What do we know about block Gram-Schmidt?

Erin C. Carson
Faculty of Mathematics and Physics, Charles University

February 24, 2021
E-NLA Seminar

Collaborators

Kathryn Lund, formerly Charles University

Miro Rozložník, Czech Academy of Sciences

Stephen Thomas, National Renewable Energy Lab

The Gram-Schmidt process

Given a set of linear independent vectors x_{1}, \ldots, x_{n}, we want to compute a set of orthogonal vectors q_{1}, \ldots, q_{n} such that $\operatorname{span}\left\{x_{1}, \ldots, x_{n}\right\}=\operatorname{span}\left\{q_{1}, \ldots, q_{n}\right\}$

The Gram-Schmidt process

Given a set of linear independent vectors x_{1}, \ldots, x_{n}, we want to compute a set of orthogonal vectors q_{1}, \ldots, q_{n} such that $\operatorname{span}\left\{x_{1}, \ldots, x_{n}\right\}=\operatorname{span}\left\{q_{1}, \ldots, q_{n}\right\}$

Gram-Schmidt process:

$$
q_{1}=x_{1}, q_{k}=x_{k}-\sum_{j=1}^{k-1} \frac{\left\langle q_{j}, x_{k}\right\rangle}{\left\|q_{j}\right\|^{2}} q_{j}, \quad k \geq 2
$$

To get orthonormal vectors, $q_{k}=q_{k} /\left\|q_{k}\right\|$, for all k

The Gram-Schmidt process

Given a set of linear independent vectors x_{1}, \ldots, x_{n}, we want to compute a set of orthogonal vectors q_{1}, \ldots, q_{n} such that $\operatorname{span}\left\{x_{1}, \ldots, x_{n}\right\}=\operatorname{span}\left\{q_{1}, \ldots, q_{n}\right\}$

Gram-Schmidt process:

$$
q_{1}=x_{1}, q_{k}=x_{k}-\sum_{j=1}^{k-1} \frac{\left\langle q_{j}, x_{k}\right\rangle}{\left\|q_{j}\right\|^{2}} q_{j}, \quad k \geq 2
$$

To get orthonormal vectors, $q_{k}=q_{k} /\left\|q_{k}\right\|$, for all k

Each vector x_{k} can be expressed as a linear combination of q_{1}, \ldots, q_{k}.
So with $X=\left[x_{1} \cdots x_{n}\right], Q=\left[q_{1} \cdots q_{n}\right]$, this means we can write

$$
X=Q R
$$

where columns of R give the coefficients of the aforementioned linear combinations, and thus R is upper triangular.

Typically require that the diagonal entries of R are positive; this gives a unique QR factorization.

Orthogonalization

- Many applications
- Solving least squares problems $\min _{x}\|A x-b\|_{2}^{2} \rightarrow R x=Q^{T} b$
- Used within Krylov subspace methods
- Etc.

Orthogonalization

- Many applications
- Solving least squares problems $\min _{x}\|A x-b\|_{2}^{2} \rightarrow R x=Q^{T} b$
- Used within Krylov subspace methods
- Etc.
- What happens in finite precision?
- On a real computer, every time we perform a floating point operation, we may incur a small roundoff error
- Over a whole computation, these tiny errors can accumulate or can be amplified!
- The result:
- \bar{Q} no longer has exactly orthonormal columns!
- $\bar{Q} \bar{R}$ is no longer exactly the same as X !
- This can affect applications downstream

Measures of Error

Let \bar{Q} and \bar{R} denote computed QR factors of a matrix X.

How far is \bar{Q} from having orthonormal columns?

$$
\text { "Loss of orthogonality": \|I - } \bar{Q}^{T} \bar{Q} \|
$$

How close is $\bar{Q} \bar{R}$ to X ?

$$
\text { Relative residual norm: } \frac{\|X-\bar{Q} \bar{R}\|}{\|X\|}
$$

How close is $\bar{R}^{T} \bar{R}$ to $X^{T} X$?

$$
\text { Relative Cholesky residual norm: } \frac{\left\|X^{T} X-\bar{R}^{T} \bar{R}\right\|}{\|X\|^{2}}
$$

Gram-Schmidt algorithms

$$
\begin{aligned}
& \text { Classical Gram-Schmidt (CGS) } \\
& \text { for } k=1, \ldots, n \\
& \quad w_{k}=x_{k} \\
& \text { for } j=1, \ldots, k-1 \\
& \quad w_{k}=w_{k}-\left(q_{j}^{T} x_{k}\right) q_{j} \\
& q_{k}=w_{k} /\left\|w_{k}\right\|
\end{aligned}
$$

Modified Gram-Schmidt (MGS)

$$
\begin{aligned}
& \text { for } k=1, \ldots, n \\
& \quad w_{k}=x_{k} \\
& \text { for } j=1, \ldots, k-1 \\
& \quad w_{k}=w_{k}-\left(q_{j}^{T} w_{k}\right) q_{j} \\
& q_{k}=w_{k} /\left\|w_{k}\right\|
\end{aligned}
$$

Gram-Schmidt algorithms

Classical Gram-Schmidt (CGS)

$$
\begin{aligned}
& \text { for } k=1, \ldots, n \\
& \quad w_{k}=x_{k} \\
& \text { for } j=1, \ldots, k-1 \\
& \quad w_{k}=w_{k}-\left(q_{j}^{T} x_{k}\right) q_{j} \\
& q_{k}=w_{k} /\left\|w_{k}\right\|
\end{aligned}
$$

Modified Gram-Schmidt (MGS)

$$
\begin{aligned}
& \text { for } k=1, \ldots, n \\
& \begin{array}{l}
w_{k}=x_{k} \\
\text { for } j=1, \ldots, k-1 \\
\quad w_{k}=w_{k}-\left(q_{j}^{T} w_{k}\right) q_{j} \\
q_{k}=w_{k} /\left\|w_{k}\right\|
\end{array}
\end{aligned}
$$

	CGS	MGS				
Computation of entries of R	$r_{j k}=q_{j}^{T} x_{k}$	$r_{j k}=q_{j}^{T}\left(x_{k}-\sum_{i=1}^{k-1} r_{i k} q_{k}\right)$				
Computation of next orthogonal vector	$\left(I-Q_{1: k-1} Q_{1: k-1}^{T}\right) x_{k}$	$\left(I-q_{k-1} q_{k-1}^{T}\right) \cdots\left(I-q_{1} q_{1}^{T}\right) x_{k}$				
Loss of orthogonality	$\left\\|I-\bar{Q}^{T} \bar{Q}\right\\| \leq O(\varepsilon) \kappa^{n-1}(X)$ if $O(\varepsilon) \kappa(X)<1$	$\left\\|I-\bar{Q}^{T} \bar{Q}\right\\| \leq O(\varepsilon) \kappa(X)$ if $O(\varepsilon) \kappa(X)<1$				
Parallel messages $/$ synchronizations	$O(1)$	$O(k)$ in loop k				

A bit of history...

[Leon, Björck, Gander, "Gram-Schmidt orthogonalization: 100 years and more", 2007]

- Method of orthogonalization popularized by a paper of Schmidt in 1907. The method here is what we know as "classical Gram-Schmidt"
- In a footnote, Schmidt credits an earlier paper by Gram, published in 1883, saying that this procedure is essentially equivalent.
- The procedure in Gram's paper is what we know as "modified Gram-Schmidt"
- The linkage of the names "Gram" and "Schmidt" came along in 1935 in a paper by Wong

Jørgen Pedersen Gram

Erhard Schmidt

A bit of history...

[Leon, Björck, Gander, "Gram-Schmidt orthogonalization: 100 years and more", 2007]

- Method of orthogonalization popularized by a paper of Schmidt in 1907. The method here is what we know as "classical Gram-Schmidt"
- In a footnote, Schmidt credits an earlier paper by Gram, published in 1883, saying that this procedure is essentially equivalent.
- The procedure in Gram's paper is what we know as "modified Gram-Schmidt"
- The linkage of the names "Gram" and "Schmidt" came along in 1935 in a paper by Wong

Jørgen Pedersen Gram

Erhard Schmidt

Pierre-Simon Laplace

- It turns out a procedure equivalent to modified Gram-Schmidt appears even in much earlier work of Laplace in 1820

Block Gram-Schmidt

- Sometimes we may want to use a block version of Gram-Schmidt
- Performance reasons (e.g., BLAS3)
- Block Krylov subspace methods
- Better convergence
- Simultaneously solve multiple RHSes
- s-step Krylov subspace methods

x

Muscle and Skeleton analogy

- How do we define a block Gram-Schmidt algorithm?
- We need 2 parts:
- The "skeleton": A block Gram-Schmidt algorithm for interblock orthogonalization
- The "muscle": A non-block orthogonalization algorithm for intrablock orthogonalization ("local QR", "panel factorization")
- Need not be Gram-Schmidt-based
- We will refer to this routine as "IntraOrtho()"

https://www.twinkl.com/illustration/contracted-
- For example: block MGS (BMGS) for orthogonalizing between blocks, Householder QR for orthogonalizing within blocks:

$$
\text { BMGS。HouseQR }(\mathcal{X})
$$

Notation I

- Use our own naming system of algorithms
- Does suffix "2" mean reorthogonalized? BLAS-2 featuring? A second version of the algorithm?
- Suffixes:
- +: run twice
- I+: inner reorthogonalization
- S+: selective reorthogonalization

