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Krylov subspace methods

*  Krylov Subspace Method for solving Ax = b: projection process onto the Krylov
subspace

jCL(A, 7‘0) = Span{TO,ATO, AZTO, ...,Ai_lro}
where A is an N X N matrix and ry = b — Ax, is a length-N vector

 |In each iteration,
* Add a dimension to the Krylov subspace

— Forms nested sequence of Krylov subspaces

Ki1(A, 1) € Ky(A,1g) € - € Ki(4,19)

 Orthogonalize (with respect to some C;)

* Select approximate solution x; € xq + K;(A4,1y)
using N = b — Axi 1 Ci
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Implementation of CG

 Standard implementation due to Hestenes and Stiefel (1952) (HSCG)

* Uses three 2-term recurrences for updating Xi, 1, Pi

To = b —Axg, po =19
fori = 1:nmax
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Implementation of CG

 Standard implementation due to Hestenes and Stiefel (1952) (HSCG)

e Uses three 2-term recurrences for updating Xi, 1, Pi

ro=b — Axy, Dy =70 minimizes ||x — x;|| 4 along line
for i = 1:nmax / z(a) = x;—1 + api—1
Ti_1Ti-1 /
Aj_1 = —F——
= p,ir_lApi—l If
_ . Ly p; fori # ],
Xi = Xi—1 + ai—1Di-1 Pi ~a pj J
T =T~ @i-14Pig 1-dimensional minimizations in each
B, = rlr; iteration give i-dimensional
Ll iy minimization over the whole subspace
Pi =7+ BiPi-a xo + Ki(A,1y) = xo + span{py, ... p;j_1}

end

= CG (and other Krylov subspace methods) are highly nonlinear
* Good for convergence, bad for ease of finite precision analysis 3



Communication in HSCG

7"0 — b_Axo, po :TO
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Future exascale systems

Petascale
Systems (2009)

System Peak 2 - 10> flops/s

Node Memory

Bandwidth 2> OB/S
Total Node Interconnect
Bandwidth o OB/S
Memory Latency 100 ns
Interconnect Latency 1 us

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)
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Future exascale systems

Petascale Predicted Exascale Factor
Systems (2009) Systems Improvement
System Peak 2 - 10° flops/s 108 flops/s " ~1000 )
Node Memory N
Bandwidth 25 GB/s 0.4-4TB/s 10-100
Total Node Interconnect
Bandwidth 3.5 GB/s 100-400 GB/s 100
Memory Latency 100 ns 50 ns ~2

Interconnect Latency 1 us 0.5 us . "2

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

» Gaps between communication/computation cost only growing larger in
future systems

* Reducing time spent moving data/waiting for data will be essential for
applications at exascale! ;
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Synchronization-reducing variants

Communication cost has motivated many approaches to reducing
synchronization in CG:

» Early work: CG with a single synchronization point per iteration
* 3-term recurrence CG
» Using modified computation of recurrence coefficients

* Using auxiliary vectors

* Pipelined CG
* Uses modified coefficients and auxiliary vectors to reduce synchronization points
to 1 per iteration
* Modifications also allow decoupling of SpMV and inner products - enables
overlapping

» s-step CG
» Compute iterations in blocks of s using a different Krylov subspace basis
* Enables one synchronization per s iterations



The effects of finite precision

Well-known that roundoff error has
two effects:

1. Delay of convergence
* No longer have exact Krylov
subspace
e (Can lose numerical rank
deficiency
* Residuals no longer orthogonal
- Minimization no longer exact!

2. Loss of attainable accuracy
* Rounding errors cause true
residual b — Ax; and updated
residual r; deviate!
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Well-known that roundoff error has
two effects:

1. Delay of convergence
* No longer have exact Krylov
subspace
e (Can lose numerical rank
deficiency
* Residuals no longer orthogonal
- Minimization no longer exact!

