1)(𝑟𝑖,𝑟𝑖)

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

end 14
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• Similar to Chronopoulos and Gear 
approach

• Uses auxiliary vector 𝑠𝑖 ≡ 𝐴𝑝𝑖 and 
same formula for 𝛼𝑖
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Attainable accuracy of pipelined CG

• Both ChG CG and GVCG use the same update formulas for 𝑥𝑖 and 𝑟𝑖:
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Methodology for bounding 𝐺𝑖

• To show how one can bound 𝐺𝑖 for a particular pipelined variant, we 
consider the simplest version of a method with auxiliary vector 𝑠𝑖 ≡ 𝐴𝑝𝑖:

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0, 𝑠0 = 𝐴𝑝0

for 𝑖 = 1:nmax 

𝛼𝑖−1 =
(𝑟𝑖−1,𝑟𝑖−1)

(𝑝𝑖−1,𝑠𝑖−1)

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝛽𝑖 =
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝐴𝑟𝑖 + 𝛽𝑖𝑠𝑖−1

end
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𝐺𝑖 ≡  𝑆𝑖 − 𝐴  𝑃𝑖 = Δ𝑆𝑖 − 𝐴Δ𝑃𝑖
 𝑈𝑖

−1
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Attainable accuracy of simple pipelined CG

𝐺𝑖 ≤
𝑂 𝜀

1 − 𝑂 𝜀
𝜅( 𝑈𝑖) 𝐴  𝑃𝑖 + 𝐴  𝑅𝑖

 𝑈𝑖
−1

 𝑈𝑖 =

1 −  𝛽1 0 0
0 1 ⋱ 0
⋮ ⋱ 1 −  𝛽𝑖−1

0 … 0 1

 𝑈𝑖
−1 =

1  𝛽1 … …  𝛽1
 𝛽2 ⋯  𝛽𝑖−1

0 1  𝛽2 …  𝛽2 ⋯  𝛽𝑖−1

⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ 1  𝛽𝑖−1

0 ⋯ ⋯ 0 1
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𝛽ℓ𝛽ℓ+1 ⋯ 𝛽𝑗 =
𝑟𝑗

2

𝑟ℓ−1
2 , ℓ < 𝑗
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• Very similar to the results for attainable accuracy in the 3-term STCG
• Residual oscillations can cause these factors to be large!
• Errors in computed recurrence coefficients can be amplified!

• Seemingly innocuous change can cause drastic loss of accuracy
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• Very similar to the results for attainable accuracy in the 3-term STCG
• Residual oscillations can cause these factors to be large!
• Errors in computed recurrence coefficients can be amplified!

• Seemingly innocuous change can cause drastic loss of accuracy

• For GVCG, bound on 𝐺𝑖 can be larger due to use of additional auxiliary 
vectors

𝛽ℓ𝛽ℓ+1 ⋯ 𝛽𝑗 =
𝑟𝑗

2

𝑟ℓ−1
2 , ℓ < 𝑗
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Behavior of "pipelined" CG variants

effect of using auxiliary vector 𝑠𝑖 ≡ 𝐴𝑝𝑖
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Behavior of "pipelined" CG variants

effect of changing formula for recurrence coefficient 𝛼 and 
using auxiliary vector 𝑠𝑖 ≡ 𝐴𝑝𝑖
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Behavior of "pipelined" CG variants

effect of changing formula for recurrence coefficient 𝛼 and 
using auxiliary vectors 𝑠𝑖 ≡ 𝐴𝑝𝑖, 𝑤𝑖 ≡ 𝐴𝑟𝑖 , 𝑧𝑖 ≡ 𝐴2𝑟𝑖
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s-step CG

• Idea: Compute blocks of 𝑠 iterations at once 

• Compute updates in a different basis

• Communicate every 𝑠 iterations instead of every iteration

• Reduces number of synchronizations per iteration by a factor of s
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s-step CG

• Idea: Compute blocks of 𝑠 iterations at once 

• Compute updates in a different basis

• Communicate every 𝑠 iterations instead of every iteration

• Reduces number of synchronizations per iteration by a factor of s

• An idea rediscovered many times…
• First related work: s-dimensional steepest descent, least squares

• Khabaza (‘63), Forsythe (‘68), Marchuk and Kuznecov (‘68) 
• Flurry of work on s-step Krylov methods in ‘80s/early ‘90s: see, e.g., Van 

Rosendale (1983);   Chronopoulos and Gear (1989)

• Resurgence of interest in recent years due to growing problem sizes; 
growing relative cost of communication
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Key observation: After iteration 𝑖, for 𝑗 ∈ {0, . . , 𝑠},

