
The Behavior of
Synchronization-Reducing Variants
of the Conjugate Gradient Method

in Finite Precision

Erin Carson

New York University

Householder Symposium XX, Blacksburg, Virginia

June 19, 2017

Collaborators

Miroslav Rozložník
Institute of Computer Science, Czech Academy of Sciences

Zdeněk Strakoš
Department of Numerical Mathematics, Faculty of Mathematics and Physics, Charles University

Petr Tichý
Department of Numerical Mathematics, Faculty of Mathematics and Physics, Charles University

Miroslav Tůma
Department of Numerical Mathematics, Faculty of Mathematics and Physics, Charles University

Preprint NCMM/2016/08:
http://www.karlin.mff.cuni.cz/~strakos/download/2016_CarRozStrTicTum_16.pdf

James Demmel
University of California, Berkeley

http://www.karlin.mff.cuni.cz/~strakos/download/2016_CarRozStrTicTum_16.pdf

Conjugate Gradient method for solving Ax = b
double precision (𝜀 = 2−53)

𝑥𝑖 − 𝑥 𝐴 = 𝑥𝑖 − 𝑥 𝑇𝐴(𝑥𝑖 − 𝑥)

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖𝑝𝑖

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖𝐴𝑝𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖

1

Conjugate Gradient method for solving Ax = b
double precision (𝜀 = 2−53)

𝑥𝑖 − 𝑥 𝐴 = 𝑥𝑖 − 𝑥 𝑇𝐴(𝑥𝑖 − 𝑥)

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖𝑝𝑖

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖𝐴𝑝𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖

1

Krylov subspace methods

• In each iteration,

• Add a dimension to the Krylov subspace

– Forms nested sequence of Krylov subspaces

𝒦1 𝐴, 𝑟0 ⊂ 𝒦2 𝐴, 𝑟0 ⊂ ⋯ ⊂ 𝒦𝑖(𝐴, 𝑟0)

• Orthogonalize (with respect to some 𝒞𝑖)

• Select approximate solution 𝑥𝑖 ∈ 𝑥0 + 𝒦𝑖(𝐴, 𝑟0)

using 𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖 ⊥ 𝒞𝑖

• Krylov Subspace Method for solving 𝐴𝑥 = 𝑏: projection process onto the Krylov
subspace

𝒦𝑖 𝐴, 𝑟0 = span 𝑟0, 𝐴𝑟0, 𝐴2𝑟0, … , 𝐴𝑖−1𝑟0

where 𝐴 is an 𝑁 × 𝑁 matrix and 𝑟0 = 𝑏 − 𝐴𝑥0 is a length-𝑁 vector

𝒞

𝑟new

𝐴𝛿

𝑟0

0

2

• Conjugate gradient method: 𝐴 is symmetric positive definite, 𝒞𝑖 = 𝒦𝑖(𝐴, 𝑟0)

𝑟𝑖 ⊥ 𝒦𝑖 𝐴, 𝑟0 ⟺ 𝑥 − 𝑥𝑖 𝐴 = min
𝑧∈𝑥0+𝒦𝑖(𝐴,𝑟0)

𝑥 − 𝑧 𝐴 ⟹ 𝒓𝑵+𝟏 = 𝟎

Krylov subspace methods

• In each iteration,

• Add a dimension to the Krylov subspace

– Forms nested sequence of Krylov subspaces

𝒦1 𝐴, 𝑟0 ⊂ 𝒦2 𝐴, 𝑟0 ⊂ ⋯ ⊂ 𝒦𝑖(𝐴, 𝑟0)

• Orthogonalize (with respect to some 𝒞𝑖)

• Select approximate solution 𝑥𝑖 ∈ 𝑥0 + 𝒦𝑖(𝐴, 𝑟0)

using 𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖 ⊥ 𝒞𝑖

• Krylov Subspace Method for solving 𝐴𝑥 = 𝑏: projection process onto the Krylov
subspace

𝒦𝑖 𝐴, 𝑟0 = span 𝑟0, 𝐴𝑟0, 𝐴2𝑟0, … , 𝐴𝑖−1𝑟0

where 𝐴 is an 𝑁 × 𝑁 matrix and 𝑟0 = 𝑏 − 𝐴𝑥0 is a length-𝑁 vector

𝒞

𝑟new

𝐴𝛿

𝑟0

0

2

• Conjugate gradient method: 𝐴 is symmetric positive definite, 𝒞𝑖 = 𝒦𝑖(𝐴, 𝑟0)

𝑟𝑖 ⊥ 𝒦𝑖 𝐴, 𝑟0 ⟺ 𝑥 − 𝑥𝑖 𝐴 = min
𝑧∈𝑥0+𝒦𝑖(𝐴,𝑟0)

𝑥 − 𝑧 𝐴 ⟹ 𝒓𝑵+𝟏 = 𝟎

Krylov subspace methods

• In each iteration,

• Add a dimension to the Krylov subspace

– Forms nested sequence of Krylov subspaces

𝒦1 𝐴, 𝑟0 ⊂ 𝒦2 𝐴, 𝑟0 ⊂ ⋯ ⊂ 𝒦𝑖(𝐴, 𝑟0)

• Orthogonalize (with respect to some 𝒞𝑖)

• Select approximate solution 𝑥𝑖 ∈ 𝑥0 + 𝒦𝑖(𝐴, 𝑟0)

using 𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖 ⊥ 𝒞𝑖

• Krylov Subspace Method for solving 𝐴𝑥 = 𝑏: projection process onto the Krylov
subspace

𝒦𝑖 𝐴, 𝑟0 = span 𝑟0, 𝐴𝑟0, 𝐴2𝑟0, … , 𝐴𝑖−1𝑟0

where 𝐴 is an 𝑁 × 𝑁 matrix and 𝑟0 = 𝑏 − 𝐴𝑥0 is a length-𝑁 vector

𝒞

𝑟new

𝐴𝛿

𝑟0

0

2

Implementation of CG

• Standard implementation due to Hestenes and Stiefel (1952) (HSCG)

• Uses three 2-term recurrences for updating 𝑥𝑖 , 𝑟𝑖 , 𝑝𝑖

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end

3

Implementation of CG

• Standard implementation due to Hestenes and Stiefel (1952) (HSCG)

• Uses three 2-term recurrences for updating 𝑥𝑖 , 𝑟𝑖 , 𝑝𝑖

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end

minimizes 𝑥 − 𝑥𝑖 𝐴 along line
𝑧 𝛼 = 𝑥𝑖−1 + 𝛼𝑝𝑖−1

3

Implementation of CG

• Standard implementation due to Hestenes and Stiefel (1952) (HSCG)

• Uses three 2-term recurrences for updating 𝑥𝑖 , 𝑟𝑖 , 𝑝𝑖

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end

minimizes 𝑥 − 𝑥𝑖 𝐴 along line
𝑧 𝛼 = 𝑥𝑖−1 + 𝛼𝑝𝑖−1

𝑥0 + 𝒦𝑖 𝐴, 𝑟0 = 𝑥0 + span{𝑝0, … 𝑝𝑖−1}

If

𝑝𝑖 ⊥𝐴 𝑝𝑗 for 𝑖 ≠ 𝑗,

1-dimensional minimizations in each
iteration give 𝑖-dimensional
minimization over the whole subspace

3

Implementation of CG

• Standard implementation due to Hestenes and Stiefel (1952) (HSCG)

• Uses three 2-term recurrences for updating 𝑥𝑖 , 𝑟𝑖 , 𝑝𝑖

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end

minimizes 𝑥 − 𝑥𝑖 𝐴 along line
𝑧 𝛼 = 𝑥𝑖−1 + 𝛼𝑝𝑖−1

𝑥0 + 𝒦𝑖 𝐴, 𝑟0 = 𝑥0 + span{𝑝0, … 𝑝𝑖−1}

If

𝑝𝑖 ⊥𝐴 𝑝𝑗 for 𝑖 ≠ 𝑗,

1-dimensional minimizations in each
iteration give 𝑖-dimensional
minimization over the whole subspace

⇒ CG (and other Krylov subspace methods) are highly nonlinear

• Good for convergence, bad for ease of finite precision analysis 3

Communication in HSCG

Iteration Loop

SpMV

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end

4

Communication in HSCG

Iteration Loop

SpMV

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end

4

Communication in HSCG

Iteration Loop

SpMV

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end

4

Communication in HSCG

Iteration Loop

SpMV

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end

4

Communication in HSCG

Iteration Loop

SpMV

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end

4

Communication in HSCG

Iteration Loop

SpMV

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

end

4

Future exascale systems

Petascale
Systems (2009)

Predicted Exascale
Systems

Factor
Improvement

System Peak ~1000

Node Memory
Bandwidth

25 GB/s 0.4-4 TB/s ~10-100

Total Node Interconnect
Bandwidth

3.5 GB/s 100-400 GB/s ~100

Memory Latency 100 ns 50 ns ~1

Interconnect Latency ~1
*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

5

Future exascale systems

Petascale
Systems (2009)

Predicted Exascale
Systems

Factor
Improvement

System Peak ~1000

Node Memory
Bandwidth

25 GB/s 0.4-4 TB/s ~10-100

Total Node Interconnect
Bandwidth

3.5 GB/s 100-400 GB/s ~100

Memory Latency 100 ns 50 ns ~1

Interconnect Latency ~1
*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

5

Future exascale systems

Petascale
Systems (2009)

Predicted Exascale
Systems

Factor
Improvement

System Peak ~1000

Node Memory
Bandwidth

25 GB/s 0.4-4 TB/s ~10-100

Total Node Interconnect
Bandwidth

3.5 GB/s 100-400 GB/s ~100

Memory Latency 100 ns 50 ns ~2

Interconnect Latency ~2
*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

5

Future exascale systems

Petascale
Systems (2009)