Notation II

- Calligraphic letters for the whole block matrices $(\mathcal{X}, \mathcal{Q}, \mathcal{R})$
- Regular letters for the individual block quantities (X, Q, R)
- Bars denote computed (inexact) quantities
- m : number of rows in input matrix
- n : number of columns in input matrix $(n=p s)$

$$
m \geq n>p>s
$$

- p : number of blocks
- s : number of columns per block

$$
\mathcal{X}=\left[X_{1}, X_{2}, \ldots, X_{p}\right], \quad X \in \mathbb{R}^{m \times n}, \quad X_{i} \in \mathbb{R}^{m \times s}
$$

Notation II

- Calligraphic letters for the whole block matrices $(\mathcal{X}, \mathcal{Q}, \mathcal{R})$
- Regular letters for the individual block quantities (X, Q, R)
- Bars denote computed (inexact) quantities
- m : number of rows in input matrix
- n : number of columns in input matrix $(n=p s)$

$$
m \geq n>p>s
$$

- p : number of blocks
- s : number of columns per block

$$
\mathcal{X}=\left[X_{1}, X_{2}, \ldots, X_{p}\right], \quad X \in \mathbb{R}^{m \times n}, \quad X_{i} \in \mathbb{R}^{m \times s}
$$

Economic $Q R$ factorization: $\mathcal{X}=\mathcal{Q} \mathcal{R}, \mathcal{Q} \in \mathbb{R}^{m \times n}, \mathcal{R} \in \mathbb{R}^{n \times n}$

$$
\begin{gathered}
\mathcal{Q}=\left[Q_{1}, Q_{2}, \ldots, Q_{p}\right], \quad \mathcal{R}=\left[\begin{array}{cccc}
R_{1,1} & R_{1,2} & \cdots & R_{1, p} \\
& R_{2,2} & \cdots & R_{2, p} \\
& & \ddots & \vdots \\
& & & R_{p, p}
\end{array}\right] \\
Q_{1: j}=\left[Q_{1}, \ldots, Q_{j}\right], \quad \mathcal{R}_{1: j, k}=\left[\begin{array}{c}
R_{1, k} \\
\vdots \\
R_{j, k}
\end{array}\right]
\end{gathered}
$$

Block Gram-Schmidt methods in practice

A few examples:

- [Boley and Golub, 1984]: Block Arnoldi with BMGSI+ o MGSI+ "However, since we obtain Z_{k}, by using a [block] Gram-Schmidt orthogonalization of W_{k}, against $Q_{1}, \ldots, Q_{k} \ldots$ there is little loss of stability by continuing to use Gram-Schmidt to orthogonalize Z_{k}. This was what we actually observed in our numerical experiments."

Block Gram-Schmidt methods in practice

A few examples:

- [Boley and Golub, 1984]: Block Arnoldi with BMGSI+ o MGSI+ "However, since we obtain Z_{k}, by using a [block] Gram-Schmidt orthogonalization of W_{k}, against $Q_{1}, \ldots, Q_{k} \ldots$ there is little loss of stability by continuing to use Gram-Schmidt to orthogonalize Z_{k}. This was what we actually observed in our numerical experiments."
- [Simoncini and Gallapoulos, 1995]: Block GMRES with BMGS 。MGS
- Also used in [Vital, 1990]

Block Gram-Schmidt methods in practice

A few examples:

- [Boley and Golub, 1984]: Block Arnoldi with BMGSI+oMGSI+ "However, since we obtain Z_{k}, by using a [block] Gram-Schmidt orthogonalization of W_{k}, against $Q_{1}, \ldots, Q_{k} \ldots$ there is little loss of stability by continuing to use Gram-Schmidt to orthogonalize Z_{k}. This was what we actually observed in our numerical experiments."
- [Simoncini and Gallapoulos, 1995]: Block GMRES with BMGS。MGS - Also used in [Vital, 1990]
- [Sadkane, 1993]: Block Arnoldi with BMGS o"QR factorization"
- [Saad, 2003]: textbook provides block Arnoldi based on BCGS (Alg. 6.22) and BMGS (Alg. 6.23); IntraOrtho just specified as a "QR factorization"
- [Baker, Dennis, Jessup, 2006]: Block GMRES w/ BMGS 。"QR factorization"

Block Gram-Schmidt methods in practice

A few examples:

- [Boley and Golub, 1984]: Block Arnoldi with BMGSI+oMGSI+ "However, since we obtain Z_{k}, by using a [block] Gram-Schmidt orthogonalization of W_{k}, against $Q_{1}, \ldots, Q_{k} \ldots$ there is little loss of stability by continuing to use Gram-Schmidt to orthogonalize Z_{k}. This was what we actually observed in our numerical experiments."
- [Simoncini and Gallapoulos, 1995]: Block GMRES with BMGS。MGS - Also used in [Vital, 1990]
- [Sadkane, 1993]: Block Arnoldi with BMGS o"QR factorization"
- [Saad, 2003]: textbook provides block Arnoldi based on BCGS (Alg. 6.22) and BMGS (Alg. 6.23); IntraOrtho just specified as a "QR factorization"
- [Baker, Dennis, Jessup, 2006]: Block GMRES w/ BMGS 。"QR factorization"
- Does it matter what we use for "QR factorization" (the IntraOrtho) within a block Gram-Schmidt method?

Does it matter?

- Recall: For MGS, $\left\|I-\bar{Q}^{T} \bar{Q}\right\| \leq O(\varepsilon) \kappa(X)$
- What is the bound on loss of orthogonality for BMGS。MGS? (guess!)

Does it matter?

- Recall: For MGS, $\left\|I-\bar{Q}^{T} \bar{Q}\right\| \leq O(\varepsilon) \kappa(X)$
- What is the bound on loss of orthogonality for BMGS。MGS? (guess!)

[Jalby and Philippe, 1991]: For BMGS \circ MGS, $\left\|I-\bar{Q}^{T} \bar{Q}\right\| \leq O(\varepsilon) \kappa^{2}(\mathcal{X})$

Does it matter?

- Recall: For MGS, $\left\|I-\bar{Q}^{T} \bar{Q}\right\| \leq O(\varepsilon) \kappa(X)$
- What is the bound on loss of orthogonality for BMGS。MGS? (guess!)

[Jalby and Philippe, 1991]: For BMGS \circ MGS, $\left\|I-\bar{Q}^{T} \bar{Q}\right\| \leq O(\varepsilon) \kappa^{2}(X)$ For BMGS \circ MGS,$+\left\|I-\bar{Q}^{T} \bar{Q}\right\| \leq O(\varepsilon) \kappa(\mathcal{X})$

If we use an intrablock orthogonalization routine (muscle) with $O(\varepsilon)$ loss of orthogonality and $O(\varepsilon)$ relative residual, what is the best a block GramSchmidt orthogonalization routine (skeleton) can do?

For a given block Gram-Schmidt variant (skeleton), what are the minimum requirements on the intra-block orthogonalization routine (muscle) such that the loss of orthogonality is good enough?

BlockStab MATLAB package

BlockStab (our code) has two simple drivers:

- BGS(XX, s, skel, musc, rpltol, verbose)
- IntraOrtho(X, musc, rpltol, verbose)
- Can also work directly with a skeleton or muscle, or implement your own

https://github.com/katlund/BlockStab

*For each plot, we list the function call needed to replicate the plot at the bottom of the slide

Outline

1. Overview of muscles
2. BCGS skeletons
3. BMGS skeletons
4. Open questions

Overview of Muscles

CGS and CGS-P

- Pessimistic bound due to [Kiełbasiński, 1974]: If $\mathrm{O}(\varepsilon) \kappa(X)<1$,

$$
\left\|I-\bar{Q}^{T} \bar{Q}\right\| \leq O(\varepsilon) \kappa^{s-1}(X)
$$

for $X \in \mathbb{R}^{m \times s}$

CGS and CGS-P

- Pessimistic bound due to [Kiełbasiński, 1974]: If $\mathrm{O}(\varepsilon) \kappa(X)<1$,

$$
\left\|I-\bar{Q}^{T} \bar{Q}\right\| \leq O(\varepsilon) \kappa^{s-1}(X)
$$

for $X \in \mathbb{R}^{m \times s}$

- [Giraud, Langou, Rozložník, van den Eshof, 2005]: If $\mathrm{O}(\varepsilon) \kappa^{2}(X)<1$,

$$
\left\|I-\bar{Q}^{T} \bar{Q}\right\| \leq O(\varepsilon) \kappa^{2}(X)
$$

CGS and CGS-P

- Pessimistic bound due to [Kiełbasiński, 1974]: If $\mathrm{O}(\varepsilon) \kappa(X)<1$,

$$
\left\|I-\bar{Q}^{T} \bar{Q}\right\| \leq O(\varepsilon) \kappa^{s-1}(X)
$$

for $X \in \mathbb{R}^{m \times s}$

- [Giraud, Langou, Rozložník, van den Eshof, 2005]: If $\mathrm{O}(\varepsilon) \kappa^{2}(X)<1$,

$$
\left\|I-\bar{Q}^{T} \bar{Q}\right\| \leq O(\varepsilon) \kappa^{2}(X)
$$

- [Smoktunowicz, Barlow, Langou, 2006]: The above only holds if we compute the diagonal entries of R using a Cholesky-like formula via the Pythagorean theorem (CGS-P)