2. Loss of attainable accuracy
* Rounding errors cause true
residual b — Ax; and updated
residual r; deviate!

A-norm of the error
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A: besstk03 from UFSMC, b: equal components in
the eigenbasis of A and ||b]| = 1
N =112,k(A) = 7eb6

Much work on these results for CG; See Meurant and Strakos (2006) for a thorough
summary of early developments in finite precision analysis of Lanczos and CG .
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Optimizing high performance iterative solvers

* Synchronization-reducing variants are designed to reduce the time/iteration
* But this is not the whole story!

* What we really want to minimize is the runtime, subject to some constraint
on accuracy

* Changes to how the recurrences are
computed can exacerbate finite
precision effects of convergence delay 107
and loss of accuracy

=10 |
* Crucial that we understand and take 10

into account how algorithm
modifications will affect the

convergence rate and attainable

accuracy! 0 200 400 600 800 1000 1200
Iteration

A-norm of the error
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Maximum attainable accuracy

» Accuracy depends on the size of the true residual: ||b — AX;||

* Rounding errors cause the true residual, b — AX;, and the updated residual, 7;,
to deviate

° Writing b —AjC\i = ”I,’\'i + b —AjC\i — 7,’\'1',

b = A%l < |71l + [Ib — A%; — 7]l

* As ||7]| = 0, ||b — AX;|| depends on ||b — AX; — 7|

* Many results on bounding attainable accuracy, e.g.: Greenbaum (1989, 1994,
1997), Sleijpen, van der Vorst and Fokkema (1994), Sleijpen, van der Vorst
and Modersitzki (2001), Bjorck, Elfving and Strakos (1998) and Gutknecht

and Strakos (2000).
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Maximum attainable accuracy of HSCG

* In finite precision HSCG, iterates are updated by

A\ N N

Xi = 5C\i a 1Pi-1 — 6xl- and s =71i—1 — ai—lApi—l — Sr,-

e Let f,=b — A%, — 7

fi =b—A@®;—1 +Q;_1P;—1 — 6x;) — (Fi_1 — @;_1AP;_1 — OT17)
== fi—l + A5xi ~+ 67"1'
= fO + Z;.rl:l(A5xm + 5rm)

If:ll < 0(¢e) Z,inzo NAANNZ .l + |7l van der Vorst and Ye, 2000

If;ll < 0(€)||A||(||x|| + max l.||9?m||) Greenbaum, 1997

AN < OENLNANNAT ZE ol I Sleijpen and van der Vorst, 1995
10
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* Modify HSCG recurrence coefficient computation
* Compute f; from a;_; and Ap;_; using relation
17117 = a1 1Api— 1|17 = llri—1|I?

* Developed independently by Johnson (1983, 1984), van Rosendale (1983,
1984), Saad (1985); many similar approaches

* Could also compute a;_; from B;_;:

-1
T

_(Tic1Aricr Bia
ai—1 = T -

Tiq1Ti-1 *i-2

 Use 3-term recurrences for r; and x; (STCG)

* First developed by Stiefel (1952/53), also Rutishauser (1959) and
Hageman and Young (1981)

» Each iteration can be performed with a single synchronization point on
parallel computers (Strakos 1985, 1987)
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Modified recurrence coefficient computation

Example: HSCG with modified
formula for a;_q:
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Modified recurrence coefficient computation

Example: HSCG with modified

formula for a;_q: HSCG
5 — HSCG w/modified o
) L 107 I
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* Rounding errors made in computing &;_; do not contribute to the residual gap

* But may change computed X;, 7;, which can affect convergence rate...
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Gutknecht and Strakos
(2000): attainable accuracy
for STCG can be much
worse than for HSCG
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* Gutknecht and Strakos | | I_HSICG
(2000): attainable accuracy Sl —— HSCG wimodified a | |
for STCG can be much 10 —_STCG
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* Residual gap bounded by 107191
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local errors multiplied by

factors which depend on
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= Large residual oscillations can cause these factors to be large!
= Local errors can be amplified!
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Chronopoulos and Gear's CG (ChG CG)

 Chronopoulos and Gear (1989)
* Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

* Reduces synchronizations/iteration to 1 by changing computation of a; and
using an auxiliary recurrence for Ap;