𝑥𝑖+𝑗 − 𝑥𝑖 , 𝑟𝑖+𝑗 , 𝑝𝑖+𝑗 ∈ 𝒦𝑠+1 𝐴, 𝑝𝑖 + 𝒦𝑠 𝐴, 𝑟𝑖

s-step CG

21



Key observation: After iteration 𝑖, for 𝑗 ∈ {0, . . , 𝑠},

𝑥𝑖+𝑗 − 𝑥𝑖 , 𝑟𝑖+𝑗 , 𝑝𝑖+𝑗 ∈ 𝒦𝑠+1 𝐴, 𝑝𝑖 + 𝒦𝑠 𝐴, 𝑟𝑖

s-step CG

s steps of s-step CG:

21



Key observation: After iteration 𝑖, for 𝑗 ∈ {0, . . , 𝑠},

𝑥𝑖+𝑗 − 𝑥𝑖 , 𝑟𝑖+𝑗 , 𝑝𝑖+𝑗 ∈ 𝒦𝑠+1 𝐴, 𝑝𝑖 + 𝒦𝑠 𝐴, 𝑟𝑖

s-step CG

s steps of s-step CG:

Expand solution space 𝒔 dimensions at once

Compute “basis” matrix 𝒴 such that  span 𝒴 = 𝒦𝑠+1 𝐴, 𝑝𝑖 + 𝒦𝑠 𝐴, 𝑟𝑖 according to 

the recurrence 𝐴𝒴 = 𝒴 ℬ

21



Key observation: After iteration 𝑖, for 𝑗 ∈ {0, . . , 𝑠},

𝑥𝑖+𝑗 − 𝑥𝑖 , 𝑟𝑖+𝑗 , 𝑝𝑖+𝑗 ∈ 𝒦𝑠+1 𝐴, 𝑝𝑖 + 𝒦𝑠 𝐴, 𝑟𝑖

s-step CG

s steps of s-step CG:

Expand solution space 𝒔 dimensions at once

Compute “basis” matrix 𝒴 such that  span 𝒴 = 𝒦𝑠+1 𝐴, 𝑝𝑖 + 𝒦𝑠 𝐴, 𝑟𝑖 according to 

the recurrence 𝐴𝒴 = 𝒴 ℬ

Compute inner products between basis vectors in one synchronization 
𝒢 = 𝒴𝑇𝒴
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Compute “basis” matrix 𝒴 such that  span 𝒴 = 𝒦𝑠+1 𝐴, 𝑝𝑖 + 𝒦𝑠 𝐴, 𝑟𝑖 according to 

the recurrence 𝐴𝒴 = 𝒴 ℬ

Compute inner products between basis vectors in one synchronization 
𝒢 = 𝒴𝑇𝒴

Compute s iterations of vector updates
Perform 𝑠 iterations of vector updates by updating coordinates in basis 𝒴:

𝑥𝑖+𝑗 − 𝑥𝑖 = 𝒴𝑥𝑗
′, 𝑟𝑖+𝑗 = 𝒴𝑟𝑗

′, 𝑝𝑖+𝑗 = 𝒴𝑝𝑗
′
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s-step CG

For s iterations of updates, inner products and SpMVs (in basis 𝒴) can be 
computed by independently by each processor without communication: 
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×𝑛

𝑛
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Sources of local roundoff error in s-step CG

Computing the 𝑠-step Krylov subspace basis:

𝐴  𝒴𝑘 =  𝒴𝑘ℬ𝑘 + Δ𝒴𝑘

Updating coordinate vectors in the inner loop:

 𝑥𝑘,𝑗
′ =  𝑥𝑘,𝑗−1

′ +  𝑞𝑘,𝑗−1
′ + 𝜉𝑘,𝑗

 𝑟𝑘,𝑗
′ =  𝑟𝑘,𝑗−1

′ − ℬ𝑘  𝑞𝑘,𝑗−1
′ + 𝜂𝑘,𝑗

with    𝑞𝑘,𝑗−1
′ = fl(  𝛼𝑠𝑘+𝑗−1  𝑝𝑘,𝑗−1

′ )

Recovering CG vectors for use in next outer loop:

 𝑥𝑠𝑘+𝑗 =  𝒴𝑘  𝑥𝑘,𝑗
′ +  𝑥𝑠𝑘 + 𝜙𝑠𝑘+𝑗

 𝑟𝑠𝑘+𝑗 =  𝒴𝑘  𝑟𝑘,𝑗
′ + 𝜓𝑠𝑘+𝑗
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Error in 
basis change

Sources of local roundoff error in s-step CG
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• We can write the gap between the true and updated residuals 𝑓 in terms 
of these errors:

Attainable accuracy of s-step CG

• Using standard rounding error results, this allows us to obtain an upper 

bound on 𝑓𝑠𝑘+𝑗 .