CGS and CGS-P

- Pessimistic bound due to [Kiełbasiński, 1974]: If $\mathrm{O}(\varepsilon) \kappa(X)<1$,

$$
\left\|I-\bar{Q}^{T} \bar{Q}\right\| \leq O(\varepsilon) \kappa^{s-1}(X)
$$

for $X \in \mathbb{R}^{m \times s}$

- [Giraud, Langou, Rozložník, van den Eshof, 2005]: If $\mathrm{O}(\varepsilon) \kappa^{2}(X)<1$,

$$
\left\|I-\bar{Q}^{T} \bar{Q}\right\| \leq O(\varepsilon) \kappa^{2}(X)
$$

- [Smoktunowicz, Barlow, Langou, 2006]: The above only holds if we compute the diagonal entries of R using a Cholesky-like formula via the Pythagorean theorem (CGS-P)

$$
\begin{aligned}
R_{1: k, k+1} & =Q_{1: k}^{T} x_{k+1} \\
w & =x_{k+1}-Q_{1: k} R_{1: k, k+1}
\end{aligned}
$$

Let $\phi=\left\|x_{k+1}\right\|, \quad \psi=\left\|R_{1: k, k+1}\right\|$
CGS:
$R_{k+1, k+1}=\|w\|\left(=\sqrt{\phi^{2}-\psi^{2}}\right)$

CGS and CGS-P

- Pessimistic bound due to [Kiełbasiński, 1974]: If $\mathrm{O}(\varepsilon) \kappa(X)<1$,

$$
\left\|I-\bar{Q}^{T} \bar{Q}\right\| \leq O(\varepsilon) \kappa^{s-1}(X)
$$

for $X \in \mathbb{R}^{m \times s}$

- [Giraud, Langou, Rozložník, van den Eshof, 2005]: If $\mathrm{O}(\varepsilon) \kappa^{2}(X)<1$,

$$
\left\|I-\bar{Q}^{T} \bar{Q}\right\| \leq O(\varepsilon) \kappa^{2}(X)
$$

- [Smoktunowicz, Barlow, Langou, 2006]: The above only holds if we compute the diagonal entries of R using a Cholesky-like formula via the Pythagorean theorem (CGS-P)

$$
\begin{aligned}
R_{1: k, k+1} & =Q_{1: k}^{T} x_{k+1} \\
w & =x_{k+1}-Q_{1: k} R_{1: k, k+1}
\end{aligned}
$$

Let $\phi=\left\|x_{k+1}\right\|, \quad \psi=\left\|R_{1: k, k+1}\right\|$

CGS:
$R_{k+1, k+1}=\|w\|\left(=\sqrt{\phi^{2}-\psi^{2}}\right)$

CGS-P:
$R_{k+1, k+1}=\sqrt{\phi-\psi} \cdot \sqrt{\phi+\psi}$

Reorthogonalization

- "Twice is enough"
[Parlett, 1987]; attributed to Kahan :
An iterative Gram-Schmidt process on 2 vectors with one step of reorthogonalization produces 2 vectors orthonormal up to machine precision if the matrix is not too ill-conditioned.

Reorthogonalization

- "Twice is enough"
[Parlett, 1987]; attributed to Kahan :
An iterative Gram-Schmidt process on 2 vectors with one step of reorthogonalization produces 2 vectors orthonormal up to machine precision if the matrix is not too ill-conditioned.
- [Giraud, Langou, Rozložník, 2002], [Giraud, Langou, Rozložník, van den Eshof, 2005]: Twice is enough holds for $k>2$ vectors
- Previous work by [Abdelmalek, 1971]

$$
\left\|I-\bar{Q}^{T} \bar{Q}\right\| \leq O(\varepsilon)
$$

- Many variants: CGS+, CGSI+, CGSS+

Low-synchronization version

CGSI+LS [Świrydowicz, Langou, Ananthan, Yang, Thomas, 2020]

- One synchronization per column (CGSI+ up to 4)

Low-synchronization version

CGSI+LS [Świrydowicz, Langou, Ananthan, Yang, Thomas, 2020]

- One synchronization per column (CGSI+ up to 4)

Main ideas:
Orthogonal projector: $I-Q T Q^{T}, T \approx\left(Q^{T} Q\right)^{-1}$

$$
T=I-L-L^{T}
$$

Low-synchronization version

CGSI+LS [Świrydowicz, Langou, Ananthan, Yang, Thomas, 2020]

- One synchronization per column (CGSI+ up to 4)

Main ideas:
Orthogonal projector: $I-Q T Q^{T}, T \approx\left(Q^{T} Q\right)^{-1}$

$$
T=I-L-L^{T}
$$

1. Compute strictly lower triangular matrix L one row (or block of rows) at a time in single reduction to compute all inner products needed for current iteration

$$
L_{k-1,1: k-2}=\left(Q_{1: k-2}^{T} q_{k-1}\right)^{T}
$$

2. "Lag" reorthogonalization and normalization and merge it with this single reduction

- Idea of lag also used in [Hernández, Román, Tomás, 2007]

Low-synchronization version

CGSI+LS [Świrydowicz, Langou, Ananthan, Yang, Thomas, 2020]

- One synchronization per column (CGSI+ up to 4)

Main ideas:
Orthogonal projector: $I-Q T Q^{T}, T \approx\left(Q^{T} Q\right)^{-1}$

$$
T=I-L-L^{T}
$$

1. Compute strictly lower triangular matrix L one row (or block of rows) at a time in single reduction to compute all inner products needed for current iteration

$$
L_{k-1,1: k-2}=\left(Q_{1: k-2}^{T} q_{k-1}\right)^{T}
$$

2. "Lag" reorthogonalization and normalization and merge it with this single reduction

- Idea of lag also used in [Hernández, Román, Tomás, 2007]
\Rightarrow Reorthogonalization happens "on the fly" instead of requiring complete second pass

$u=x_{1}$
$h=2, \ldots s$ do $\left[r_{k-1, k-1}^{2} \rho\right]=\boldsymbol{u}^{T}\left[\begin{array}{ll}\boldsymbol{u} & \boldsymbol{x}_{k}\end{array}\right]$ else if $k>2$ then $\left[\begin{array}{cc}\boldsymbol{w} & \boldsymbol{z} \\ \omega & \zeta\end{array}\right]=\left[\begin{array}{ll}\boldsymbol{Q}_{1: k-2} & \boldsymbol{u}\end{array}\right]^{T}\left[\begin{array}{ll}\boldsymbol{u} & \boldsymbol{x}_{k}\end{array}\right]$ $\left[r_{k-1, k-1}^{2} \rho\right]=[\omega \zeta]-\boldsymbol{w}^{T}[\boldsymbol{w} \boldsymbol{z}]$ end if $r_{k-1, k}=\rho / r_{k-1, k-1}$ if $k=2$ then

$$
\boldsymbol{q}_{k-1}=\boldsymbol{u} / r_{k-1, k-1}
$$

$$
\text { else if } k>2 \text { then }
$$

$$
R_{1: k-2, k-1}=R_{1: k-2, k-1}+\boldsymbol{w}
$$

$$
R_{1: k-2, k}=\boldsymbol{z}
$$

$$
\boldsymbol{q}_{k-1}=\left(\boldsymbol{u}-\boldsymbol{Q}_{1: k-2} \boldsymbol{w}\right) / r_{k-1, k-1}
$$

en if

$$
\boldsymbol{u}=\boldsymbol{x}_{k}-\boldsymbol{Q}_{1: k-1} R_{1: k-1, k}
$$

end for

$$
\left[\begin{array}{c}
\boldsymbol{w} \\
\omega
\end{array}\right]=\left[\begin{array}{ll}
\boldsymbol{Q}_{1: s-1} & \boldsymbol{u}
\end{array}\right]^{T} \boldsymbol{u}
$$

$r_{s, s}^{2}=\omega-\boldsymbol{w}^{T} \boldsymbol{w}$
22: $R_{1: s-1, s}=R_{1: s-1, s}+\boldsymbol{w}$
23: $\boldsymbol{q}_{s}=\left(\boldsymbol{u}-\boldsymbol{Q}_{1: s-1} \boldsymbol{w}\right) / r_{s, s}$
return $\boldsymbol{Q}=\left[\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{s}\right], R=\left(r_{j k}\right)$

Summary: CGS Variants

Algorithm	$\left\\|I-\bar{Q}^{T} \bar{Q}\right\\|$	Assumption on $\kappa(X)$	References
CGS	$O(\varepsilon) \kappa^{n-1}(X)$	$O(\varepsilon) \kappa(X)<1$	[Kiełbasiński, 1974]
CGS-P	$O(\varepsilon) \kappa^{2}(X)$	$O(\varepsilon) \kappa^{2}(X)<1$	[Smoktunowicz, Barlow, Langou, 2006]
CGS+	$O(\varepsilon)$	$O(\varepsilon) \kappa(X)<1$	conjecture
CGSI+	$O(\varepsilon)$	$O(\varepsilon) \kappa(X)<1$	[Abdelmalek, 1971] [Giraud, Langou, Rozložník, 2002] [Giraud, Langou, Rozložník, van den Eshof, 2005] [Barlow, Smoktunowicz, 2013]
CGSS+	$O(\varepsilon)$	$O(\varepsilon) \kappa(X)<1$	[Daniel, Gragg, Kaufman, Stewart, [Hoffmann, 1989]
CGSI+LS	$O(\varepsilon)$	$O(\varepsilon) \kappa(X)<1$	conjecture [Świrydowicz, Langou, Ananthan, Yang, Thomas, 2020]
CGSS+rpl	$O(\varepsilon)$	none	conjecture [Stewart, 2008]