TO = b _Axo, p0= ro,
So = Apo, ag= (10,70)/(PoSo)
for i = 1:nmax

Xi = Xj—1 T qj_1Pi—1

i =71 — &j—-1Si—1

w; = Ar;
B, = (riri)
' (ri-17i-1)
riri
al ( l l)

= word-Bi/ @) o)
pi =71, + Bipi-1
S; = w; + [iSi—q

end
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w; = Ar;

B, = (riri) Inner Products
L (ri-1.Ti-1)

5 — (riTi)
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Pipelined CG (GVCG) (Ghysels and Vanroose 2014)

T'O - b_Axo, pO =T0
So = AZI?(), W0T= Aro, Zoy = AWO,
o = 1o To/Po So
for i = 1:nmax
Xi =Xj_1ta&_1Di—1
i ="i-1 — &j-1Si-1

Wi =W;_1 —&i—1Zj—1

q; = Aw;
T

B; = i Ti

i — T

Ti—1Ti-1
T

o = Ti Ti

l

— wlri=Bi/ai—Drir
pi =1 + Bibi—1
S; = Wi + BiSi—1
zi = q; + Bizi—4

end
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T'0=b—Ax0, p0=7”0

So = Apg, Wo = Ary, 2o = Awy, * Similar to Chronopoulos and Gear
Qo = 1o T0/Po So approach
for i = 1:nmax * Uses auxiliary vector s; = Ap; and

_ same formula for a;
Xi =Xi—1+ &_1Di—1 :
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Pipelined CG (GVCG) (Ghysels and Vanroose 2014)

To = b — Axg, po = 10

So = AZ;O' W0T= Aro, Zoy = AWO,
Qg = 79 7o/Po So

for i = 1:nmax

end

Xi = Xi—1+ a;i_1Di-1
i ="i-1 — &j-1Si-1

Wi =W;i_1 —&i—1Zj—1

q; = Aw;
T

B; = i Ti

i — T

Ti—1Ti-1
T

o = Ti Ti

l

— wlri=Bi/ai_)rl T
p; =1 + Bibi—1
Si =w; + Bisi_4

zZi=q; +Pizi_4

* Similar to Chronopoulos and Gear
approach

* Uses auxiliary vector s; = Ap; and
same formula for a;

 Also uses auxiliary vectors for Ar; and
A?%1; to remove sequential dependency
between SpMV and inner products

 Allows the use of nonblocking
(asynchronous) MPI
communication to overlap SpMV
and inner product

* Hides the latency of global
communications
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Pipelined CG (GVCG) (Ghysels and Vanroose 2014)

TO = b_Axo, po =T0

So = Apo, Wgo = Aro,ZO == AWO,
— 4T T .

o = 7o To/Po So Iteration Loop

for i = 1:nmax
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i =Ti—1 — &i-1Si—1

Wi =W;_1 —&i—1Zj—q

o
_ 0
q; = Aw; o Inner
. > Products
ﬁ' — Ty Ti @)
ol
a: = TiTTi
b owlri—Bi/ai )T
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end
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Pipelined CG (GVCG) (Ghysels and Vanroose 2014)

ro = b — Axg, po =19

SO - Apo, WO - Aro,ZO - AWO,
_ T

Ay = T4 To/Po So lteration Loop

for i = 1:nmax

Xi = Xi—1 t &i_1Pi—1

i = Ti—1 — &i-1Si—1

Wi =W;_1 —&i—1Zj—q

g = Aw, LE_ Inner Precond
T 2 Products
ﬁ' __nhri @)
borlaria
— TiTTi
%= wlri—(Bi/ai— 1T

pi =1 + Bibi—1
S; =w; + Bisi—1 End Loop
z; =q; + Bizi—q

end
15




Attainable accuracy of pipelined CG

* Both ChG CG and GVCG use the same update formulas for x; and r;:
Xi = Xj—1 T &i_1Pi—1, i = Ti-1 — @i-1Si—1
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Attainable accuracy of pipelined CG