𝑓𝑠𝑘+𝑗 = 𝑓0

−  

ℓ=0

𝑘−1

𝐴𝜙𝑠ℓ+𝑠 + 𝜓𝑠ℓ+𝑠 +  

𝑖=1

𝑠

𝐴  𝒴ℓ𝜉ℓ,𝑖 +  𝒴ℓ𝜂ℓ,𝑖 − Δ𝒴ℓ  𝑞ℓ,𝑖−1
′

−𝐴𝜙𝑠𝑘+𝑗 − 𝜓𝑠𝑘+𝑗 −  

𝑖=1

𝑗

𝐴  𝒴𝑘𝜉𝑘,𝑖 +  𝒴𝑘𝜂𝑘,𝑖 − Δ𝒴ℓ  𝑞𝑘,𝑖−1
′
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′
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For CG:

Attainable accuracy of s-step CG

𝑓𝑖 ≤ 𝑓0 + 𝜀  

𝑚=1

𝑖

1 + 𝑁 𝐴  𝑥𝑚 +  𝑟𝑚

𝑓𝑖 ≡ 𝑏−𝐴 𝑥𝑖−  𝑟𝑖
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For CG:

Attainable accuracy of s-step CG

𝑓𝑠𝑘+𝑗 ≤ 𝑓0 + 𝜀𝒄𝛤  

𝑚=1

𝑠𝑘+𝑗

1 + 𝑁 𝐴  𝑥𝑚 +  𝑟𝑚

𝑓𝑖 ≤ 𝑓0 + 𝜀  

𝑚=1

𝑖

1 + 𝑁 𝐴  𝑥𝑚 +  𝑟𝑚

For s-step CG: 𝑖 ≡ 𝑠𝑘 + 𝑗

where 𝑐 is a low-degree polynomial in 𝑠, and

Γ = max
ℓ≤𝑘

 𝒴ℓ
+ ⋅  𝒴ℓ

𝑓𝑖 ≡ 𝑏−𝐴 𝑥𝑖−  𝑟𝑖

(see C., 2015)
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Finite precision Lanczos process: (𝐴 is 𝑁 × 𝑁 with at most 𝑛 nonzeros per row)

𝐴  𝑉𝑚 =  𝑉𝑚
 𝑇𝑚 +  𝛽𝑚+1  𝑣𝑚+1𝑒𝑚

𝑇 + 𝛿  𝑉𝑚

 𝑉𝑚 =  𝑣1, … ,  𝑣𝑚 ,       𝛿  𝑉𝑚 = 𝛿  𝑣1, … , 𝛿  𝑣𝑚 ,          𝑇𝑚 =

 𝛼1
 𝛽2

 𝛽2 ⋱ ⋱

⋱ ⋱  𝛽𝑚

 𝛽𝑚  𝛼𝑚

Roundoff error in Lanczos vs. s-step Lanczos

for 𝑖 ∈ {1, … , 𝑚},
𝛿  𝑣𝑖 2 ≤ 𝜀1𝜎

 𝛽𝑖+1  𝑣𝑖
𝑇  𝑣𝑖+1 ≤ 2𝜀0𝜎

 𝑣𝑖+1
𝑇  𝑣𝑖+1 − 1 ≤  𝜀0 2

 𝛽𝑖+1
2 +  𝛼𝑖

2 +  𝛽𝑖
2 − 𝐴 𝑣𝑖 2

2 ≤ 4𝑖 3𝜀0 + 𝜀1 𝜎2

where 𝜎 ≡ 𝐴 2, and
𝜃𝜎 ≡ 𝐴 2

27
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𝜀0 = 𝑂 𝜀𝑁

𝜀1 = 𝑂 𝜀𝑛𝜃
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 𝛽2

 𝛽2 ⋱ ⋱
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 𝛽𝑚  𝛼𝑚

Roundoff error in Lanczos vs. s-step Lanczos

for 𝑖 ∈ {1, … , 𝑚},
𝛿  𝑣𝑖 2 ≤ 𝜀1𝜎

 𝛽𝑖+1  𝑣𝑖
𝑇  𝑣𝑖+1 ≤ 2𝜀0𝜎

 𝑣𝑖+1
𝑇  𝑣𝑖+1 − 1 ≤  𝜀0 2

 𝛽𝑖+1
2 +  𝛼𝑖

2 +  𝛽𝑖
2 − 𝐴 𝑣𝑖 2

2 ≤ 4𝑖 3𝜀0 + 𝜀1 𝜎2

where 𝜎 ≡ 𝐴 2, and
𝜃𝜎 ≡ 𝐴 2

s-step Lanczos (C., Demmel, 2015):

𝜀0 = 𝑂 𝜀𝑁𝚪𝟐

𝜀1 = 𝑂 𝜀𝑛𝜃𝚪

Γ = max
ℓ≤𝑘

𝒴ℓ
+

2 ∙ 𝒴ℓ 2
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Γ ≤ 24𝜖 𝑁 + 11𝑠 + 15
−  1 2