Low-sync MGS

- Original low-sync muscles developed independently by
[Barlow 2019] and [Świrydowicz et al., 2020]
- Perspectives:
- Merge inner products and norms by batching and lagging
- Cushion projectors with "error sponge" to achieve CGS-like communication with MGS-like stability

CGS: $\quad\left(I-Q_{k} Q_{k}^{T}\right) x_{k+1}$
MGS: $\quad\left(I-q_{k} q_{k}^{T}\right) \cdots\left(I-q_{1} q_{1}^{T}\right) x_{k+1}$
Goal: $\quad\left(I-Q_{k} C_{k} Q_{k}^{T}\right) x_{k+1}$

Low-sync variants

	Two synchronizations	One synchronization
$\left(I-Q_{k} T_{k}^{T} Q_{k}^{T}\right) x_{k+1}$ (matrix-matrix multiplication)	MGS-SVL [Barlow, 2019] (called "MGS2")	[Swirydowicz et al., 2020]
$\left(I-Q_{k} T_{k}^{-T} Q_{k}^{T}\right) x_{k+1}$ (triangular solve)	MGS-LTS	
[Swirydowicz et al., 2020]		

Low-sync variants

[Schreiber and Van Loan, 1989] + "Sheffield observation"

Two synchronizations
$\left(I-Q_{k} T_{k}^{T} Q_{k}^{T}\right) x_{k+1}$ (matrix-matrix multiplication)
$\left(I-Q_{k} T_{k}^{-T} Q_{k}^{T}\right) x_{k+1}$ (triangular solve)

MGS-SVL
[Barlow, 2019]
(called "MGS2")
MGS-LTS
[Swirydowicz et al., 2020]

One synchronization
MGS-CWY
[Swirydowicz et al., 2020]

MGS-ICWY
[Swirydowicz et al., 2020]

Low-sync variants

[Schreiber and Van Loan, 1989] + "Sheffield observation"

Two synchronizations

$\left(I-Q_{k} T_{k}^{T} Q_{k}^{T}\right) x_{k+1}$	MGS-SVL	MGS-CWY
(matrix-matrix	[Barlow, 2019]	[Swirydowicz et al., 2020]

multiplication)
$\left(I-Q_{k} T_{k}^{-T} Q_{k}^{T}\right) x_{k+1}$ (triangular solve)
(called "MGS2")
MGS-LTS
[Swirydowicz et al., 2020]

One synchronization
MGS-CWY
[Swirydowicz et al., 2020]

MGS-ICWY
[Swirydowicz et al., 2020]
[Puglisi, 1992]
[Björck, 1994]

Low-sync variants

[Schreiber and Van Loan, 1989] + "Sheffield observation"

	Two synchronizations	One synchronization
$\left(I-Q_{k} T_{k}^{T} Q_{k}^{T}\right) x_{k+1}$ (matrix-matrix multiplication)	MGS-SVL [Barlow, 2019]	[Swirydowicz et al., 2020]
(called "MGS2")		
I $\left.-Q_{k} T_{k}^{-T} Q_{k}^{T}\right) x_{k+1}$ (triangular solve)	MSwirydowicz et al., 2020]	[Swirydowicz et al., 2020]
[Puglisi, 1992] [Björck, 1994]		

Note: For block variants, it will be a crucial point that these algorithms return T_{k}

MGS Variants

Algorithm	$\left\\|I-\bar{Q}^{T} \bar{Q}\right\\|$	Assumption on $\kappa(X)$	References
MGS	$O(\varepsilon) \kappa(X)$	$O(\varepsilon) \kappa(X)<1$	[Björck, 1967]
MGS-SVL	$O(\varepsilon) \kappa(X)$	$O(\varepsilon) \kappa(X)<1$	[Barlow, 2019]
MGS-LTS	$O(\varepsilon) \kappa(X)$	$O(\varepsilon) \kappa(X)<1$	conjecture [Świrydowicz, Langou, Ananthan, Yang, Thomas, 2020]
MGS-CWY	$O(\varepsilon) \kappa(X)$	$O(\varepsilon) \kappa(X)<1$	conjecture [Świrydowicz, Langou, Ananthan, Yang, Thomas, 2020]
MGS-ICWY	$O(\varepsilon) \kappa(X)$	$O(\varepsilon) \kappa(X)<1$	conjecture [Świrydowicz, Langou, Ananthan, Yang, Thomas, 2020]
MGS+	$O(\varepsilon)$	$O(\varepsilon) \kappa(X)<1$	[Jalby, Philippe, 1991] [Giraud, Langou, 2002]
MGSI+	$O(\varepsilon)$	$O(\varepsilon) \kappa(X)<1$	[Hoffmann, 1989] [Gander, 1980] [Giraud, Langou, Rozložník, 2002]

Other Muscles

Algorithm	$\left\\|I-\bar{Q}^{T} \bar{Q}\right\\|$	Assumption on $\kappa(X)$	References
CholQR	$O(\varepsilon) \kappa^{2}(X)$	$O(\varepsilon) \kappa^{2}(X)<1$	[Yamamoto, Nakatsukasa, Yanagisawa, Fukaya, 2015]
CholQR+	$O(\varepsilon)$	$O(\varepsilon) \kappa^{2}(X)<1$	[Yamamoto, Nakatsukasa, Yanagisawa, Fukaya, 2015]
ShCholQR++	$O(\varepsilon)$	$O(\varepsilon) \kappa(X)<1$	[Fukaya, Kannan, Nakatsukasa, Yamamoto, Yanagisawa, 2020]
HouseQR	$O(\varepsilon)$	none	[Wilkinson, 1965]
GivensQR	$O(\varepsilon)$	none	[Wilkinson, 1965]
TSQR	$O(\varepsilon)$	none	[Mori, Yamamoto, Zhang, 2012] [Demmel, Grigori, Hoemmen, Langou, 2012]

Block Classical GramSchmidt (BCGS)

Block CGS

$[\mathcal{Q}, \mathcal{R}]=\operatorname{BCGS}(\mathcal{X})$

$$
\begin{aligned}
& \text { 1: }\left[\boldsymbol{Q}_{1}, R_{11}\right]=\text { IntraOrtho }\left(\boldsymbol{X}_{1}\right) \\
& \text { 2: } \text { for } k=1, \ldots, p-1 \text { do } \\
& \text { 3: } \quad \mathcal{R}_{1: k, k+1}=\mathcal{Q}_{1: k}^{T} \boldsymbol{X}_{k+1} \\
& \text { 4: } \quad \boldsymbol{W}=\boldsymbol{X}_{k+1}-\boldsymbol{\mathcal { Q }}_{1: k} \mathcal{R}_{1: k, k+1} \\
& \text { 5: } \quad\left[\boldsymbol{Q}_{k+1}, R_{k+1, k+1}\right]=\text { IntraOrtho }(\boldsymbol{W})
\end{aligned}
$$

6: end for
7: return $\mathcal{Q}=\left[\boldsymbol{Q}_{1}, \ldots, \boldsymbol{Q}_{p}\right], \mathcal{R}=\left(R_{j k}\right)$

No existing proof of the loss of orthogonality in BCGS!

Conjecture: Even if our IntraOrtho has $O(\varepsilon)$ loss of orthogonality, BCGS is just as bad as CGS:

$$
\left\|I-\bar{Q}^{T} \bar{Q}\right\| \leq O(\varepsilon) \kappa^{n-1}(X)
$$

"Glued" matrices from [Smoktunowicz, Barlow, Langou, 2006] $m=1000, p=50, s=4$

"Glued" matrices from [Smoktunowicz, Barlow, Langou, 2006] $m=1000, p=50, s=4$

BCGS loss of orthogonality is not $O(\varepsilon) \kappa^{2}(X)$!

Block Pythagorean CGS

$$
\begin{aligned}
& W_{k+1}=X_{k+1}-Q_{1: k} \mathcal{R}_{1: k, k+1} \\
& {\left[Q_{k+1}, R_{k+1, k+1}\right]=\text { IntraOrtho }\left(W_{k+1}\right)}
\end{aligned}
$$

```
\([\mathcal{Q}, \mathcal{R}]=\operatorname{BCGS}(\mathcal{X})\)
1: \(\left[\boldsymbol{Q}_{1}, R_{11}\right]=\) IntraOrtho \(\left(\boldsymbol{X}_{1}\right)\)
2: for \(k=1, \ldots, p-1\) do
3: \(\quad \mathcal{R}_{1: k, k+1}=\mathcal{Q}_{1: k}^{T} \boldsymbol{X}_{k+1}\)
4: \(\quad \boldsymbol{W}=\boldsymbol{X}_{k+1}-\mathcal{Q}_{1: k} \mathcal{R}_{1: k, k+1}\)
5: \(\quad\left[\boldsymbol{Q}_{k+1}, R_{k+1, k+1}\right]=\) IntraOrtho \((\boldsymbol{W})\)
6: end for
7: return \(\mathcal{Q}=\left[\boldsymbol{Q}_{1}, \ldots, \boldsymbol{Q}_{p}\right], \mathcal{R}=\left(R_{j k}\right)\)
```


Block Pythagorean CGS

$$
\begin{aligned}
& W_{k+1}=X_{k+1}-Q_{1: k} \mathcal{R}_{1: k, k+1} \\
& {\left[Q_{k+1}, R_{k+1, k+1}\right]=\text { IntraOrtho }\left(W_{k+1}\right)}
\end{aligned}
$$