* Both ChG CG and GVCG use the same update formulas for x; and r;:
Xi = Xj—1 T &i_1Pi—1, i = Ti-1 — @i-1Si—1

* In finite precision:

A

X =Xj—q+ a&_1D;—1 + 6x; f; =11 — Aj_1 §;—1 + 6T
fi =% — (b — AX;)
= fic1 — Q-1 (81 — AP;j_1) + 61y + Abx;
— fO + Zgn=1(5rm + A5xm) - Gidi

where

* Bound on [|G;|| will differ depending on the method (other recurrences or

auxiliary vectors used)
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Methodology for bounding || G;|

* To show how one can bound ||G;|| for a particular pipelined variant, we
consider the simplest version of a method with auxiliary vector s; = Ap;:

o = b — Axy,po = 10,50 = Apo
for i = 1:nmax

o . = (ri—1,7i-1)
-1 (Pi-1,Si-1)
Xi = Xi—1 Tt &i_1Pi—1

i =71 — &i-1Si-1

(ry,17)
'Bi B (Ti—1,Ti-1)
pi =1 + Bibi—1
si = Ar; + Bisi—q
end
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Methodology for bounding || G;|

* To show how one can bound ||G;|| for a particular pipelined variant, we

consider the simplest version of a method with auxiliary vector s; = Ap;:

end

o = b — Axy,po = 10,50 = Apo
for i = 1:nmax

(ri—1,Ti-1)
(Pi-1,Si-1)
Xi = Xj_1 + &i_1Pi—1

adi—1 =

g =Ti—1 — &j-15i-1

()
'Bl (ri—1,7i-1)
pi =71 + Bipi-1
S; = Ary + BiSi—1

)

R, = P;U; — AP;
Aﬁ = S;U; — AS;

1 =B, 0 0

ﬁi _ |0 1 9
h 1 =B

0 0 1
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Methodology for bounding || G;|

* To show how one can bound ||G;|| for a particular pipelined variant, we
consider the simplest version of a method with auxiliary vector s; = Ap;:

ro = b — Axy,po = 10,So = APy
for i = 1:nmax

(Ti—1,"i-1)
(Pi-1,Si-1)

Xi = Xj—1 T Qj—1Pi—1

adi—1 =

g =Ti—1 — &j-15i-1
B; = (riri)
' (Ti—1,Ti-1)
pi =1 + Bibi—1
si = Ar; + Bisi—q

end
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Attainable accuracy of simple pipelined CG
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Attainable accuracy of simple pipelined CG
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Attainable accuracy of simple pipelined CG

0(¢) _ ~ S

16:1l < 35z (@DNANIP] + AR |07 ]])

: _ 1 fi o BifreBicd]

1 —f; 0 0 5 5 5

: h “Pi-1 : S | [;._

0 .. 0 1 Qg - - 0 111
PPN | S
T iy !

* Very similar to the results for attainable accuracy in the 3-term STCG
* Residual oscillations can cause these factors to be large!
* Errors in computed recurrence coefficients can be amplified!

* Seemingly innocuous change can cause drastic loss of accuracy
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Attainable accuracy of simple pipelined CG
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* Very similar to the results for attainable accuracy in the 3-term STCG
* Residual oscillations can cause these factors to be large!
* Errors in computed recurrence coefficients can be amplified!

* Seemingly innocuous change can cause drastic loss of accuracy

* For GVCG, bound on ||G;|| can be larger due to use of additional auxiliary
vectors ;



Behavior of "pipelined" CG variants

A-norm of the error
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Behavior of "pipelined" CG variants
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effect of changing formula for recurrence coefficient a and
using auxiliary vectors s; = Ap;, w; = Ar;, z; = A%r;
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* |dea: Compute blocks of s iterations at once
* Compute updates in a different basis
« Communicate every s iterations instead of every iteration
* Reduces number of synchronizations per iteration by a factor of s
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|ldea: Compute blocks of s iterations at once

* Compute updates in a different basis
« Communicate every s iterations instead of every iteration

* Reduces number of synchronizations per iteration by a factor of s

* An idea rediscovered many times...