Predicted Exascale
Systems

Factor
Improvement

System Peak ~1000

Node Memory
Bandwidth

25 GB/s 0.4-4 TB/s ~10-100

Total Node Interconnect
Bandwidth

3.5 GB/s 100-400 GB/s ~100

Memory Latency 100 ns 50 ns ~2

Interconnect Latency ~2

• Gaps between communication/computation cost only growing larger in
future systems

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

• Reducing time spent moving data/waiting for data will be essential for
applications at exascale! 5

Synchronization-reducing variants

Communication cost has motivated many approaches to reducing
synchronization in CG:

6

Synchronization-reducing variants

Communication cost has motivated many approaches to reducing
synchronization in CG:

• Early work: CG with a single synchronization point per iteration

• 3-term recurrence CG

• Using modified computation of recurrence coefficients

• Using auxiliary vectors

6

Synchronization-reducing variants

Communication cost has motivated many approaches to reducing
synchronization in CG:

• Early work: CG with a single synchronization point per iteration

• 3-term recurrence CG

• Using modified computation of recurrence coefficients

• Using auxiliary vectors

• Pipelined CG

• Uses modified coefficients and auxiliary vectors to reduce synchronization points
to 1 per iteration

• Modifications also allow decoupling of SpMV and inner products - enables
overlapping

6

Synchronization-reducing variants

Communication cost has motivated many approaches to reducing
synchronization in CG:

• Early work: CG with a single synchronization point per iteration

• 3-term recurrence CG

• Using modified computation of recurrence coefficients

• Using auxiliary vectors

• Pipelined CG

• Uses modified coefficients and auxiliary vectors to reduce synchronization points
to 1 per iteration

• Modifications also allow decoupling of SpMV and inner products - enables
overlapping

• s-step CG

• Compute iterations in blocks of s using a different Krylov subspace basis

• Enables one synchronization per s iterations
6

The effects of finite precision

Well-known that roundoff error has
two effects:

1. Delay of convergence
• No longer have exact Krylov

subspace
• Can lose numerical rank

deficiency
• Residuals no longer orthogonal

- Minimization no longer exact!

2. Loss of attainable accuracy
• Rounding errors cause true

residual 𝑏 − 𝐴𝑥𝑖 and updated
residual 𝑟𝑖 deviate!

7

The effects of finite precision

Well-known that roundoff error has
two effects:

1. Delay of convergence
• No longer have exact Krylov

subspace
• Can lose numerical rank

deficiency
• Residuals no longer orthogonal

- Minimization no longer exact!

2. Loss of attainable accuracy
• Rounding errors cause true

residual 𝑏 − 𝐴𝑥𝑖 and updated
residual 𝑟𝑖 deviate!

𝐴: bcsstk03 from UFSMC, 𝑏: equal components in
the eigenbasis of 𝐴 and 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 7e6

7

The effects of finite precision

Well-known that roundoff error has
two effects:

1. Delay of convergence
• No longer have exact Krylov

subspace
• Can lose numerical rank

deficiency
• Residuals no longer orthogonal

- Minimization no longer exact!

2. Loss of attainable accuracy
• Rounding errors cause true

residual 𝑏 − 𝐴𝑥𝑖 and updated
residual 𝑟𝑖 deviate!

𝐴: bcsstk03 from UFSMC, 𝑏: equal components in
the eigenbasis of 𝐴 and 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 7e6

7

The effects of finite precision

Well-known that roundoff error has
two effects:

1. Delay of convergence
• No longer have exact Krylov

subspace
• Can lose numerical rank

deficiency
• Residuals no longer orthogonal

- Minimization no longer exact!

2. Loss of attainable accuracy
• Rounding errors cause true

residual 𝑏 − 𝐴𝑥𝑖 and updated
residual 𝑟𝑖 deviate!

𝐴: bcsstk03 from UFSMC, 𝑏: equal components in
the eigenbasis of 𝐴 and 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 7e6

Much work on these results for CG; See Meurant and Strakoš (2006) for a thorough
summary of early developments in finite precision analysis of Lanczos and CG 7

• Synchronization-reducing variants are designed to reduce the time/iteration

Optimizing high performance iterative solvers

8

• Synchronization-reducing variants are designed to reduce the time/iteration

• But this is not the whole story!

Optimizing high performance iterative solvers

8

• Synchronization-reducing variants are designed to reduce the time/iteration

• But this is not the whole story!

• What we really want to minimize is the runtime, subject to some constraint
on accuracy

Optimizing high performance iterative solvers

8

• Synchronization-reducing variants are designed to reduce the time/iteration

• But this is not the whole story!

• What we really want to minimize is the runtime, subject to some constraint
on accuracy

Optimizing high performance iterative solvers

• Changes to how the recurrences are
computed can exacerbate finite
precision effects of convergence delay
and loss of accuracy

8

• Synchronization-reducing variants are designed to reduce the time/iteration

• But this is not the whole story!

• What we really want to minimize is the runtime, subject to some constraint
on accuracy

Optimizing high performance iterative solvers

• Changes to how the recurrences are
computed can exacerbate finite
precision effects of convergence delay
and loss of accuracy

• Crucial that we understand and take
into account how algorithm
modifications will affect the
convergence rate and attainable
accuracy!

8

• Accuracy depends on the size of the true residual: 𝑏 − 𝐴 𝑥𝑖

Maximum attainable accuracy

9

• Accuracy depends on the size of the true residual: 𝑏 − 𝐴 𝑥𝑖

• Rounding errors cause the true residual, 𝒃 − 𝑨 𝒙𝒊, and the updated residual, 𝒓𝒊,
to deviate

Maximum attainable accuracy

9

• Accuracy depends on the size of the true residual: 𝑏 − 𝐴 𝑥𝑖

• Rounding errors cause the true residual, 𝒃 − 𝑨 𝒙𝒊, and the updated residual, 𝒓𝒊,
to deviate

• Writing 𝑏 − 𝐴 𝑥𝑖 = 𝑟𝑖 + 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖,

𝑏 − 𝐴 𝑥𝑖 ≤ 𝑟𝑖 + 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

• As 𝑟𝑖 → 0, 𝑏 − 𝐴 𝑥𝑖 depends on 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

Maximum attainable accuracy

9

• Accuracy depends on the size of the true residual: 𝑏 − 𝐴 𝑥𝑖

• Rounding errors cause the true residual, 𝒃 − 𝑨 𝒙𝒊, and the updated residual, 𝒓𝒊,
to deviate

• Writing 𝑏 − 𝐴 𝑥𝑖 = 𝑟𝑖 + 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖,

𝑏 − 𝐴 𝑥𝑖 ≤ 𝑟𝑖 + 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

• As 𝑟𝑖 → 0, 𝑏 − 𝐴 𝑥𝑖 depends on 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

• Many results on bounding attainable accuracy, e.g.: Greenbaum (1989, 1994,
1997), Sleijpen, van der Vorst and Fokkema (1994), Sleijpen, van der Vorst
and Modersitzki (2001), Björck, Elfving and Strakoš (1998) and Gutknecht
and Strakoš (2000).

Maximum attainable accuracy

9

• In finite precision HSCG, iterates are updated by

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝜹𝒙𝒊 and 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝜹𝒓𝒊

Maximum attainable accuracy of HSCG

10

• In finite precision HSCG, iterates are updated by

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝜹𝒙𝒊 and 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝜹𝒓𝒊

• Let 𝑓𝑖 ≡ 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

Maximum attainable accuracy of HSCG

10

• In finite precision HSCG, iterates are updated by

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝜹𝒙𝒊 and 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝜹𝒓𝒊

• Let 𝑓𝑖 ≡ 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

𝑓𝑖 = 𝑏 − 𝐴 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝛿𝑥𝑖 − 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝛿𝑟𝑖

Maximum attainable accuracy of HSCG

10

• In finite precision HSCG, iterates are updated by

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝜹𝒙𝒊 and 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝜹𝒓𝒊

• Let 𝑓𝑖 ≡ 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

𝑓𝑖 = 𝑏 − 𝐴 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝛿𝑥𝑖 − 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝛿𝑟𝑖

= 𝑓𝑖−1 + 𝐴𝛿𝑥𝑖 + 𝛿𝑟𝑖

Maximum attainable accuracy of HSCG

10

• In finite precision HSCG, iterates are updated by

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝜹𝒙𝒊 and 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝜹𝒓𝒊

• Let 𝑓𝑖 ≡ 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

𝑓𝑖 = 𝑏 − 𝐴 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝛿𝑥𝑖 − 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝛿𝑟𝑖

= 𝑓𝑖−1 + 𝐴𝛿𝑥𝑖 + 𝛿𝑟𝑖

= 𝑓0 + 𝑚=1
𝑖 𝐴𝛿𝑥𝑚 + 𝛿𝑟𝑚

Maximum attainable accuracy of HSCG

10

• In finite precision HSCG, iterates are updated by

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝜹𝒙𝒊 and 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝜹𝒓𝒊

• Let 𝑓𝑖 ≡ 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

𝑓𝑖 = 𝑏 − 𝐴 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝛿𝑥𝑖 − 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝛿𝑟𝑖