Block Pythagorean CGS

$$
\begin{aligned}
& W_{k+1}=X_{k+1}-Q_{1: k} \mathcal{R}_{1: k, k+1} \\
& {\left[Q_{k+1}, R_{k+1, k+1}\right]=\text { IntraOrtho }\left(W_{k+1}\right)} \\
& \\
& X_{k+1}=Q_{1: k} \mathcal{R}_{1: k, k+1}+W_{k+1}
\end{aligned}
$$

$[\mathcal{Q}, \mathcal{R}]=\operatorname{BCGS}(\mathcal{X})$
1: $\left[\boldsymbol{Q}_{1}, R_{11}\right]=$ IntraOrtho $\left(\boldsymbol{X}_{1}\right)$
2: for $k=1, \ldots, p-1$ do
3: $\quad \mathcal{R}_{1: k, k+1}=\mathcal{Q}_{1: k}^{T} \boldsymbol{X}_{k+1}$
4: $\quad \boldsymbol{W}=\boldsymbol{X}_{k+1}-\mathcal{Q}_{1: k} \mathcal{R}_{1: k, k+1}$
$\left[\boldsymbol{Q}_{k+1}, R_{k+1, k+1}\right]=$ IntraOrtho (\boldsymbol{W})
6: end for
7: return $\mathcal{Q}=\left[\boldsymbol{Q}_{1}, \ldots, \boldsymbol{Q}_{p}\right], \mathcal{R}=\left(R_{j k}\right)$

Block Pythagorean CGS

$$
\begin{aligned}
& W_{k+1}=X_{k+1}-Q_{1: k} \mathcal{R}_{1: k, k+1} \\
& {\left[Q_{k+1}, R_{k+1, k+1}\right]=\text { IntraOrtho }\left(W_{k+1}\right)} \\
& X_{k+1}=Q_{1: k} \mathcal{R}_{1: k, k+1}+W_{k+1}
\end{aligned}
$$

$$
[\mathcal{Q}, \mathcal{R}]=\operatorname{BCGS}(\mathcal{X})
$$

$$
\text { 1: }\left[\boldsymbol{Q}_{1}, R_{11}\right]=\text { IntraOrtho }\left(\boldsymbol{X}_{1}\right)
$$

$$
\text { 2: for } k=1, \ldots, p-1 \text { do }
$$

$$
\text { 3: } \quad \mathcal{R}_{1: k, k+1}=\boldsymbol{\mathcal { Q }}_{1: k}^{T} \boldsymbol{X}_{k+1}
$$

$$
\text { 4: } \quad \boldsymbol{W}=\boldsymbol{X}_{k+1}-\boldsymbol{\mathcal { Q }}_{1: k} \mathcal{R}_{1: k, k+1}
$$

$$
\left[\boldsymbol{Q}_{k+1}, R_{k+1, k+1}\right]=\text { IntraOrtho }(\boldsymbol{W})
$$

6: end for

$$
\text { 7: return } \mathcal{Q}=\left[\boldsymbol{Q}_{1}, \ldots, \boldsymbol{Q}_{p}\right], \mathcal{R}=\left(R_{j k}\right)
$$

Let $\mathcal{R}_{1: k, k+1}=Q_{\mathcal{R}} P_{k+1}$ be the QR factorization of $\mathcal{R}_{1: k, k+1}$
Let $X_{k+1}=Q_{X} T_{k+1}$ be the QR factorization of X_{k+1}

Block Pythagorean CGS

$$
\begin{aligned}
& W_{k+1}=X_{k+1}-Q_{1: k} \mathcal{R}_{1: k, k+1} \\
& {\left[Q_{k+1}, R_{k+1, k+1}\right]=\text { IntraOrtho }\left(W_{k+1}\right)} \\
& X_{k+1}=\mathcal{Q}_{1: k} \mathcal{R}_{1: k, k+1}+W_{k+1}
\end{aligned}
$$

$[\mathcal{Q}, \mathcal{R}]=\operatorname{BCGS}(\mathcal{X})$
1: $\left[\boldsymbol{Q}_{1}, R_{11}\right]=$ IntraOrtho $\left(\boldsymbol{X}_{1}\right)$
2: for $k=1, \ldots, p-1$ do
$\mathcal{R}_{1: k, k+1}=\mathcal{Q}_{1: k}^{T} \boldsymbol{X}_{k+1}$
$\boldsymbol{W}=\boldsymbol{X}_{k+1}-\mathcal{Q}_{1: k} \mathcal{R}_{1: k, k+1}$
$\left[\boldsymbol{Q}_{k+1}, R_{k+1, k+1}\right]=$ IntraOrtho (\boldsymbol{W})
6: end for
7: return $\mathcal{Q}=\left[\boldsymbol{Q}_{1}, \ldots, \boldsymbol{Q}_{p}\right], \mathcal{R}=\left(R_{j k}\right)$

Let $\mathcal{R}_{1: k, k+1}=Q_{\mathcal{R}} P_{k+1}$ be the QR factorization of $\mathcal{R}_{1: k, k+1}$
Let $X_{k+1}=Q_{X} T_{k+1}$ be the QR factorization of X_{k+1}

$$
T_{k+1}^{T} T_{k+1}=X_{k+1}^{T} X_{k+1}
$$

Block Pythagorean CGS

$$
\begin{aligned}
& W_{k+1}=X_{k+1}-\mathcal{Q}_{1: k} \mathcal{R}_{1: k, k+1} \\
& {\left[Q_{k+1}, R_{k+1, k+1}\right]=\operatorname{IntraOrtho}\left(W_{k+1}\right)} \\
& X_{k+1}=\mathcal{Q}_{1: k} \mathcal{R}_{1: k, k+1}+W_{k+1} \\
& {[\mathcal{Q}, \mathcal{R}]=\operatorname{BCGS}(\mathcal{X})} \\
& \text { 1: }\left[\boldsymbol{Q}_{1}, R_{11}\right]=\text { IntraOrtho }\left(\boldsymbol{X}_{1}\right) \\
& \text { 2: for } k=1, \ldots, p-1 \text { do } \\
& \mathcal{R}_{1: k, k+1}=\boldsymbol{\mathcal { Q }}_{1: k}^{T} \boldsymbol{X}_{k+1} \\
& \boldsymbol{W}=\boldsymbol{X}_{k+1}-\mathcal{Q}_{1: k} \mathcal{R}_{1: k, k+1} \\
& {\left[\boldsymbol{Q}_{k+1}, R_{k+1, k+1}\right]=\text { IntraOrtho }(\boldsymbol{W})} \\
& \text { end for } \\
& \text { 7: return } \mathcal{Q}=\left[\boldsymbol{Q}_{1}, \ldots, \boldsymbol{Q}_{p}\right], \mathcal{R}=\left(R_{j k}\right)
\end{aligned}
$$

Let $\mathcal{R}_{1: k, k+1}=Q_{\mathcal{R}} P_{k+1}$ be the QR factorization of $\mathcal{R}_{1: k, k+1}$
Let $X_{k+1}=Q_{X} T_{k+1}$ be the QR factorization of X_{k+1}

$$
\begin{aligned}
T_{k+1}^{T} T_{k+1} & =X_{k+1}^{T} X_{k+1} \\
& =W_{k+1}^{T} W_{k+1}+\mathcal{R}_{1: k, k+1}^{T} \mathcal{R}_{1: k, k+1}
\end{aligned}
$$

Block Pythagorean CGS

$\begin{aligned} & W_{k+1}=X_{k+1}-Q_{1: k} \mathcal{R}_{1: k, k+1} \\ & {\left[Q_{k+1}, R_{k+1, k+1}\right]=\operatorname{IntraOrtho}\left(W_{k+1}\right)} \end{aligned}$	
$\left[\chi_{k+1},,_{k+1, k+1}\right]=$ maint $\left({ }_{k+1}\right)$	
$X_{k+1}=Q_{1: k} \mathcal{R}_{1: k, k+1}+W_{k+1}$	
Let $\mathcal{R}_{1: k, k+1}=Q_{\mathcal{R}} P_{k+1}$, he the QR factorization of $\mathcal{R}_{1: k, k+1}$Let $X_{k+1}=Q_{\chi} T_{k+1}$ be the QR factorization of X_{k+1}	
Let $X_{k+1}=Q_{X} T_{k+1}$ be the QR factorization of $X_{k+1}$$T_{k+1}^{T} T_{k+1}=X_{k+1}^{T} X_{k+1}$	
$=W_{k+1}^{T} W_{k+1}$	

Block Pythagorean CGS

$$
\begin{aligned}
& W_{k+1}=X_{k+1}-Q_{1: k} \mathcal{R}_{1: k, k+1} \\
& {\left[Q_{k+1}, R_{k+1, k+1}\right]=\text { IntraOrtho }\left(W_{k+1}\right)} \\
& X_{k+1}=Q_{1: k} \mathcal{R}_{1: k, k+1}+W_{k+1}
\end{aligned}
$$

$[\mathcal{Q}, \mathcal{R}]=\operatorname{BCGS}(\mathcal{X})$
1: $\left[\boldsymbol{Q}_{1}, R_{11}\right]=$ IntraOrtho $\left(\boldsymbol{X}_{1}\right)$
2: for $k=1, \ldots, p-1$ do
$\mathcal{R}_{1: k, k+1}=\mathcal{Q}_{1: k}^{T} \boldsymbol{X}_{k+1}$
$\boldsymbol{W}=\boldsymbol{X}_{k+1}-\mathcal{Q}_{1: k} \mathcal{R}_{1: k, k+1}$
$\left[\boldsymbol{Q}_{k+1}, R_{k+1, k+1}\right]=$ IntraOrtho (\boldsymbol{W})
6: end for
7: return $\mathcal{Q}=\left[\boldsymbol{Q}_{1}, \ldots, \boldsymbol{Q}_{p}\right], \mathcal{R}=\left(R_{j k}\right)$