* First related work: s-dimensional steepest descent, least squares
* Khabaza ('63), Forsythe (‘68), Marchuk and Kuznecov (‘68)

* Flurry of work on s-step Krylov methods in ‘80s/early ‘90s: see, e.g., Van
Rosendale (1983); Chronopoulos and Gear (1989)

* Resurgence of interest in recent years due to growing problem sizes;
growing relative cost of communication
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Key observation: After iteration i, for j € {0,.., s},

Xivj — Xiy Tivj, Divj € HKep1(4,p) +HKs(4,17)
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Key observation: After iteration i, for j € {0,.., s},

Xivj — Xiy Tigjo Divj € Ksp1(A,p) +HKs(A4,17)

s steps of s-step CG:

Expand solution space s dimensions at once

Compute “basis’ matrix Y such that span(Y) = K,,.1(4,p;) + K ,(A,1;) according to
the recurrence AY =Y B

Compute inner products between basis vectors in one synchronization

G=Y"Yy

Compute s iterations of vector updates
Perform s iterations of vector updates by updating coordinates in basis Y:

Xivj — X =Yxj, 1y =Yri,  pij=Yp;j
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For s iterations of updates, inner products and SpMVs (in basis Y) can be
computed by independently by each processor without communication:
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For s iterations of updates, inner products and SpMVs (in basis Y) can be
computed by independently by each processor without communication:

Apiy = AlYp; = Y(Bpj)

n

0(s)
== - 0w 8 x|
(ri+j:ri+j)

X %
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For s iterations of updates, inner products and SpMVs (in basis Y) can be
computed by independently by each processor without communication:

Apiy = AlYp; = Y(Bpj)
n
n —— «x % o) B x I
(isjpTiej) = rTYTYy

X %
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For s iterations of updates, inner products and SpMVs (in basis Y) can be
computed by independently by each processor without communication:

Apiy = AlYp; = Y(Bpj)
n
o)
rivpprie)) = oYYy = gy

X
% —> = x [ x|
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s-step CG

7"0 - b —Axo,po - ro

for k = 0:nmax/s

Compute Y and By, such that AYy = YpBy and

Span(yk) = ‘7(5+1(A1 psk) + %S(Al rsk)

T
Gk = Y Y
I O I __ I
Xo = U, Ty = €s42,Pp = €1
forj=1:s
T
I L
Ask+j-1 —

il 1GkBrP}—,

I ’
Xj = Xj_1 t Qsptj-1Pj-1

r__ !
T =1_q1 — Qsk+j-1BkPj_1
IT !

Bsk+j = rT] Ly
S ! [
J Ti—19kTj—1

ro__ !
P =71 + Bsk+jPj-1

end

[Xs(k+1)—Xsk> Ts(k+1) Pske+1)] = Yk [xs, 75, Ds]

end
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s-step CG

o =b — Axg,po =19

Outer Loop
for k = 0:nmax/s

Compute Y;, and By, such that AY, = Y, By and -
= Compute basis
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Gk = Y Ur
!/ ! !/ 2
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for j = 1: .
orJ > synchronization)
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end
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s-step CG

o = b —Axo,po =T

Outer Loop
for k = 0:nmax/s

Compute Y, and B;, such that AY, = Y, By and -
— Compute basis

span(Yy) = Ksy1 (A psr) + Ks(A4, 751 O(S) SPMVs

Gk = Y'Y
/ / ’ 2
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comm.)

IT !