= 𝑓𝑖−1 + 𝐴𝛿𝑥𝑖 + 𝛿𝑟𝑖

= 𝑓0 + 𝑚=1
𝑖 𝐴𝛿𝑥𝑚 + 𝛿𝑟𝑚

Maximum attainable accuracy of HSCG

𝑓𝑖 ≤ 𝑂(𝜀) 𝐴 𝑥 + max
𝑚=0,…,𝑖

 𝑥𝑚 Greenbaum, 1997

𝑓𝑖 ≤ 𝑂 𝜀 𝑚=0
𝑖 𝑁𝐴 𝐴 𝑥𝑚 + 𝑟𝑚 van der Vorst and Ye, 2000

𝑓𝑖 ≤ 𝑂 𝜀 𝑁𝐴 𝐴 𝐴−1 𝑚=0
𝑖 𝑟𝑚 Sleijpen and van der Vorst, 1995

10

Early approaches to reducing synchronization

• Modify HSCG recurrence coefficient computation

11

Early approaches to reducing synchronization

• Modify HSCG recurrence coefficient computation

• Compute 𝛽𝑖 from 𝛼𝑖−1 and 𝐴𝑝𝑖−1 using relation

𝑟𝑖
2 = 𝛼𝑖−1

2 𝐴𝑝𝑖−1
2 − 𝑟𝑖−1

2

11

Early approaches to reducing synchronization

• Modify HSCG recurrence coefficient computation

• Compute 𝛽𝑖 from 𝛼𝑖−1 and 𝐴𝑝𝑖−1 using relation

𝑟𝑖
2 = 𝛼𝑖−1

2 𝐴𝑝𝑖−1
2 − 𝑟𝑖−1

2

• Developed independently by Johnson (1983, 1984), van Rosendale (1983,
1984), Saad (1985); many similar approaches

11

Early approaches to reducing synchronization

• Modify HSCG recurrence coefficient computation

• Compute 𝛽𝑖 from 𝛼𝑖−1 and 𝐴𝑝𝑖−1 using relation

𝑟𝑖
2 = 𝛼𝑖−1

2 𝐴𝑝𝑖−1
2 − 𝑟𝑖−1

2

• Developed independently by Johnson (1983, 1984), van Rosendale (1983,
1984), Saad (1985); many similar approaches

• Could also compute 𝛼𝑖−1 from 𝛽𝑖−1:

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝐴𝑟𝑖−1

𝑟𝑖−1
𝑇 𝑟𝑖−1

−
𝛽𝑖−1

𝛼𝑖−2

−1

11

Early approaches to reducing synchronization

• Modify HSCG recurrence coefficient computation

• Compute 𝛽𝑖 from 𝛼𝑖−1 and 𝐴𝑝𝑖−1 using relation

𝑟𝑖
2 = 𝛼𝑖−1

2 𝐴𝑝𝑖−1
2 − 𝑟𝑖−1

2

• Developed independently by Johnson (1983, 1984), van Rosendale (1983,
1984), Saad (1985); many similar approaches

• Could also compute 𝛼𝑖−1 from 𝛽𝑖−1:

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝐴𝑟𝑖−1

𝑟𝑖−1
𝑇 𝑟𝑖−1

−
𝛽𝑖−1

𝛼𝑖−2

−1

• Use 3-term recurrences for 𝑟𝑖 and 𝑥𝑖 (STCG)

• First developed by Stiefel (1952/53), also Rutishauser (1959) and
Hageman and Young (1981)

11

Early approaches to reducing synchronization

• Modify HSCG recurrence coefficient computation

• Compute 𝛽𝑖 from 𝛼𝑖−1 and 𝐴𝑝𝑖−1 using relation

𝑟𝑖
2 = 𝛼𝑖−1

2 𝐴𝑝𝑖−1
2 − 𝑟𝑖−1

2

• Developed independently by Johnson (1983, 1984), van Rosendale (1983,
1984), Saad (1985); many similar approaches

• Could also compute 𝛼𝑖−1 from 𝛽𝑖−1:

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝐴𝑟𝑖−1

𝑟𝑖−1
𝑇 𝑟𝑖−1

−
𝛽𝑖−1

𝛼𝑖−2

−1

• Use 3-term recurrences for 𝑟𝑖 and 𝑥𝑖 (STCG)

• First developed by Stiefel (1952/53), also Rutishauser (1959) and
Hageman and Young (1981)

• Each iteration can be performed with a single synchronization point on
parallel computers (Strakoš 1985, 1987)

11

Modified recurrence coefficient computation

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝐴𝑟𝑖−1

𝑟𝑖−1
𝑇 𝑟𝑖−1

−
𝛽𝑖−1

𝛼𝑖−2

−1

Example: HSCG with modified
formula for 𝛼𝑖−1:

12

Modified recurrence coefficient computation

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝐴𝑟𝑖−1

𝑟𝑖−1
𝑇 𝑟𝑖−1

−
𝛽𝑖−1

𝛼𝑖−2

−1

Example: HSCG with modified
formula for 𝛼𝑖−1:

12

Modified recurrence coefficient computation

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝐴𝑟𝑖−1

𝑟𝑖−1
𝑇 𝑟𝑖−1

−
𝛽𝑖−1

𝛼𝑖−2

−1

Example: HSCG with modified
formula for 𝛼𝑖−1:

𝑓𝑖 = 𝑓0 + 𝑚=1
𝑖 𝐴𝛿𝑥𝑚 + 𝛿𝑟𝑚

12

Modified recurrence coefficient computation

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝐴𝑟𝑖−1

𝑟𝑖−1
𝑇 𝑟𝑖−1

−
𝛽𝑖−1

𝛼𝑖−2

−1

Example: HSCG with modified
formula for 𝛼𝑖−1:

𝑓𝑖 = 𝑓0 + 𝑚=1
𝑖 𝐴𝛿𝑥𝑚 + 𝛿𝑟𝑚

• Rounding errors made in computing 𝛼𝑖−1 do not contribute to the residual gap

• But may change computed 𝑥𝑖, 𝑟𝑖, which can affect convergence rate...

12

STCG

• Gutknecht and Strakoš
(2000): attainable accuracy
for STCG can be much
worse than for HSCG

13

STCG

• Gutknecht and Strakoš
(2000): attainable accuracy
for STCG can be much
worse than for HSCG

13

STCG

• Residual gap bounded by
sum of local errors PLUS
local errors multiplied by
factors which depend on

• Gutknecht and Strakoš
(2000): attainable accuracy
for STCG can be much
worse than for HSCG

max
0≤ℓ<𝑗≤𝑖

𝑟𝑗
2

𝑟ℓ
2

13

STCG

• Residual gap bounded by
sum of local errors PLUS
local errors multiplied by
factors which depend on

• Gutknecht and Strakoš
(2000): attainable accuracy
for STCG can be much
worse than for HSCG

max
0≤ℓ<𝑗≤𝑖

𝑟𝑗
2

𝑟ℓ
2

⇒ Large residual oscillations can cause these factors to be large!
⇒ Local errors can be amplified!

13

Chronopoulos and Gear's CG (ChG CG)
• Chronopoulos and Gear (1989)

• Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

• Reduces synchronizations/iteration to 1 by changing computation of 𝛼𝑖 and
using an auxiliary recurrence for 𝐴𝑝𝑖

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0= 𝑟0,

𝑠0 = 𝐴𝑝0, 𝛼0= (𝑟0, 𝑟0)/(𝑝0, 𝑠0)

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝐴𝑟𝑖

𝛽𝑖 =
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

𝛼𝑖 =
(𝑟𝑖,𝑟𝑖)

𝑤𝑖,𝑟𝑖 −(𝛽𝑖 𝛼𝑖−1)(𝑟𝑖,𝑟𝑖)

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

end 14

Chronopoulos and Gear's CG (ChG CG)
• Chronopoulos and Gear (1989)

• Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

• Reduces synchronizations/iteration to 1 by changing computation of 𝛼𝑖 and
using an auxiliary recurrence for 𝐴𝑝𝑖

Iteration Loop

SpMV

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0= 𝑟0,

𝑠0 = 𝐴𝑝0, 𝛼0= (𝑟0, 𝑟0)/(𝑝0, 𝑠0)

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝐴𝑟𝑖

𝛽𝑖 =
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

𝛼𝑖 =
(𝑟𝑖,𝑟𝑖)

𝑤𝑖,𝑟𝑖 −(𝛽𝑖 𝛼𝑖−1)(𝑟𝑖,𝑟𝑖)

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

end 14

Chronopoulos and Gear's CG (ChG CG)
• Chronopoulos and Gear (1989)

• Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

• Reduces synchronizations/iteration to 1 by changing computation of 𝛼𝑖 and
using an auxiliary recurrence for 𝐴𝑝𝑖

Iteration Loop

SpMV

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0= 𝑟0,

𝑠0 = 𝐴𝑝0, 𝛼0= (𝑟0, 𝑟0)/(𝑝0, 𝑠0)

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝐴𝑟𝑖

𝛽𝑖 =
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

𝛼𝑖 =
(𝑟𝑖,𝑟𝑖)

𝑤𝑖,𝑟𝑖 −(𝛽𝑖 𝛼𝑖−1)(𝑟𝑖,𝑟𝑖)

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

end 14

Chronopoulos and Gear's CG (ChG CG)
• Chronopoulos and Gear (1989)

• Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

• Reduces synchronizations/iteration to 1 by changing computation of 𝛼𝑖 and
using an auxiliary recurrence for 𝐴𝑝𝑖

Iteration Loop

SpMV

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0= 𝑟0,

𝑠0 = 𝐴𝑝0, 𝛼0= (𝑟0, 𝑟0)/(𝑝0, 𝑠0)

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝐴𝑟𝑖

𝛽𝑖 =
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

𝛼𝑖 =
(𝑟𝑖,𝑟𝑖)

𝑤𝑖,𝑟𝑖 −(𝛽𝑖 𝛼𝑖−1)(𝑟𝑖,𝑟𝑖)

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

end 14

Chronopoulos and Gear's CG (ChG CG)
• Chronopoulos and Gear (1989)

• Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

• Reduces synchronizations/iteration to 1 by changing computation of 𝛼𝑖 and
using an auxiliary recurrence for 𝐴𝑝𝑖

Iteration Loop

SpMV

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0= 𝑟0,

𝑠0 = 𝐴𝑝0, 𝛼0= (𝑟0, 𝑟0)/(𝑝0, 𝑠0)