Let $\mathcal{R}_{1: k, k+1}=Q_{\mathcal{R}} P_{k+1}$ be the QR factorization of $\mathcal{R}_{1: k, k+1}$
Let $X_{k+1}=Q_{X} T_{k+1}$ be the QR factorization of X_{k+1}

$$
\begin{aligned}
T_{k+1}^{T} T_{k+1} & =X_{k+1}^{T} X_{k+1} \\
& =W_{k+1}^{T} W_{k+1}+\mathcal{R}_{1: k, k+1}^{T} \mathcal{R}_{1: k, k+1} \\
& =R_{k+1, k+1}^{T} R_{k+1, k+1}+P_{k+1}^{T} P_{k+1}
\end{aligned}
$$

$R_{k+1, k+1}=\operatorname{chol}\left(X_{k+1}^{T} X_{k+1}-\mathcal{R}_{1: k, k+1}^{T} \mathcal{R}_{1: k, k+1}\right)=\operatorname{chol}\left(T_{k+1}^{T} T_{k+1}-P_{k+1}^{T} P_{k+1}\right)$

Block Pythagorean CGS

$$
\begin{aligned}
& W_{k+1}=X_{k+1}-Q_{1: k} \mathcal{R}_{1: k, k+1} \\
& {\left[Q_{k+1}, R_{k+1, k+1}\right]=\text { IntraOrtho }\left(W_{k+1}\right)} \\
& X_{k+1}=Q_{1: k} \mathcal{R}_{1: k, k+1}+W_{k+1}
\end{aligned}
$$

$$
[\mathcal{Q}, \mathcal{R}]=\operatorname{BCGS}(\mathcal{X})
$$

$$
\text { 1: }\left[\boldsymbol{Q}_{1}, R_{11}\right]=\text { IntraOrtho }\left(\boldsymbol{X}_{1}\right)
$$

$$
\text { 2: for } k=1, \ldots, p-1 \text { do }
$$

$$
\mathcal{R}_{1: k, k+1}=\mathcal{Q}_{1: k}^{T} \boldsymbol{X}_{k+1}
$$

$$
\boldsymbol{W}=\boldsymbol{X}_{k+1}-\boldsymbol{\mathcal { Q }}_{1: k} \mathcal{R}_{1: k, k+1}
$$

$$
\left[\boldsymbol{Q}_{k+1}, R_{k+1, k+1}\right]=\text { IntraOrtho }(\boldsymbol{W})
$$

6: end for
7: return $\mathcal{Q}=\left[\boldsymbol{Q}_{1}, \ldots, \boldsymbol{Q}_{p}\right], \mathcal{R}=\left(R_{j k}\right)$

Let $\mathcal{R}_{1: k, k+1}=Q_{\mathcal{R}} P_{k+1}$ be the QR factorization of $\mathcal{R}_{1: k, k+1}$
Let $X_{k+1}=Q_{X} T_{k+1}$ be the QR factorization of X_{k+1}

$$
\begin{aligned}
T_{k+1}^{T} T_{k+1} & =X_{k+1}^{T} X_{k+1} \\
& =W_{k+1}^{T} W_{k+1}+\mathcal{R}_{1: k, k+1}^{T} \mathcal{R}_{1: k, k+1} \\
& =R_{k+1, k+1}^{T} R_{k+1, k+1}+P_{k+1}^{T} P_{k+1}
\end{aligned}
$$

BCGS-PIP and BCGS-PIO

$$
\begin{aligned}
& {[\mathcal{Q}, \mathcal{R}]=\operatorname{BCGS}(\boldsymbol{\mathcal { X }})} \\
& \text { 1: }\left[\boldsymbol{Q}_{1}, R_{11}\right]=\text { IntraOrtho }\left(\boldsymbol{X}_{1}\right) \\
& \text { 2: for } k=1, \ldots, p-1 \text { do } \\
& \text { 3: } \quad \mathcal{R}_{1: k, k+1}=\mathcal{Q}_{1: k}^{T} \boldsymbol{X}_{k+1} \\
& \text { 4: } \boldsymbol{W}=\boldsymbol{X}_{k+1}-\boldsymbol{\mathcal { Q }}_{1: k} \mathcal{R}_{1: k, k+1} \\
& \text { 5: } \quad\left[\boldsymbol{Q}_{k+1}, R_{k+1, k+1}\right]=\text { IntraOrtho }(\boldsymbol{W}) \\
& \text { 6: end for } \\
& \text { 7: return } \boldsymbol{\mathcal { Q }}=\left[\boldsymbol{Q}_{1}, \ldots, \boldsymbol{Q}_{p}\right], \mathcal{R}=\left(R_{j k}\right)
\end{aligned}
$$

```
\([\mathcal{Q}, \mathcal{R}]=\operatorname{BCGS}-\operatorname{PIP}(\mathcal{X})\)
    \(\left[\boldsymbol{Q}_{1}, R_{11}\right]=\) IntraOrtho \(\left(\boldsymbol{X}_{1}\right)\)
    : for \(k=1, \ldots, p-1\) do
    3: \(\quad\left[\begin{array}{c}\mathcal{R}_{1: k, k+1} \\ \mathcal{Z}_{k+1}\end{array}\right]=\left[\begin{array}{ll}\boldsymbol{\mathcal { Q }}_{1: k} & \boldsymbol{X}_{k+1}\end{array}\right]^{T} \boldsymbol{X}_{k+1}\)
        \(R_{k+1, k+1}=\operatorname{chol}\left(\mathcal{Z}_{k+1}-\mathcal{R}_{1: k, k+1}^{T} \mathcal{R}_{1: k, k+1}\right)\)
        \(\boldsymbol{W}_{k+1}=\boldsymbol{X}_{k+1}-\boldsymbol{\mathcal { Q }}_{1: k} \mathcal{R}_{1: k, k+1}\)
        \(\boldsymbol{Q}_{k+1}=\boldsymbol{W}_{k+1} R_{k+1, k+1}^{-1}\)
    end for
```

```
```

```
\(\frac{[\mathcal{Q}, \mathcal{R}]=\operatorname{BCGS}-\operatorname{PIO}(\boldsymbol{X})}{\text { 1: }\left[\boldsymbol{Q}_{1}, R_{11}\right]=\text { IntraOrtho }\left(\boldsymbol{X}_{1}\right)}\)
```

```
```

$\frac{[\mathcal{Q}, \mathcal{R}]=\operatorname{BCGS}-\operatorname{PIO}(\boldsymbol{X})}{\text { 1: }\left[\boldsymbol{Q}_{1}, R_{11}\right]=\text { IntraOrtho }\left(\boldsymbol{X}_{1}\right)}$

```
```

```
\(\frac{[\mathcal{Q}, \mathcal{R}]=\operatorname{BCGS}-\operatorname{PIO}(\boldsymbol{X})}{\text { 1: }\left[\boldsymbol{Q}_{1}, R_{11}\right]=\text { IntraOrtho }\left(\boldsymbol{X}_{1}\right)}\)
    2: for \(k=1, \ldots, p-1\) do
    2: for \(k=1, \ldots, p-1\) do
    2: for \(k=1, \ldots, p-1\) do
    3: \(\quad \mathcal{R}_{1: k, k+1}=\mathcal{Q}_{1: k}^{T} \boldsymbol{X}_{k+1}\)
    3: \(\quad \mathcal{R}_{1: k, k+1}=\mathcal{Q}_{1: k}^{T} \boldsymbol{X}_{k+1}\)
    3: \(\quad \mathcal{R}_{1: k, k+1}=\mathcal{Q}_{1: k}^{T} \boldsymbol{X}_{k+1}\)
    4: \(\left[\sim,\left[\begin{array}{ll}T_{k+1} & P_{k+1}\end{array}\right]\right]^{k+1}=\) IntraOrtho \(\left(\left[\begin{array}{ll}\boldsymbol{X}_{k+1} & \\ & \mathcal{R}_{1: k, k+1}\end{array}\right]\right)\)
    4: \(\left[\sim,\left[\begin{array}{ll}T_{k+1} & P_{k+1}\end{array}\right]\right]^{k+1}=\) IntraOrtho \(\left(\left[\begin{array}{ll}\boldsymbol{X}_{k+1} & \\ & \mathcal{R}_{1: k, k+1}\end{array}\right]\right)\)
    4: \(\left[\sim,\left[\begin{array}{ll}T_{k+1} & P_{k+1}\end{array}\right]\right]^{k+1}=\) IntraOrtho \(\left(\left[\begin{array}{ll}\boldsymbol{X}_{k+1} & \\ & \mathcal{R}_{1: k, k+1}\end{array}\right]\right)\)
    5: \(\quad R_{k+1, k+1}=\operatorname{chol}\left(T_{k+1}^{T} T_{k+1}-P_{k+1}^{T} P_{k+1}\right)\)
    5: \(\quad R_{k+1, k+1}=\operatorname{chol}\left(T_{k+1}^{T} T_{k+1}-P_{k+1}^{T} P_{k+1}\right)\)
    5: \(\quad R_{k+1, k+1}=\operatorname{chol}\left(T_{k+1}^{T} T_{k+1}-P_{k+1}^{T} P_{k+1}\right)\)
    6: \(\quad \boldsymbol{W}_{k+1}=\boldsymbol{X}_{k+1}-\mathcal{Q}_{1: k} \mathcal{R}_{1: k, k+1}\)
    6: \(\quad \boldsymbol{W}_{k+1}=\boldsymbol{X}_{k+1}-\mathcal{Q}_{1: k} \mathcal{R}_{1: k, k+1}\)
    6: \(\quad \boldsymbol{W}_{k+1}=\boldsymbol{X}_{k+1}-\mathcal{Q}_{1: k} \mathcal{R}_{1: k, k+1}\)
    : \(\quad \boldsymbol{Q}_{k+1}=\boldsymbol{W}_{k+1} R_{k+1, k+1}^{-1}\)
    : \(\quad \boldsymbol{Q}_{k+1}=\boldsymbol{W}_{k+1} R_{k+1, k+1}^{-1}\)
    : \(\quad \boldsymbol{Q}_{k+1}=\boldsymbol{W}_{k+1} R_{k+1, k+1}^{-1}\)
    end for
```

```
    end for
```

```
    end for
```

```
```