Ti GkTj

IT !
Ti—19kTj—1

I ’
pj =1 + Bsk+jPj-1

ﬁsk+j =

end

End Inner Loop
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Sources of local roundoff error in s-step CG

Computing the s-step Krylov subspace basis:

ATi = YxBy + Ay

Updating coordinate vectors in the inner loop:

ATl _ Al A

Xkj = Xk j—1 7+ Qi j—1 + Sk,

Al _ Al Al

Tiej = Tkj-1~ Br G j-1 t NMk,j

with CA],'{’j_l = ﬂ(&sk+j—1ﬁllc,j—1)

Recovering CG vectors for use in next outer loop:

A _ ] Al o)
Xsi+j = YpXpj + Xsie + Qsi+j

Psiewj = Ykl + Wsksj
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5 A P Error in computing
AYyx = YpBy + AY <

s-step basis

Updating coordinate vectors in the inner loop:

ATl _ Al A
XR,j — xk,j—l + Qk,j—l + gk,j > Error in updating
Al Al N coefficient vectors
Tiej = Tkj-1— Br G j—1 T Mk,j
. Al _ A AT
with Ak,j-1 = ﬂ(“sk+j—1pk,j—1)

Recovering CG vectors for use in next outer loop:

A _ ] Al o) H
Xsk+j = 'ykxk,j + X + ¢sk+j Error in

~ basis change
A _ Al
Tsierj = YrTyj + Wsierj
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Attainable accuracy of s-step CG

* We can write the gap between the true and updated residuals f in terms
of these errors:

fsk+j = fo
k-1 S
— z AQsprs + Pspis + Z[Argfff,i + Yoo — MY,y 4|
=0 i=1

J
—AQspyj — Vsksj — Z[A@kfk,i + Ui — AYplr i1
i=1

Using standard rounding error results, this allows us to obtain an upper
bound on ||fsk+j||.
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Attainable accuracy of s-step CG

i
Il < Mfoll + ) L+ MIANIZI + ]
m=1
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Attainable accuracy of s-step CG

i
Il < Mfoll + ) L+ MIANIZI + ]
m=1

For s-step CG: i = sk +j

sk+j
Vet | < Wfoll + €T )" (1 + WA | + [l
m=1

where c is a low-degree polynomial in s, and

[ = max [[G7]| - [||Tell

o<k
(see C., 2015)
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Roundoff error in Lanczos vs. s-step Lanczos

Finite precision Lanczos process: (A is N X N with at most n nonzeros per row)

fori € {1,...,m},
16D;ll, < €10
Biv1|0 Vi1 | < 2600
|ﬁ;'r+19i+1 —1 | < &/2
B2 1 + a7 + B7 — 1AD;113] < 4i(3gy + £1)0?

where o = ||4]|,, and
0o = |||Alll,

Lanczos (Paige, 1976):
gg = 0(eN)
g1 = 0(enb)
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Roundoff error in Lanczos vs. s-step Lanczos

Finite precision Lanczos process: (A is N X N with at most n nonzeros per row)

Vme + ﬁm+1ﬁm+1e% + 5I7m

N
§<
Il

6{:1 BZ
U = [01, 0, O], 8V = [60y, ., 80,],  Tu=|? = p
,ém &m
fori € {1,...,m},
160i]l; < €10

2. oD where o = ||A]|,, and
,Bi+1|17i Vit | < 2&90 1Al 2,

AT o o = |[|A
A |}7;'T+1Vi+1 —1 | < &/2 1411l
[BZ1 + aF + B — 11ADi113] < 4i(Beo + &1)a®
Lanczos (Paige, 1976): s-step Lanczos (C., Demmel, 2015):
&g = 0(eN) o = 0(eNT?)
g1 = 0(enb) g1 = 0(enfr)

' = max ||UYS]],
na; WY 2 - 1Yl



Convergence of Ritz values in s-step Lanczos

* All results of Paige (1980), e.g., loss of orthogonality — eigenvalue
convergence, hold for s-step Lanczos as long as

1/2 _ O(N)

[ < (24e(N + 11s + 15)) 7e
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Convergence of Ritz values in s-step Lanczos

* All results of Paige (1980), e.g., loss of orthogonality — eigenvalue
convergence, hold for s-step Lanczos as long as

1/2 _ O(N)
Ve

< (24e(N + 11s + 15))

 Bounds on accuracy of Ritz values depend on I'?