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝐴𝑟𝑖

𝛽𝑖 =
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

𝛼𝑖 =
(𝑟𝑖,𝑟𝑖)

𝑤𝑖,𝑟𝑖 −(𝛽𝑖 𝛼𝑖−1)(𝑟𝑖,𝑟𝑖)

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

end 14

Chronopoulos and Gear's CG (ChG CG)
• Chronopoulos and Gear (1989)

• Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

• Reduces synchronizations/iteration to 1 by changing computation of 𝛼𝑖 and
using an auxiliary recurrence for 𝐴𝑝𝑖

Iteration Loop

SpMV

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0= 𝑟0,

𝑠0 = 𝐴𝑝0, 𝛼0= (𝑟0, 𝑟0)/(𝑝0, 𝑠0)

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝐴𝑟𝑖

𝛽𝑖 =
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

𝛼𝑖 =
(𝑟𝑖,𝑟𝑖)

𝑤𝑖,𝑟𝑖 −(𝛽𝑖 𝛼𝑖−1)(𝑟𝑖,𝑟𝑖)

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

end 14

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− 𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end

Pipelined CG (GVCG) (Ghysels and Vanroose 2014)

15

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− 𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end

• Similar to Chronopoulos and Gear
approach

• Uses auxiliary vector 𝑠𝑖 ≡ 𝐴𝑝𝑖 and
same formula for 𝛼𝑖

Pipelined CG (GVCG) (Ghysels and Vanroose 2014)

15

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− 𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end

• Similar to Chronopoulos and Gear
approach

• Uses auxiliary vector 𝑠𝑖 ≡ 𝐴𝑝𝑖 and
same formula for 𝛼𝑖

• Also uses auxiliary vectors for 𝐴𝑟𝑖 and
𝐴2𝑟𝑖 to remove sequential dependency
between SpMV and inner products

• Allows the use of nonblocking
(asynchronous) MPI
communication to overlap SpMV
and inner product

• Hides the latency of global
communications

Pipelined CG (GVCG) (Ghysels and Vanroose 2014)

15

Iteration Loop

Inner
Products

SpMV

Vector Updates

End Loop

O
ve

rl
ap

Vector Updates

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− 𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end

Pipelined CG (GVCG) (Ghysels and Vanroose 2014)

15

Iteration Loop

Inner
Products

SpMV

Vector Updates

End Loop

O
ve

rl
ap

Vector Updates

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− 𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end

Pipelined CG (GVCG) (Ghysels and Vanroose 2014)

15

Iteration Loop

Inner
Products

SpMV

Vector Updates

End Loop

O
ve

rl
ap

Vector Updates

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− 𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end

Pipelined CG (GVCG) (Ghysels and Vanroose 2014)

15

Iteration Loop

Inner
Products

SpMV

Vector Updates

End Loop

O
ve

rl
ap

Vector Updates

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− 𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end

Pipelined CG (GVCG) (Ghysels and Vanroose 2014)

15

Pipelined CG (GVCG) (Ghysels and Vanroose 2014)

Iteration Loop

Inner
Products

SpMV

Vector Updates

End Loop

O
ve

rl
ap

Vector Updates

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− 𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end

Precond

15

Attainable accuracy of pipelined CG

• Both ChG CG and GVCG use the same update formulas for 𝑥𝑖 and 𝑟𝑖:

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1, 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

16

Attainable accuracy of pipelined CG

• Both ChG CG and GVCG use the same update formulas for 𝑥𝑖 and 𝑟𝑖:

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1, 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

• In finite precision:

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 + 𝜹𝒙𝒊 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 + 𝜹𝒓𝒊

16

Attainable accuracy of pipelined CG

• Both ChG CG and GVCG use the same update formulas for 𝑥𝑖 and 𝑟𝑖:

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1, 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

• In finite precision:

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 + 𝜹𝒙𝒊 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 + 𝜹𝒓𝒊

𝑓𝑖 = 𝑟𝑖 − (𝑏 − 𝐴 𝑥𝑖)

16

Attainable accuracy of pipelined CG

• Both ChG CG and GVCG use the same update formulas for 𝑥𝑖 and 𝑟𝑖:

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1, 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

• In finite precision:

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 + 𝜹𝒙𝒊 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 + 𝜹𝒓𝒊

𝑓𝑖 = 𝑟𝑖 − (𝑏 − 𝐴 𝑥𝑖)

= 𝑓𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 − 𝐴 𝑝𝑖−1 + 𝛿𝑟𝑖 + 𝐴𝛿𝑥𝑖

16

Attainable accuracy of pipelined CG

• Both ChG CG and GVCG use the same update formulas for 𝑥𝑖 and 𝑟𝑖:

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1, 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

• In finite precision:

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 + 𝜹𝒙𝒊 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 + 𝜹𝒓𝒊

𝑓𝑖 = 𝑟𝑖 − (𝑏 − 𝐴 𝑥𝑖)

= 𝑓𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 − 𝐴 𝑝𝑖−1 + 𝛿𝑟𝑖 + 𝐴𝛿𝑥𝑖

= 𝑓0 + 𝑚=1
𝑖 (𝛿𝑟𝑚 + 𝐴𝛿𝑥𝑚) − 𝐺𝑖𝑑𝑖

where

𝐺𝑖 = 𝑆𝑖 − 𝐴 𝑃𝑖, 𝑑𝑖 = 𝛼0, … , 𝛼𝑖−1
𝑇

16

Attainable accuracy of pipelined CG

• Both ChG CG and GVCG use the same update formulas for 𝑥𝑖 and 𝑟𝑖:

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1, 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

• In finite precision:

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 + 𝜹𝒙𝒊 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 + 𝜹𝒓𝒊

𝑓𝑖 = 𝑟𝑖 − (𝑏 − 𝐴 𝑥𝑖)

= 𝑓𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 − 𝐴 𝑝𝑖−1 + 𝛿𝑟𝑖 + 𝐴𝛿𝑥𝑖

= 𝑓0 + 𝑚=1
𝑖 (𝛿𝑟𝑚 + 𝐴𝛿𝑥𝑚) − 𝐺𝑖𝑑𝑖

where

𝐺𝑖 = 𝑆𝑖 − 𝐴 𝑃𝑖, 𝑑𝑖 = 𝛼0, … , 𝛼𝑖−1
𝑇

16

Attainable accuracy of pipelined CG

• Both ChG CG and GVCG use the same update formulas for 𝑥𝑖 and 𝑟𝑖:

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1, 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

• In finite precision:

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 + 𝜹𝒙𝒊 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 + 𝜹𝒓𝒊

𝑓𝑖 = 𝑟𝑖 − (𝑏 − 𝐴 𝑥𝑖)

= 𝑓𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 − 𝐴 𝑝𝑖−1 + 𝛿𝑟𝑖 + 𝐴𝛿𝑥𝑖

= 𝑓0 + 𝑚=1
𝑖 (𝛿𝑟𝑚 + 𝐴𝛿𝑥𝑚) − 𝐺𝑖𝑑𝑖

where

𝐺𝑖 = 𝑆𝑖 − 𝐴 𝑃𝑖, 𝑑𝑖 = 𝛼0, … , 𝛼𝑖−1
𝑇

16

Attainable accuracy of pipelined CG

• Bound on 𝐺𝑖 will differ depending on the method (other recurrences or
auxiliary vectors used)

• Both ChG CG and GVCG use the same update formulas for 𝑥𝑖 and 𝑟𝑖:

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1, 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

• In finite precision:

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 + 𝜹𝒙𝒊 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 + 𝜹𝒓𝒊

𝑓𝑖 = 𝑟𝑖 − (𝑏 − 𝐴 𝑥𝑖)

= 𝑓𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 − 𝐴 𝑝𝑖−1 + 𝛿𝑟𝑖 + 𝐴𝛿𝑥𝑖

= 𝑓0 + 𝑚=1
𝑖 (𝛿𝑟𝑚 + 𝐴𝛿𝑥𝑚) − 𝐺𝑖𝑑𝑖

where

𝐺𝑖 = 𝑆𝑖 − 𝐴 𝑃𝑖, 𝑑𝑖 = 𝛼0, … , 𝛼𝑖−1
𝑇

16

Methodology for bounding 𝐺𝑖

• To show how one can bound 𝐺𝑖 for a particular pipelined variant, we
consider the simplest version of a method with auxiliary vector 𝑠𝑖 ≡ 𝐴𝑝𝑖:

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0, 𝑠0 = 𝐴𝑝0

for 𝑖 = 1:nmax

𝛼𝑖−1 =
(𝑟𝑖−1,𝑟𝑖−1)

(𝑝𝑖−1,𝑠𝑖−1)

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝛽𝑖 =
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝐴𝑟𝑖 + 𝛽𝑖𝑠𝑖−1

end

17

Methodology for bounding 𝐺𝑖

• To show how one can bound 𝐺𝑖 for a particular pipelined variant, we
consider the simplest version of a method with auxiliary vector 𝑠𝑖 ≡ 𝐴𝑝𝑖:

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0, 𝑠0 = 𝐴𝑝0

for 𝑖 = 1:nmax

𝛼𝑖−1 =
(𝑟𝑖−1,𝑟𝑖−1)

(𝑝𝑖−1,𝑠𝑖−1)

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝛽𝑖 =
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝐴𝑟𝑖 + 𝛽𝑖𝑠𝑖−1

end

 𝑅𝑖 = 𝑃𝑖
 𝑈𝑖 − Δ𝑃𝑖

𝐴 𝑅𝑖 = 𝑆𝑖
 𝑈𝑖 − Δ𝑆𝑖

 𝑈𝑖 =

1 − 𝛽1 0 0
0 1 ⋱ 0
⋮ ⋱ 1 − 𝛽𝑖−1

0 … 0 1

17

Methodology for bounding 𝐺𝑖

• To show how one can bound 𝐺𝑖 for a particular pipelined variant, we
consider the simplest version of a method with auxiliary vector 𝑠𝑖 ≡ 𝐴𝑝𝑖:

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0, 𝑠0 = 𝐴𝑝0

for 𝑖 = 1:nmax

𝛼𝑖−1 =
(𝑟𝑖−1,𝑟𝑖−1)

(𝑝𝑖−1,𝑠𝑖−1)

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝛽𝑖 =
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝐴𝑟𝑖 + 𝛽𝑖𝑠𝑖−1

end

 𝑅𝑖 = 𝑃𝑖
 𝑈𝑖 − Δ𝑃𝑖

𝐴 𝑅𝑖 = 𝑆𝑖
 𝑈𝑖 − Δ𝑆𝑖

 𝑈𝑖 =

1 − 𝛽1 0 0
0 1 ⋱ 0
⋮ ⋱ 1 − 𝛽𝑖−1

0 … 0 1

𝐺𝑖 ≡ 𝑆𝑖 − 𝐴 𝑃𝑖 = Δ𝑆𝑖 − 𝐴Δ𝑃𝑖
 𝑈𝑖

−1

17

Attainable accuracy of simple pipelined CG

𝐺𝑖 ≤
𝑂 𝜀

1 − 𝑂 𝜀
𝜅(𝑈𝑖) 𝐴 𝑃𝑖 + 𝐴 𝑅𝑖

 𝑈𝑖
−1

 𝑈𝑖 =

1 − 𝛽1 0 0
0 1 ⋱ 0
⋮ ⋱ 1 − 𝛽𝑖−1

0 … 0 1

 𝑈𝑖
−1 =

1 𝛽1 … … 𝛽1
 𝛽2 ⋯ 𝛽𝑖−1

0 1 𝛽2 … 𝛽2 ⋯ 𝛽𝑖−1

⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ 1 𝛽𝑖−1

0 ⋯ ⋯ 0 1

18

Attainable accuracy of simple pipelined CG

𝐺𝑖 ≤
𝑂 𝜀

1 − 𝑂 𝜀
𝜅(𝑈𝑖) 𝐴 𝑃𝑖 + 𝐴 𝑅𝑖

 𝑈𝑖
−1

 𝑈𝑖 =

1 − 𝛽1 0 0
0 1 ⋱ 0
⋮ ⋱ 1 − 𝛽𝑖−1

0 … 0 1

 𝑈𝑖
−1 =

1 𝛽1 … … 𝛽1
 𝛽2 ⋯ 𝛽𝑖−1

0 1 𝛽2 … 𝛽2 ⋯ 𝛽𝑖−1

⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ 1 𝛽𝑖−1

0 ⋯ ⋯ 0 1

𝛽ℓ𝛽ℓ+1 ⋯ 𝛽𝑗 =
𝑟𝑗

2

𝑟ℓ−1
2 , ℓ < 𝑗

18

Attainable accuracy of simple pipelined CG

𝐺𝑖 ≤
𝑂 𝜀

1 − 𝑂 𝜀
𝜅(𝑈𝑖) 𝐴 𝑃𝑖 + 𝐴 𝑅𝑖

 𝑈𝑖
−1

 𝑈𝑖 =

1 − 𝛽1 0 0
0 1 ⋱ 0
⋮ ⋱ 1 − 𝛽𝑖−1

0 … 0 1

 𝑈𝑖
−1 =

1 𝛽1 … … 𝛽1
 𝛽2 ⋯ 𝛽𝑖−1

0 1 𝛽2 … 𝛽2 ⋯ 𝛽𝑖−1

⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ 1 𝛽𝑖−1

0 ⋯ ⋯ 0 1

• Very similar to the results for attainable accuracy in the 3-term STCG
• Residual oscillations can cause these factors to be large!
• Errors in computed recurrence coefficients can be amplified!

• Seemingly innocuous change can cause drastic loss of accuracy

𝛽ℓ𝛽ℓ+1 ⋯ 𝛽𝑗 =
𝑟𝑗

2

𝑟ℓ−1
2 , ℓ < 𝑗

18

Attainable accuracy of simple pipelined CG

𝐺𝑖 ≤
𝑂 𝜀

1 − 𝑂 𝜀
𝜅(𝑈𝑖) 𝐴 𝑃𝑖 + 𝐴 𝑅𝑖

 𝑈𝑖
−1

 𝑈𝑖 =

1 − 𝛽1 0 0
0 1 ⋱ 0
⋮ ⋱ 1 − 𝛽𝑖−1

0 … 0 1

 𝑈𝑖
−1 =

1 𝛽1 … … 𝛽1
 𝛽2 ⋯ 𝛽𝑖−1

0 1 𝛽2 … 𝛽2 ⋯ 𝛽𝑖−1

⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ 1 𝛽𝑖−1

0 ⋯ ⋯ 0 1

• Very similar to the results for attainable accuracy in the 3-term STCG
• Residual oscillations can cause these factors to be large!
• Errors in computed recurrence coefficients can be amplified!

• Seemingly innocuous change can cause drastic loss of accuracy

• For GVCG, bound on 𝐺𝑖 can be larger due to use of additional auxiliary
vectors

𝛽ℓ𝛽ℓ+1 ⋯ 𝛽𝑗 =
𝑟𝑗

2

𝑟ℓ−1
2 , ℓ < 𝑗

18

Behavior of "pipelined" CG variants

effect of using auxiliary vector 𝑠𝑖 ≡ 𝐴𝑝𝑖

19

Behavior of "pipelined" CG variants

effect of changing formula for recurrence coefficient 𝛼 and
using auxiliary vector 𝑠𝑖 ≡ 𝐴𝑝𝑖

19

Behavior of "pipelined" CG variants

effect of changing formula for recurrence coefficient 𝛼 and
using auxiliary vectors 𝑠𝑖 ≡ 𝐴𝑝𝑖, 𝑤𝑖 ≡ 𝐴𝑟𝑖 , 𝑧𝑖 ≡ 𝐴2𝑟𝑖

19

s-step CG

• Idea: Compute blocks of 𝑠 iterations at once

• Compute updates in a different basis

• Communicate every 𝑠 iterations instead of every iteration

• Reduces number of synchronizations per iteration by a factor of s

20

s-step CG

• Idea: Compute blocks of 𝑠 iterations at once

• Compute updates in a different basis

• Communicate every 𝑠 iterations instead of every iteration

• Reduces number of synchronizations per iteration by a factor of s

• An idea rediscovered many times…
• First related work: s-dimensional steepest descent, least squares

• Khabaza (‘63), Forsythe (‘68), Marchuk and Kuznecov (‘68)

20

s-step CG

• Idea: Compute blocks of 𝑠 iterations at once

• Compute updates in a different basis

• Communicate every 𝑠 iterations instead of every iteration

• Reduces number of synchronizations per iteration by a factor of s

• An idea rediscovered many times…
• First related work: s-dimensional steepest descent, least squares

• Khabaza (‘63), Forsythe (‘68), Marchuk and Kuznecov (‘68)
• Flurry of work on s-step Krylov methods in ‘80s/early ‘90s: see, e.g., Van

Rosendale (1983); Chronopoulos and Gear (1989)

20

s-step CG

• Idea: Compute blocks of 𝑠 iterations at once

• Compute updates in a different basis

• Communicate every 𝑠 iterations instead of every iteration

• Reduces number of synchronizations per iteration by a factor of s

• An idea rediscovered many times…
• First related work: s-dimensional steepest descent, least squares

• Khabaza (‘63), Forsythe (‘68), Marchuk and Kuznecov (‘68)
• Flurry of work on s-step Krylov methods in ‘80s/early ‘90s: see, e.g., Van

Rosendale (1983); Chronopoulos and Gear (1989)

• Resurgence of interest in recent years due to growing problem sizes;
growing relative cost of communication

20

Key observation: After iteration 𝑖, for 𝑗 ∈ {0, . . , 𝑠},

𝑥𝑖+𝑗 − 𝑥𝑖 , 𝑟𝑖+𝑗 , 𝑝𝑖+𝑗 ∈ 𝒦𝑠+1 𝐴, 𝑝𝑖 + 𝒦𝑠 𝐴, 𝑟𝑖

s-step CG

21

Key observation: After iteration 𝑖, for 𝑗 ∈ {0, . . , 𝑠},

𝑥𝑖+𝑗 − 𝑥𝑖 , 𝑟𝑖+𝑗 , 𝑝𝑖+𝑗 ∈ 𝒦𝑠+1 𝐴, 𝑝𝑖 + 𝒦𝑠 𝐴, 𝑟𝑖

s-step CG

s steps of s-step CG:

21

Key observation: After iteration 𝑖, for 𝑗 ∈ {0, . . , 𝑠},

𝑥𝑖+𝑗 − 𝑥𝑖 , 𝑟𝑖+𝑗 , 𝑝𝑖+𝑗 ∈ 𝒦𝑠+1 𝐴, 𝑝𝑖 + 𝒦𝑠 𝐴, 𝑟𝑖

s-step CG

s steps of s-step CG:

Expand solution space 𝒔 dimensions at once

Compute “basis” matrix 𝒴 such that span 𝒴 = 𝒦𝑠+1 𝐴, 𝑝𝑖 + 𝒦𝑠 𝐴, 𝑟𝑖 according to

the recurrence 𝐴𝒴 = 𝒴 ℬ

21

Key observation: After iteration 𝑖, for 𝑗 ∈ {0, . . , 𝑠},

𝑥𝑖+𝑗 − 𝑥𝑖 , 𝑟𝑖+𝑗 , 𝑝𝑖+𝑗 ∈ 𝒦𝑠+1 𝐴, 𝑝𝑖 + 𝒦𝑠 𝐴, 𝑟𝑖

s-step CG

s steps of s-step CG:

Expand solution space 𝒔 dimensions at once

Compute “basis” matrix 𝒴 such that span 𝒴 = 𝒦𝑠+1 𝐴, 𝑝𝑖 + 𝒦𝑠 𝐴, 𝑟𝑖 according to

the recurrence 𝐴𝒴 = 𝒴 ℬ

Compute inner products between basis vectors in one synchronization
𝒢 = 𝒴𝑇𝒴

21

Key observation: After iteration 𝑖, for 𝑗 ∈ {0, . . , 𝑠},

𝑥𝑖+𝑗 − 𝑥𝑖 , 𝑟𝑖+𝑗 , 𝑝𝑖+𝑗 ∈ 𝒦𝑠+1 𝐴, 𝑝𝑖 + 𝒦𝑠 𝐴, 𝑟𝑖

s-step CG

s steps of s-step CG:

Expand solution space 𝒔 dimensions at once

Compute “basis” matrix 𝒴 such that span 𝒴 = 𝒦𝑠+1 𝐴, 𝑝𝑖 + 𝒦𝑠 𝐴, 𝑟𝑖 according to

the recurrence 𝐴𝒴 = 𝒴 ℬ

Compute inner products between basis vectors in one synchronization
𝒢 = 𝒴𝑇𝒴

Compute s iterations of vector updates
Perform 𝑠 iterations of vector updates by updating coordinates in basis 𝒴:

𝑥𝑖+𝑗 − 𝑥𝑖 = 𝒴𝑥𝑗
′, 𝑟𝑖+𝑗 = 𝒴𝑟𝑗

′, 𝑝𝑖+𝑗 = 𝒴𝑝𝑗
′

21

s-step CG

For s iterations of updates, inner products and SpMVs (in basis 𝒴) can be
computed by independently by each processor without communication:

22

𝐴𝑝𝑖+𝑗

×𝑛

𝑛

s-step CG

For s iterations of updates, inner products and SpMVs (in basis 𝒴) can be
computed by independently by each processor without communication:

22

𝐴𝑝𝑖+𝑗

×𝑛

𝑛

𝐴𝒴𝑝𝑗
′

=

s-step CG

For s iterations of updates, inner products and SpMVs (in basis 𝒴) can be
computed by independently by each processor without communication:

22

→

𝒴(ℬ𝑝𝑗
′)

𝑂(𝑠)

𝑂(𝑠)

×

𝐴𝑝𝑖+𝑗

×𝑛

𝑛

𝐴𝒴𝑝𝑗
′

= =

s-step CG

For s iterations of updates, inner products and SpMVs (in basis 𝒴) can be
computed by independently by each processor without communication:

22

→

𝒴(ℬ𝑝𝑗
′)

𝑂(𝑠)

𝑂(𝑠)

×

(𝑟𝑖+𝑗 , 𝑟𝑖+𝑗)

𝐴𝑝𝑖+𝑗

×

×𝑛

𝑛

𝐴𝒴𝑝𝑗
′

= =

s-step CG

For s iterations of updates, inner products and SpMVs (in basis 𝒴) can be
computed by independently by each processor without communication:

22

→

𝒴(ℬ𝑝𝑗
′)

𝑂(𝑠)

𝑂(𝑠)

×

(𝑟𝑖+𝑗 , 𝑟𝑖+𝑗)

𝐴𝑝𝑖+𝑗

×

×𝑛

𝑛

𝐴𝒴𝑝𝑗
′

= =

= 𝑟𝑗
′𝑇𝒴𝑇𝒴𝑟𝑗

′

s-step CG

For s iterations of updates, inner products and SpMVs (in basis 𝒴) can be
computed by independently by each processor without communication:

22

→

→

𝒴(ℬ𝑝𝑗
′)

𝑂(𝑠)

𝑂(𝑠)

×

𝑟𝑗
′𝑇𝒢𝑟𝑗

′

× ×

(𝑟𝑖+𝑗 , 𝑟𝑖+𝑗)

𝐴𝑝𝑖+𝑗

×

×𝑛

𝑛

𝐴𝒴𝑝𝑗
′

= =

= 𝑟𝑗
′𝑇𝒴𝑇𝒴𝑟𝑗

′ =

s-step CG

For s iterations of updates, inner products and SpMVs (in basis 𝒴) can be
computed by independently by each processor without communication:

22

s-step CG
𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 + 𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1

′𝑇 𝒢𝑘𝑟𝑗−1
′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗

′𝑇𝒢𝑘𝑟𝑗
′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
23

s-step CG

Outer Loop

Compute basis
O(s) SPMVs

O(𝑠2) Inner
Products (one

synchronization)

Inner Loop

Local Vector
Updates (no

comm.)

End Inner Loop

Inner Outer Loop

s
times

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 + 𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1

′𝑇 𝒢𝑘𝑟𝑗−1
′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗

′𝑇𝒢𝑘𝑟𝑗
′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
23

s-step CG

Outer Loop

Compute basis
O(s) SPMVs

O(𝑠2) Inner
Products (one

synchronization)

Inner Loop

Local Vector
Updates (no

comm.)

End Inner Loop

Inner Outer Loop

s
times

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 + 𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1

′𝑇 𝒢𝑘𝑟𝑗−1
′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗

′𝑇𝒢𝑘𝑟𝑗
′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
23

s-step CG

Outer Loop

Compute basis
O(s) SPMVs

O(𝑠2) Inner
Products (one

synchronization)

Inner Loop

Local Vector
Updates (no

comm.)

End Inner Loop

Inner Outer Loop

s
times

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 + 𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1

′𝑇 𝒢𝑘𝑟𝑗−1
′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗

′𝑇𝒢𝑘𝑟𝑗
′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
23

s-step CG

Outer Loop

Compute basis
O(s) SPMVs

O(𝑠2) Inner
Products (one

synchronization)

Inner Loop

Local Vector
Updates (no

comm.)

End Inner Loop

Inner Outer Loop

s
times

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 + 𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1

′𝑇 𝒢𝑘𝑟𝑗−1
′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗

′𝑇𝒢𝑘𝑟𝑗
′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
23

Sources of local roundoff error in s-step CG

Computing the 𝑠-step Krylov subspace basis:

𝐴 𝒴𝑘 = 𝒴𝑘ℬ𝑘 + Δ𝒴𝑘

Updating coordinate vectors in the inner loop:

 𝑥𝑘,𝑗
′ = 𝑥𝑘,𝑗−1

′ + 𝑞𝑘,𝑗−1
′ + 𝜉𝑘,𝑗

 𝑟𝑘,𝑗
′ = 𝑟𝑘,𝑗−1

′ − ℬ𝑘 𝑞𝑘,𝑗−1
′ + 𝜂𝑘,𝑗

with 𝑞𝑘,𝑗−1
′ = fl(𝛼𝑠𝑘+𝑗−1 𝑝𝑘,𝑗−1

′)

Recovering CG vectors for use in next outer loop:

 𝑥𝑠𝑘+𝑗 = 𝒴𝑘 𝑥𝑘,𝑗
′ + 𝑥𝑠𝑘 + 𝜙𝑠𝑘+𝑗

 𝑟𝑠𝑘+𝑗 = 𝒴𝑘 𝑟𝑘,𝑗
′ + 𝜓𝑠𝑘+𝑗

24

Sources of local roundoff error in s-step CG

Error in computing
𝑠-step basis

Computing the 𝑠-step Krylov subspace basis:

𝐴 𝒴𝑘 = 𝒴𝑘ℬ𝑘 + Δ𝒴𝑘

Updating coordinate vectors in the inner loop:

 𝑥𝑘,𝑗
′ = 𝑥𝑘,𝑗−1

′ + 𝑞𝑘,𝑗−1
′ + 𝜉𝑘,𝑗

 𝑟𝑘,𝑗
′ = 𝑟𝑘,𝑗−1

′ − ℬ𝑘 𝑞𝑘,𝑗−1
′ + 𝜂𝑘,𝑗

with 𝑞𝑘,𝑗−1
′ = fl(𝛼𝑠𝑘+𝑗−1 𝑝𝑘,𝑗−1

′)

Recovering CG vectors for use in next outer loop:

 𝑥𝑠𝑘+𝑗 = 𝒴𝑘 𝑥𝑘,𝑗
′ + 𝑥𝑠𝑘 + 𝜙𝑠𝑘+𝑗

 𝑟𝑠𝑘+𝑗 = 𝒴𝑘 𝑟𝑘,𝑗
′ + 𝜓𝑠𝑘+𝑗

24

Sources of local roundoff error in s-step CG

Error in computing
𝑠-step basis

Error in updating
coefficient vectors

Computing the 𝑠-step Krylov subspace basis:

𝐴 𝒴𝑘 = 𝒴𝑘ℬ𝑘 + Δ𝒴𝑘

Updating coordinate vectors in the inner loop:

 𝑥𝑘,𝑗
′ = 𝑥𝑘,𝑗−1

′ + 𝑞𝑘,𝑗−1
′ + 𝜉𝑘,𝑗

 𝑟𝑘,𝑗
′ = 𝑟𝑘,𝑗−1

′ − ℬ𝑘 𝑞𝑘,𝑗−1
′ + 𝜂𝑘,𝑗

with 𝑞𝑘,𝑗−1
′ = fl(𝛼𝑠𝑘+𝑗−1 𝑝𝑘,𝑗−1

′)

Recovering CG vectors for use in next outer loop:

 𝑥𝑠𝑘+𝑗 = 𝒴𝑘 𝑥𝑘,𝑗
′ + 𝑥𝑠𝑘 + 𝜙𝑠𝑘+𝑗

 𝑟𝑠𝑘+𝑗 = 𝒴𝑘 𝑟𝑘,𝑗
′ + 𝜓𝑠𝑘+𝑗

24

Error in
basis change

Sources of local roundoff error in s-step CG

Error in computing
𝑠-step basis

Error in updating
coefficient vectors

Computing the 𝑠-step Krylov subspace basis:

𝐴 𝒴𝑘 = 𝒴𝑘ℬ𝑘 + Δ𝒴𝑘

Updating coordinate vectors in the inner loop:

 𝑥𝑘,𝑗
′ = 𝑥𝑘,𝑗−1

′ + 𝑞𝑘,𝑗−1
′ + 𝜉𝑘,𝑗

 𝑟𝑘,𝑗
′ = 𝑟𝑘,𝑗−1

′ − ℬ𝑘 𝑞𝑘,𝑗−1
′ + 𝜂𝑘,𝑗

with 𝑞𝑘,𝑗−1
′ = fl(𝛼𝑠𝑘+𝑗−1 𝑝𝑘,𝑗−1

′)

Recovering CG vectors for use in next outer loop:

 𝑥𝑠𝑘+𝑗 = 𝒴𝑘 𝑥𝑘,𝑗
′ + 𝑥𝑠𝑘 + 𝜙𝑠𝑘+𝑗

 𝑟𝑠𝑘+𝑗 = 𝒴𝑘 𝑟𝑘,𝑗
′ + 𝜓𝑠𝑘+𝑗

24

• We can write the gap between the true and updated residuals 𝑓 in terms
of these errors:

Attainable accuracy of s-step CG

• Using standard rounding error results, this allows us to obtain an upper

bound on 𝑓𝑠𝑘+𝑗 .

𝑓𝑠𝑘+𝑗 = 𝑓0

−

ℓ=0

𝑘−1

𝐴𝜙𝑠ℓ+𝑠 + 𝜓𝑠ℓ+𝑠 +

𝑖=1

𝑠

𝐴 𝒴ℓ𝜉ℓ,𝑖 + 𝒴ℓ𝜂ℓ,𝑖 − Δ𝒴ℓ 𝑞ℓ,𝑖−1
′

−𝐴𝜙𝑠𝑘+𝑗 − 𝜓𝑠𝑘+𝑗 −

𝑖=1

𝑗

𝐴 𝒴𝑘𝜉𝑘,𝑖 + 𝒴𝑘𝜂𝑘,𝑖 − Δ𝒴ℓ 𝑞𝑘,𝑖−1
′

25

• We can write the gap between the true and updated residuals 𝑓 in terms
of these errors:

Attainable accuracy of s-step CG

• Using standard rounding error results, this allows us to obtain an upper

bound on 𝑓𝑠𝑘+𝑗 .

𝑓𝑠𝑘+𝑗 = 𝑓0

−

ℓ=0

𝑘−1

𝐴𝜙𝑠ℓ+𝑠 + 𝜓𝑠ℓ+𝑠 +

𝑖=1

𝑠

𝐴 𝒴ℓ𝜉ℓ,𝑖 + 𝒴ℓ𝜂ℓ,𝑖 − Δ𝒴ℓ 𝑞ℓ,𝑖−1
′

−𝐴𝜙𝑠𝑘+𝑗 − 𝜓𝑠𝑘+𝑗 −

𝑖=1

𝑗

𝐴 𝒴𝑘𝜉𝑘,𝑖 + 𝒴𝑘𝜂𝑘,𝑖 − Δ𝒴ℓ 𝑞𝑘,𝑖−1
′

25

• We can write the gap between the true and updated residuals 𝑓 in terms
of these errors:

Attainable accuracy of s-step CG

• Using standard rounding error results, this allows us to obtain an upper

bound on 𝑓𝑠𝑘+𝑗 .

𝑓𝑠𝑘+𝑗 = 𝑓0

−

ℓ=0

𝑘−1

𝐴𝜙𝑠ℓ+𝑠 + 𝜓𝑠ℓ+𝑠 +

𝑖=1

𝑠

𝐴 𝒴ℓ𝜉ℓ,𝑖 + 𝒴ℓ𝜂ℓ,𝑖 − Δ𝒴ℓ 𝑞ℓ,𝑖−1
′

−𝐴𝜙𝑠𝑘+𝑗 − 𝜓𝑠𝑘+𝑗 −

𝑖=1

𝑗

𝐴 𝒴𝑘𝜉𝑘,𝑖 + 𝒴𝑘𝜂𝑘,𝑖 − Δ𝒴ℓ 𝑞𝑘,𝑖−1
′

25

• We can write the gap between the true and updated residuals 𝑓 in terms
of these errors:

Attainable accuracy of s-step CG

• Using standard rounding error results, this allows us to obtain an upper

bound on 𝑓𝑠𝑘+𝑗 .

𝑓𝑠𝑘+𝑗 = 𝑓0

−

ℓ=0

𝑘−1

𝐴𝜙𝑠ℓ+𝑠 + 𝜓𝑠ℓ+𝑠 +

𝑖=1

𝑠

𝐴 𝒴ℓ𝜉ℓ,𝑖 + 𝒴ℓ𝜂ℓ,𝑖 − Δ𝒴ℓ 𝑞ℓ,𝑖−1
′

−𝐴𝜙𝑠𝑘+𝑗 − 𝜓𝑠𝑘+𝑗 −

𝑖=1

𝑗

𝐴 𝒴𝑘𝜉𝑘,𝑖 + 𝒴𝑘𝜂𝑘,𝑖 − Δ𝒴ℓ 𝑞𝑘,𝑖−1
′

25

For CG:

Attainable accuracy of s-step CG

𝑓𝑖 ≤ 𝑓0 + 𝜀

𝑚=1

𝑖

1 + 𝑁 𝐴 𝑥𝑚 + 𝑟𝑚

𝑓𝑖 ≡ 𝑏−𝐴 𝑥𝑖− 𝑟𝑖

26

For CG:

Attainable accuracy of s-step CG

𝑓𝑠𝑘+𝑗 ≤ 𝑓0 + 𝜀𝒄𝛤

𝑚=1

𝑠𝑘+𝑗

1 + 𝑁 𝐴 𝑥𝑚 + 𝑟𝑚

𝑓𝑖 ≤ 𝑓0 + 𝜀

𝑚=1

𝑖

1 + 𝑁 𝐴 𝑥𝑚 + 𝑟𝑚

For s-step CG: 𝑖 ≡ 𝑠𝑘 + 𝑗

where 𝑐 is a low-degree polynomial in 𝑠, and

Γ = max
ℓ≤𝑘

 𝒴ℓ
+ ⋅ 𝒴ℓ

𝑓𝑖 ≡ 𝑏−𝐴 𝑥𝑖− 𝑟𝑖

(see C., 2015)

26

Finite precision Lanczos process: (𝐴 is 𝑁 × 𝑁 with at most 𝑛 nonzeros per row)

𝐴 𝑉𝑚 = 𝑉𝑚
 𝑇𝑚 + 𝛽𝑚+1 𝑣𝑚+1𝑒𝑚

𝑇 + 𝛿 𝑉𝑚

 𝑉𝑚 = 𝑣1, … , 𝑣𝑚 , 𝛿 𝑉𝑚 = 𝛿 𝑣1, … , 𝛿 𝑣𝑚 , 𝑇𝑚 =

 𝛼1
 𝛽2

 𝛽2 ⋱ ⋱

⋱ ⋱ 𝛽𝑚

 𝛽𝑚 𝛼𝑚

Roundoff error in Lanczos vs. s-step Lanczos

for 𝑖 ∈ {1, … , 𝑚},
𝛿 𝑣𝑖 2 ≤ 𝜀1𝜎

 𝛽𝑖+1 𝑣𝑖
𝑇 𝑣𝑖+1 ≤ 2𝜀0𝜎

 𝑣𝑖+1
𝑇 𝑣𝑖+1 − 1 ≤ 𝜀0 2

 𝛽𝑖+1
2 + 𝛼𝑖

2 + 𝛽𝑖
2 − 𝐴 𝑣𝑖 2

2 ≤ 4𝑖 3𝜀0 + 𝜀1 𝜎2

where 𝜎 ≡ 𝐴 2, and
𝜃𝜎 ≡ 𝐴 2

27

Lanczos (Paige, 1976):

𝜀0 = 𝑂 𝜀𝑁

𝜀1 = 𝑂 𝜀𝑛𝜃

Finite precision Lanczos process: (𝐴 is 𝑁 × 𝑁 with at most 𝑛 nonzeros per row)

𝐴 𝑉𝑚 = 𝑉𝑚
 𝑇𝑚 + 𝛽𝑚+1 𝑣𝑚+1𝑒𝑚

𝑇 + 𝛿 𝑉𝑚

 𝑉𝑚 = 𝑣1, … , 𝑣𝑚 , 𝛿 𝑉𝑚 = 𝛿 𝑣1, … , 𝛿 𝑣𝑚 , 𝑇𝑚 =

 𝛼1
 𝛽2

 𝛽2 ⋱ ⋱

⋱ ⋱ 𝛽𝑚

 𝛽𝑚 𝛼𝑚

Roundoff error in Lanczos vs. s-step Lanczos

for 𝑖 ∈ {1, … , 𝑚},
𝛿 𝑣𝑖 2 ≤ 𝜀1𝜎

 𝛽𝑖+1 𝑣𝑖
𝑇 𝑣𝑖+1 ≤ 2𝜀0𝜎

 𝑣𝑖+1
𝑇 𝑣𝑖+1 − 1 ≤ 𝜀0 2

 𝛽𝑖+1
2 + 𝛼𝑖

2 + 𝛽𝑖
2 − 𝐴 𝑣𝑖 2

2 ≤ 4𝑖 3𝜀0 + 𝜀1 𝜎2

where 𝜎 ≡ 𝐴 2, and
𝜃𝜎 ≡ 𝐴 2

s-step Lanczos (C., Demmel, 2015):