 end for
    ```
```

 end for
    ```
- See [C., Lund, Rozložník, Thomas, 2020] and [C., Lund, Rozložník, 2021]
- BCGS-PIP also developed independently by [Yamazaki, Thomas, Hoemmen, Boman, Świrydowicz, Elliott, 2020]; called "CGS+CholQR"

\section*{New Stability Results for BCGS-PIP/PIO}

Let \(\mathcal{X} \in \mathbb{R}^{m \times n}\) be a matrix whose columns are organized into \(p\) blocks of size \(s\), and assume that
\[
O(\varepsilon) \kappa^{2}(X)<1
\]

Suppose we execute BCGS-PIP 。IntraOrtho \((X)\) or BCGS-PIO。IntraOrtho \((X)\) on a machine with unit roundoff \(\varepsilon\).

If for all \(X\), IntraOrtho \((X)\) computes factors \(\bar{Q}\) and \(\bar{R}\) that satisfy
\[
\begin{array}{ll}
\bar{R}^{T} \bar{R}=X^{T} X+\Delta E, & \|\Delta E\| \leq O(\varepsilon)\|X\|^{2}, \quad \text { and } \\
\bar{Q} \bar{R}=X+\Delta D, & \|\Delta D\| \leq O(\varepsilon)(\|X\|+\|\bar{Q}\|\|\bar{R}\|),
\end{array}
\]
then the factors \(\overline{\mathcal{Q}}\) and \(\overline{\mathcal{R}}\) satisfy
\[
\begin{aligned}
& \left\|I-\bar{Q}^{T} \bar{Q}\right\| \leq O(\varepsilon) \kappa^{2}(X), \quad \text { and } \\
& \bar{Q} \overline{\mathcal{R}}=X+\Delta \mathcal{D}, \quad\|\Delta \mathcal{D}\| \leq O(\varepsilon)\|X\| .
\end{aligned}
\]
"Glued" matrices from [Smoktunowicz, Barlow, Langou, 2006]
\[
m=1000, p=50, s=4
\]


\section*{Reorthogonalized Block Gram-Schmidt Variants}

\section*{BCGSI+}
[Barlow and Smoktunowicz, 2013]: If we have an IntraOrtho with \(\left\|I-\bar{Q}^{T} \bar{Q}\right\| \leq O(\varepsilon)\) and if \(O(\varepsilon) \kappa(X)<1\), then for BCGSI+,
\[
\left\|I-\bar{Q}^{T} \bar{Q}\right\| \leq O(\varepsilon)
\]
\[
[\mathcal{Q}, \mathcal{R}]=\operatorname{BCGSI}+(\mathcal{X})
\]
: Allocate memory for \(\mathcal{Q}\) and \(\mathcal{R}\)
\(\left[\boldsymbol{Q}_{1}, R_{11}\right]=\) IntraOrtho \(\left(\boldsymbol{X}_{1}\right)\)
for \(k=1, \ldots, p-1\) do
\[
\mathcal{R}_{1: k, k+1}^{(1)}=\boldsymbol{\mathcal { Q }}_{1: k}^{T} \boldsymbol{X}_{k+1} \% \text { first BCGS step }
\]
\[
\boldsymbol{W}=\boldsymbol{X}_{k+1}-\boldsymbol{\mathcal { Q }}_{1: k} \mathcal{R}_{1: k, k+1}^{(1)}
\]
\[
\left[\widehat{\boldsymbol{Q}}, R_{k+1, k+1}^{(1)}\right]=\operatorname{IntraOrtho}(\boldsymbol{W})
\]
\[
\mathcal{R}_{1: k, k+1}^{(2)}=\boldsymbol{\mathcal { Q }}_{1: k}^{T} \widehat{\boldsymbol{Q}} \% \text { second BCGS step }
\]
\[
\boldsymbol{W}=\widehat{\boldsymbol{Q}}-\mathcal{Q}_{1: k} \mathcal{R}_{1: k, k+1}^{(2)}
\]
\[
\left[\boldsymbol{Q}_{k+1}, R_{k+1, k+1}^{(2)}\right]=\text { IntraOrtho }(\boldsymbol{W})
\]
\[
\mathcal{R}_{1: k, k+1}=\mathcal{R}_{1: k, k+1}^{(1)}+\mathcal{R}_{1: k, k+1}^{(2)} R_{k+1, k+1}^{(1)}
\]
\[
R_{k+1, k+1}=R_{k+1, k+1}^{(2)} R_{k+1, k+1}^{(1)}
\]
end for
return \(\mathcal{Q}=\left[\boldsymbol{Q}_{1}, \ldots, \boldsymbol{Q}_{p}\right], \mathcal{R}=\left(R_{j k}\right)\)

\section*{BCGSI+}
[Barlow and Smoktunowicz, 2013]: If we have an IntraOrtho with \(\left\|I-\bar{Q}^{T} \bar{Q}\right\| \leq O(\varepsilon)\) and if \(O(\varepsilon) \kappa(X)<1\), then for BCGSI+,
\[
\left\|I-\bar{Q}^{T} \bar{Q}\right\| \leq O(\varepsilon)
\]

Key approach: Obtain bounds for the subproblem in every step of BCGSI+:

Given a near left-orthogonal matrix \(\mathcal{U} \in \mathbb{R}^{m \times t}\) and a matrix \(B \in \mathbb{R}^{m \times s}\), find \(S \in \mathbb{R}^{t \times s}\), upper triangular \(R_{B} \in \mathbb{R}^{s \times s}\), and left-orthogonal \(Q\) such that
\[
B=U S+Q R_{B} \quad \text { and } \quad \mathcal{U}^{T} Q \approx 0
\]
\[
[\mathcal{Q}, \mathcal{R}]=\operatorname{BCGSI}+(\mathcal{X})
\]
```

Allocate memory for \mathcal{Q} and \mathcal{R}
$\left[\boldsymbol{Q}_{1}, R_{11}\right]=$ IntraOrtho $\left(\boldsymbol{X}_{1}\right)$
for $k=1, \ldots, p-1$ do
$\mathcal{R}_{1: k, k+1}^{(1)}=\mathcal{Q}_{1: k}^{T} \boldsymbol{X}_{k+1} \%$ first BCGS step
$\boldsymbol{W}=\boldsymbol{X}_{k+1}-\mathcal{Q}_{1: k} \mathcal{R}_{1: k, k+1}^{(1)}$
$\left[\widehat{\boldsymbol{Q}}, R_{k+1, k+1}^{(1)}\right]=$ IntraOrtho (\boldsymbol{W})
$\mathcal{R}_{1: k, k+1}^{(2)}=\mathcal{Q}_{1: k}^{T} \widehat{\boldsymbol{Q}} \%$ second BCGS step
$\boldsymbol{W}=\widehat{\boldsymbol{Q}}-\mathcal{Q}_{1: k} \mathcal{R}_{1: k, k+1}^{(2)}$
$\left[\boldsymbol{Q}_{k+1}, R_{k+1, k+1}^{(2)}\right]=$ IntraOrtho (\boldsymbol{W})
$\mathcal{R}_{1: k, k+1}=\mathcal{R}_{1: k, k+1}^{(1)}+\mathcal{R}_{1: k, k+1}^{(2)} R_{k+1, k+1}^{(1)}$
$R_{k+1, k+1}=R_{k+1, k+1}^{(2)} R_{k+1, k+1}^{(1)}$
end for
return $\mathcal{Q}=\left[\boldsymbol{Q}_{1}, \ldots, \boldsymbol{Q}_{p}\right], \mathcal{R}=\left(R_{j k}\right)$

```

\section*{BCGSI+}
[Barlow and Smoktunowicz, 2013]: If we have an IntraOrtho with \(\left\|I-\bar{Q}^{T} \bar{Q}\right\| \leq O(\varepsilon)\) and if \(O(\varepsilon) \kappa(X)<1\), then for BCGSI+,
\[
\left\|I-\bar{Q}^{T} \bar{Q}\right\| \leq O(\varepsilon)
\]

Key approach: Obtain bounds for the subproblem in every step of BCGSI+:

Given a near left-orthogonal matrix \(\mathcal{U} \in \mathbb{R}^{m \times t}\) and a matrix \(B \in \mathbb{R}^{m \times s}\), find \(S \in \mathbb{R}^{t \times s}\), upper triangular \(R_{B} \in \mathbb{R}^{s \times s}\), and left-orthogonal \(Q\) such that
\[
B=U S+Q R_{B} \quad \text { and } \quad U^{T} Q \approx 0
\]
\[
[\mathcal{Q}, \mathcal{R}]=\operatorname{BCGSI}+(\mathcal{X})
\]
```