=
𝑂 𝑁

𝜖

Convergence of Ritz values in s-step Lanczos

• All results of Paige (1980), e.g., loss of orthogonality  eigenvalue 
convergence, hold for s-step Lanczos as long as 
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Γ ≤ 24𝜖 𝑁 + 11𝑠 + 15
−  1 2

=
𝑂 𝑁

𝜖

Convergence of Ritz values in s-step Lanczos

• All results of Paige (1980), e.g., loss of orthogonality  eigenvalue 
convergence, hold for s-step Lanczos as long as 

𝜆

𝑂(𝜖𝑁3 𝐴 )

𝑂(𝜖𝑁3 𝐴 𝚪𝟐)

Lanczos

s-step Lanczos

• Bounds on accuracy of Ritz values depend on Γ2

28



s-step CG
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s-step CG

s-step CG with monomial basis (𝒴 = [𝑝𝑖 , 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖 , 𝑟𝑖 , 𝐴𝑟𝑖 , … 𝐴𝑠−1𝑟𝑖])
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s-step CG

s-step CG with monomial basis (𝒴 = [𝑝𝑖 , 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖 , 𝑟𝑖 , 𝐴𝑟𝑖 , … 𝐴𝑠−1𝑟𝑖])

Can also use other, more well-conditioned bases to improve convergence rate 
and accuracy (see, e.g. Philippe and Reichel, 2012). 
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A different problem...

𝐴: nos4 from UFSMC, 
𝑏: equal components in the eigenbasis

of 𝐴 and 𝑏 = 1
𝑁 = 100, 𝜅 𝐴 ≈ 2e3
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A different problem...

𝐴: nos4 from UFSMC, 
𝑏: equal components in the eigenbasis

of 𝐴 and 𝑏 = 1
𝑁 = 100, 𝜅 𝐴 ≈ 2e3

If application only requires 
𝑥 − 𝑥𝑖 𝐴 ≤ 10−10, 

all methods behave comparably to HSCG



Insights from error analysis

• Is it possible to improve maximum attainable accuracy while still retaining 
synchronization-reducing properties? 
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• For s-step CG: (C., Demmel, 2014) and attempted for pipelined CG: (Cools 
et. al, 2016)
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• Is it possible to improve maximum attainable accuracy while still retaining 
synchronization-reducing properties? 

• Residual replacement strategies

• Based on van der Vorst and Ye (2000); replace updated residual 𝑟𝑖 with 
true residual 𝑏 − 𝐴𝑥𝑖 in certain iterations

• For s-step CG: (C., Demmel, 2014) and attempted for pipelined CG: (Cools 
et. al, 2016)

• Caveat: selecting replacement iterations is based on heuristics; replacing 
too often may cause convergence delay

• Variable s-step approaches

• "adaptive s-step CG": Basis condition number can be allowed to grow at a 
rate inversely proportional to the norm of the updated residual without 
affecting maximum attainable accuracy

• Similar to derivation of inexact Krylov subspace methods (e.g., 
Simoncini and Szyld, 2007)

• s-step GMRES (Imberti and Erhel, 2016): used a fixed sequence of 𝑠𝑖's
31



Future directions for analysis

• Applying analysis of Paige (1980) to pipelined Lanczos

• Under what constraints does loss of orthogonality → eigenvalue 
convergence in pipelined Lanczos?
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Future directions for analysis

• Applying analysis of Paige (1980) to pipelined Lanczos

• Under what constraints does loss of orthogonality → eigenvalue 
convergence in pipelined Lanczos?

• Applying analysis of Greenbaum (1989) to pipelined and s-step CG

"Eigenvalue approximations generated at each step by a perturbed 
Lanczos recurrence for 𝐴 are equal to those generated by exact Lanczos
applied a larger matrix whose eigenvalues lie within intervals about the 
eigenvalues of 𝐴."

• Application of Paige's augmented stability results (2010, 2014, 2017) to 
synchronization-reducing variants

32
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• Much focus on modifying methods to speed up iterations
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Conclusions and takeaways

• Think of the whole picture

• Much focus on modifying methods to speed up iterations

• But keep in mind how such changes may affect numerical behavior

• The speed of an iteration only part of the runtime

• A solver that can't attain required accuracy is useless

• Design and implementation of iterative solvers requires a holistic approach

• Selecting the right method, parameters, stopping criteria

• Selecting the right preconditioner (closely linked with the discretization! see 
Málek and Strakoš, 2015)

• Key goals: 

• Develop new techniques for improving numerical properties without 
increasing synchronization

• Identify problems (or classes of problems) for which synchronization-
reducing Krylov subspace methods can obtain practical speedups

⇒ Require analyzing the effects of finite precision computations on convergence 
rate and accuracy
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Thank You!

erinc@cims.nyu.edu

math.nyu.edu/~erinc