Lanczos
0(eN3|IAll)
N

| | Ao

'

0(eN3|AlIT?)
s-step Lanczos

~
I
!
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s-step CG

s-step CG with monomial basis (Y = [p;, Ap;, ..., ASp;, 17, A1y, ... AS7117))

—HSCG
5 s-step CG, s=2
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s-step CG

s-step CG with monomial basis (Y = [p;, Ap;, ..., ASp;, 17, A1y, ... AS7117))

—HSCG
5 s-step CG, s=2

. 1077 s-step CG, s=3| ]
E s-step CG, s=4
(4P
[4b)
=
E 10-1[} L
=
O
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lteration

Can also use other, more well-conditioned bases to improve convergence rate

and accuracy (see, e.g. Philippe and Reichel, 2012). .



A different problem...

A: nos4 from UFSMC,

b: equal components in the eigenbasis
of Aand ||b|| =1
N =100,k(A) = 2e3
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Insights from error analysis

* Is it possible to improve maximum attainable accuracy while still retaining
synchronization-reducing properties?
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* Residual replacement strategies

* Based on van der Vorst and Ye (2000); replace updated residual r; with
true residual b — Ax; in certain iterations

* For s-step CG: (C., Demmel, 2014) and attempted for pipelined CG: (Cools
et. al, 2016)
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Insights from error analysis

* Is it possible to improve maximum attainable accuracy while still retaining
synchronization-reducing properties?

* Residual replacement strategies
* Based on van der Vorst and Ye (2000); replace updated residual r; with
true residual b — Ax; in certain iterations
* For s-step CG: (C., Demmel, 2014) and attempted for pipelined CG: (Cools
et. al, 2016)

» Caveat: selecting replacement iterations is based on heuristics; replacing
too often may cause convergence delay

* Variable s-step approaches
» "adaptive s-step CG": Basis condition number can be allowed to grow at a
rate inversely proportional to the norm of the updated residual without
affecting maximum attainable accuracy

 Similar to derivation of inexact Krylov subspace methods (e.g.,
Simoncini and Szyld, 2007)

* s-step GMRES (Imberti and Erhel, 2016): used a fixed sequence of s;'s
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Future directions for analysis

* Applying analysis of Paige (1980) to pipelined Lanczos

* Under what constraints does loss of orthogonality — eigenvalue
convergence in pipelined Lanczos?

32



Future directions for analysis

* Applying analysis of Paige (1980) to pipelined Lanczos
* Under what constraints does loss of orthogonality — eigenvalue
convergence in pipelined Lanczos?

* Applying analysis of Greenbaum (1989) to pipelined and s-step CG

"Eigenvalue approximations generated at each step by a perturbed
Lanczos recurrence for A are equal to those generated by exact Lanczos
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Future directions for analysis

* Applying analysis of Paige (1980) to pipelined Lanczos
* Under what constraints does loss of orthogonality — eigenvalue
convergence in pipelined Lanczos?

* Applying analysis of Greenbaum (1989) to pipelined and s-step CG

"Eigenvalue approximations generated at each step by a perturbed
Lanczos recurrence for A are equal to those generated by exact Lanczos
applied a larger matrix whose eigenvalues lie within intervals about the

eigenvalues of A."

* Application of Paige's augmented stability results (2010, 2014, 2017) to
synchronization-reducing variants
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* Think of the whole picture
* Much focus on modifying methods to speed up iterations
* But keep in mind how such changes may affect numerical behavior
* The speed of an iteration only part of the runtime
* A solver that can't attain required accuracy is useless

* Design and implementation of iterative solvers requires a holistic approach
* Selecting the right method, parameters, stopping criteria

* Selecting the right preconditioner (closely linked with the discretization! see
Malek and Strakos, 2015)

» Key goals:

* Develop new techniques for improving numerical properties without
increasing synchronization

* ldentify problems (or classes of problems) for which synchronization-
reducing Krylov subspace methods can obtain practical speedups

= Require analyzing the effects of finite precision computations on convergence
rate and accuracy
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Thank Youl

erinc@cims.nyu.edu
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