𝜀0 = 𝑂 𝜀𝑁𝚪𝟐

𝜀1 = 𝑂 𝜀𝑛𝜃𝚪

Γ = max
ℓ≤𝑘

𝒴ℓ
+

2 ∙ 𝒴ℓ 2
27

Lanczos (Paige, 1976):

𝜀0 = 𝑂 𝜀𝑁

𝜀1 = 𝑂 𝜀𝑛𝜃

Γ ≤ 24𝜖 𝑁 + 11𝑠 + 15
− 1 2

=
𝑂 𝑁

𝜖

Convergence of Ritz values in s-step Lanczos

• All results of Paige (1980), e.g., loss of orthogonality  eigenvalue
convergence, hold for s-step Lanczos as long as

28

Γ ≤ 24𝜖 𝑁 + 11𝑠 + 15
− 1 2

=
𝑂 𝑁

𝜖

Convergence of Ritz values in s-step Lanczos

• All results of Paige (1980), e.g., loss of orthogonality  eigenvalue
convergence, hold for s-step Lanczos as long as

𝜆

𝑂(𝜖𝑁3 𝐴)

𝑂(𝜖𝑁3 𝐴 𝚪𝟐)

Lanczos

s-step Lanczos

• Bounds on accuracy of Ritz values depend on Γ2

28

s-step CG

29

s-step CG

s-step CG with monomial basis (𝒴 = [𝑝𝑖 , 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖 , 𝑟𝑖 , 𝐴𝑟𝑖 , … 𝐴𝑠−1𝑟𝑖])

29

s-step CG

s-step CG with monomial basis (𝒴 = [𝑝𝑖 , 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖 , 𝑟𝑖 , 𝐴𝑟𝑖 , … 𝐴𝑠−1𝑟𝑖])

29

s-step CG

s-step CG with monomial basis (𝒴 = [𝑝𝑖 , 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖 , 𝑟𝑖 , 𝐴𝑟𝑖 , … 𝐴𝑠−1𝑟𝑖])

Can also use other, more well-conditioned bases to improve convergence rate
and accuracy (see, e.g. Philippe and Reichel, 2012).

29

A different problem...

𝐴: nos4 from UFSMC,
𝑏: equal components in the eigenbasis

of 𝐴 and 𝑏 = 1
𝑁 = 100, 𝜅 𝐴 ≈ 2e3

30

A different problem...

𝐴: nos4 from UFSMC,
𝑏: equal components in the eigenbasis

of 𝐴 and 𝑏 = 1
𝑁 = 100, 𝜅 𝐴 ≈ 2e3

30

A different problem...

𝐴: nos4 from UFSMC,
𝑏: equal components in the eigenbasis

of 𝐴 and 𝑏 = 1
𝑁 = 100, 𝜅 𝐴 ≈ 2e3

30

A different problem...

𝐴: nos4 from UFSMC,
𝑏: equal components in the eigenbasis

of 𝐴 and 𝑏 = 1
𝑁 = 100, 𝜅 𝐴 ≈ 2e3

A different problem...

𝐴: nos4 from UFSMC,
𝑏: equal components in the eigenbasis

of 𝐴 and 𝑏 = 1
𝑁 = 100, 𝜅 𝐴 ≈ 2e3

If application only requires
𝑥 − 𝑥𝑖 𝐴 ≤ 10−10,

all methods behave comparably to HSCG

Insights from error analysis

• Is it possible to improve maximum attainable accuracy while still retaining
synchronization-reducing properties?

31

Insights from error analysis

• Is it possible to improve maximum attainable accuracy while still retaining
synchronization-reducing properties?

• Residual replacement strategies

• Based on van der Vorst and Ye (2000); replace updated residual 𝑟𝑖 with
true residual 𝑏 − 𝐴𝑥𝑖 in certain iterations

• For s-step CG: (C., Demmel, 2014) and attempted for pipelined CG: (Cools
et. al, 2016)

31

Insights from error analysis

• Is it possible to improve maximum attainable accuracy while still retaining
synchronization-reducing properties?

• Residual replacement strategies

• Based on van der Vorst and Ye (2000); replace updated residual 𝑟𝑖 with
true residual 𝑏 − 𝐴𝑥𝑖 in certain iterations

• For s-step CG: (C., Demmel, 2014) and attempted for pipelined CG: (Cools
et. al, 2016)

• Caveat: selecting replacement iterations is based on heuristics; replacing
too often may cause convergence delay

31

Insights from error analysis

• Is it possible to improve maximum attainable accuracy while still retaining
synchronization-reducing properties?

• Residual replacement strategies

• Based on van der Vorst and Ye (2000); replace updated residual 𝑟𝑖 with
true residual 𝑏 − 𝐴𝑥𝑖 in certain iterations

• For s-step CG: (C., Demmel, 2014) and attempted for pipelined CG: (Cools
et. al, 2016)

• Caveat: selecting replacement iterations is based on heuristics; replacing
too often may cause convergence delay

• Variable s-step approaches

• "adaptive s-step CG": Basis condition number can be allowed to grow at a
rate inversely proportional to the norm of the updated residual without
affecting maximum attainable accuracy

• Similar to derivation of inexact Krylov subspace methods (e.g.,
Simoncini and Szyld, 2007)

• s-step GMRES (Imberti and Erhel, 2016): used a fixed sequence of 𝑠𝑖's
31

Future directions for analysis

• Applying analysis of Paige (1980) to pipelined Lanczos

• Under what constraints does loss of orthogonality → eigenvalue
convergence in pipelined Lanczos?

32

Future directions for analysis

• Applying analysis of Paige (1980) to pipelined Lanczos

• Under what constraints does loss of orthogonality → eigenvalue
convergence in pipelined Lanczos?

• Applying analysis of Greenbaum (1989) to pipelined and s-step CG

"Eigenvalue approximations generated at each step by a perturbed
Lanczos recurrence for 𝐴 are equal to those generated by exact Lanczos
applied a larger matrix whose eigenvalues lie within intervals about the
eigenvalues of 𝐴."

32

Future directions for analysis

• Applying analysis of Paige (1980) to pipelined Lanczos

• Under what constraints does loss of orthogonality → eigenvalue
convergence in pipelined Lanczos?

• Applying analysis of Greenbaum (1989) to pipelined and s-step CG

"Eigenvalue approximations generated at each step by a perturbed
Lanczos recurrence for 𝐴 are equal to those generated by exact Lanczos
applied a larger matrix whose eigenvalues lie within intervals about the
eigenvalues of 𝐴."

• Application of Paige's augmented stability results (2010, 2014, 2017) to
synchronization-reducing variants

32

Conclusions and takeaways

• Think of the whole picture

• Much focus on modifying methods to speed up iterations

33

Conclusions and takeaways

• Think of the whole picture

• Much focus on modifying methods to speed up iterations

• But keep in mind how such changes may affect numerical behavior

33

Conclusions and takeaways

• Think of the whole picture

• Much focus on modifying methods to speed up iterations

• But keep in mind how such changes may affect numerical behavior

• The speed of an iteration only part of the runtime

33

Conclusions and takeaways

• Think of the whole picture

• Much focus on modifying methods to speed up iterations

• But keep in mind how such changes may affect numerical behavior

• The speed of an iteration only part of the runtime

• A solver that can't attain required accuracy is useless

33

Conclusions and takeaways

• Think of the whole picture

• Much focus on modifying methods to speed up iterations

• But keep in mind how such changes may affect numerical behavior

• The speed of an iteration only part of the runtime

• A solver that can't attain required accuracy is useless

• Design and implementation of iterative solvers requires a holistic approach

• Selecting the right method, parameters, stopping criteria

• Selecting the right preconditioner (closely linked with the discretization! see
Málek and Strakoš, 2015)

33

Conclusions and takeaways

• Think of the whole picture

• Much focus on modifying methods to speed up iterations

• But keep in mind how such changes may affect numerical behavior

• The speed of an iteration only part of the runtime

• A solver that can't attain required accuracy is useless

• Design and implementation of iterative solvers requires a holistic approach

• Selecting the right method, parameters, stopping criteria

• Selecting the right preconditioner (closely linked with the discretization! see
Málek and Strakoš, 2015)

• Key goals:

• Develop new techniques for improving numerical properties without
increasing synchronization

33

Conclusions and takeaways

• Think of the whole picture

• Much focus on modifying methods to speed up iterations

• But keep in mind how such changes may affect numerical behavior

• The speed of an iteration only part of the runtime

• A solver that can't attain required accuracy is useless

• Design and implementation of iterative solvers requires a holistic approach

• Selecting the right method, parameters, stopping criteria

• Selecting the right preconditioner (closely linked with the discretization! see
Málek and Strakoš, 2015)

• Key goals:

• Develop new techniques for improving numerical properties without
increasing synchronization

• Identify problems (or classes of problems) for which synchronization-
reducing Krylov subspace methods can obtain practical speedups

33

Conclusions and takeaways

• Think of the whole picture

• Much focus on modifying methods to speed up iterations

• But keep in mind how such changes may affect numerical behavior

• The speed of an iteration only part of the runtime

• A solver that can't attain required accuracy is useless

• Design and implementation of iterative solvers requires a holistic approach

• Selecting the right method, parameters, stopping criteria

• Selecting the right preconditioner (closely linked with the discretization! see
Málek and Strakoš, 2015)

• Key goals:

• Develop new techniques for improving numerical properties without
increasing synchronization

• Identify problems (or classes of problems) for which synchronization-
reducing Krylov subspace methods can obtain practical speedups

⇒ Require analyzing the effects of finite precision computations on convergence
rate and accuracy

33

Thank You!

erinc@cims.nyu.edu

math.nyu.edu/~erinc