Allocate memory for \mathcal{Q} and \mathcal{R}
$\left[\boldsymbol{Q}_{1}, R_{11}\right]=$ IntraOrtho $\left(\boldsymbol{X}_{1}\right)$
for $k=1, \ldots, p-1$ do
$\mathcal{R}_{1: k, k+1}^{(1)}=\mathcal{Q}_{1: k}^{T} \boldsymbol{X}_{k+1} \%$ first BCGS step
$\boldsymbol{W}=\boldsymbol{X}_{k+1}-\mathcal{Q}_{1: k} \mathcal{R}_{1: k, k+1}^{(1)}$
$\left[\widehat{\boldsymbol{Q}}, R_{k+1, k+1}^{(1)}\right]=$ Intra0rtho (\boldsymbol{W})
$\mathcal{R}_{1: k, k+1}^{(2)}=\mathcal{Q}_{1: k}^{T} \widehat{\boldsymbol{Q}} \%$ second BCGS step
$\boldsymbol{W}=\widehat{\boldsymbol{Q}}-\mathcal{Q}_{1: k} \mathcal{R}_{1: k, k+1}^{(2)}$
$\left[\boldsymbol{Q}_{k+1}, R_{k+1, k+1}^{(2)}\right]=$ IntraOrtho (\boldsymbol{W})
$\mathcal{R}_{1: k, k+1}=\mathcal{R}_{1: k, k+1}^{(1)}+\mathcal{R}_{1: k, k+1}^{(2)} R_{k+1, k+1}^{(1)}$
$R_{k+1, k+1}=R_{k+1, k+1}^{(2)} R_{k+1, k+1}^{(1)}$
end for
return $\mathcal{Q}=\left[\boldsymbol{Q}_{1}, \ldots, \boldsymbol{Q}_{p}\right], \mathcal{R}=\left(R_{j k}\right)$

```
*Requires the a priori assumption that \(O(\varepsilon)\|B\|\left\|\bar{R}_{B}^{-1}\right\|<1\)
*The requirement that IntraOrtho has \(\left\|I-\bar{Q}^{T} \bar{Q}\right\| \leq O(\varepsilon)\) is needed to guarantee that \(Q_{1}\) is near left-orthogonal; proof proceeds via induction.

Läuchli matrix
\[
m=1000, p=100, s=5
\]


Läuchli matrix
\[
m=1000, p=100, s=5
\]


Recall: need \(\left\|I-\bar{Q}_{1}{ }^{T} \bar{Q}_{1}\right\| \leq O(\varepsilon)\) to satisfy base case
\(\Rightarrow\) Idea: What if we use a less stable IntraOrtho and just reorthogonalize the first block \(Q_{1}\) ?

Läuchli matrix
\[
m=1000, p=100, s=5
\]


BCGSI+1 [C., Lund, Rozložník, Thomas]:
Reorthogonalization on the first block to ensure \(\left\|I-\bar{Q}_{1}^{T} \bar{Q}_{1}\right\| \leq O(\varepsilon)\)

\section*{BCGSI+LS}
- Block generalization of CGSI+LS
- Equivalent algorithm given in [Yamazaki, Thomas, Hoemmen, Boman, Świrydowicz, Elliott, 2020] (see Figure 3)
- Notice: no IntraOrtho
- Conjectured that CGSI+LS has \(O(\varepsilon)\) loss of orthogonality
- What about BCGSI+LS?
```

```
\([\mathcal{Q}, \mathcal{R}]=\operatorname{BCGSI}+\mathrm{LS}(\mathcal{X})\)
```

```
\([\mathcal{Q}, \mathcal{R}]=\operatorname{BCGSI}+\mathrm{LS}(\mathcal{X})\)
    Allocate memory for \(\mathcal{Q}\) and \(\mathcal{R}\)
    Allocate memory for \(\mathcal{Q}\) and \(\mathcal{R}\)
    \(\boldsymbol{U}=\boldsymbol{X}_{1}\)
    \(\boldsymbol{U}=\boldsymbol{X}_{1}\)
    : for \(k=2, \ldots p\) do
    : for \(k=2, \ldots p\) do
        if \(k=2\) then
        if \(k=2\) then
            \(\left[R_{k-1, k-1}^{T} R_{k-1, k-1} P\right]=\boldsymbol{U}^{T}\left[\begin{array}{ll}\boldsymbol{U} & \boldsymbol{X}_{k}\end{array}\right]\)
            \(\left[R_{k-1, k-1}^{T} R_{k-1, k-1} P\right]=\boldsymbol{U}^{T}\left[\begin{array}{ll}\boldsymbol{U} & \boldsymbol{X}_{k}\end{array}\right]\)
        else if \(k>2\) then
        else if \(k>2\) then
            \(\left[\begin{array}{ll}\boldsymbol{W} & \boldsymbol{Z} \\ \Omega & Z\end{array}\right]=\left[\begin{array}{ll}\boldsymbol{\mathcal { Q }}_{1: k-2} & \boldsymbol{U}\end{array}\right]^{T}\left[\begin{array}{ll}\boldsymbol{U} & \boldsymbol{X}_{k}\end{array}\right]\)
            \(\left[\begin{array}{ll}\boldsymbol{W} & \boldsymbol{Z} \\ \Omega & Z\end{array}\right]=\left[\begin{array}{ll}\boldsymbol{\mathcal { Q }}_{1: k-2} & \boldsymbol{U}\end{array}\right]^{T}\left[\begin{array}{ll}\boldsymbol{U} & \boldsymbol{X}_{k}\end{array}\right]\)
            \(\left[R_{k-1, k-1}^{T} R_{k-1, k-1} P\right]=[\Omega \quad Z]-\boldsymbol{W}^{T}\left[\begin{array}{ll}\boldsymbol{W} & \boldsymbol{Z}\end{array}\right]\)
            \(\left[R_{k-1, k-1}^{T} R_{k-1, k-1} P\right]=[\Omega \quad Z]-\boldsymbol{W}^{T}\left[\begin{array}{ll}\boldsymbol{W} & \boldsymbol{Z}\end{array}\right]\)
        end if
        end if
        \(R_{k-1, k}=R_{k-1, k-1}^{-T} P\)
        \(R_{k-1, k}=R_{k-1, k-1}^{-T} P\)
        if \(k=2\) then
        if \(k=2\) then
            \(\boldsymbol{Q}_{k-1}=\boldsymbol{U} R_{k-1, k-1}^{-1}\)
            \(\boldsymbol{Q}_{k-1}=\boldsymbol{U} R_{k-1, k-1}^{-1}\)
        else if \(k>2\) then
        else if \(k>2\) then
            \(\mathcal{R}_{1: k-2, k-1}=\mathcal{R}_{1: k-2, k-1}+\boldsymbol{W}\)
            \(\mathcal{R}_{1: k-2, k-1}=\mathcal{R}_{1: k-2, k-1}+\boldsymbol{W}\)
            \(\mathcal{R}_{1: k-2, k}=\boldsymbol{Z}\)
            \(\mathcal{R}_{1: k-2, k}=\boldsymbol{Z}\)
            \(\boldsymbol{Q}_{k-1}=\left(\boldsymbol{U}-\boldsymbol{\mathcal { Q }}_{1: k-2} \boldsymbol{W}\right) \boldsymbol{R}_{k-1, k-1}^{-1}\)
            \(\boldsymbol{Q}_{k-1}=\left(\boldsymbol{U}-\boldsymbol{\mathcal { Q }}_{1: k-2} \boldsymbol{W}\right) \boldsymbol{R}_{k-1, k-1}^{-1}\)
        end if
        end if
        \(\boldsymbol{U}=\boldsymbol{X}_{k}-\boldsymbol{\mathcal { Q }}_{1: k-1} \mathcal{R}_{1: k-1, k}\)
        \(\boldsymbol{U}=\boldsymbol{X}_{k}-\boldsymbol{\mathcal { Q }}_{1: k-1} \mathcal{R}_{1: k-1, k}\)
    end for
    end for
    \(\left[\begin{array}{c}\boldsymbol{W} \\ \Omega\end{array}\right]=\left[\begin{array}{ll}\boldsymbol{\mathcal { Q }}_{1: s-1} & \boldsymbol{U}\end{array}\right]^{T} \boldsymbol{U}\)
    \(\left[\begin{array}{c}\boldsymbol{W} \\ \Omega\end{array}\right]=\left[\begin{array}{ll}\boldsymbol{\mathcal { Q }}_{1: s-1} & \boldsymbol{U}\end{array}\right]^{T} \boldsymbol{U}\)
    \(R_{s, s}^{T} R_{s, s}=\Omega-\boldsymbol{W}^{T} \boldsymbol{W}\)
    \(R_{s, s}^{T} R_{s, s}=\Omega-\boldsymbol{W}^{T} \boldsymbol{W}\)
    22: \(\mathcal{R}_{1: s-1, s}=\mathcal{R}_{1: s-1, s}+\boldsymbol{W}\)
    22: \(\mathcal{R}_{1: s-1, s}=\mathcal{R}_{1: s-1, s}+\boldsymbol{W}\)
    23: \(\boldsymbol{Q}_{s}=\left(\boldsymbol{U}-\mathcal{Q}_{1: s-1} \boldsymbol{W}\right) R_{s, s}^{-1}\)
    23: \(\boldsymbol{Q}_{s}=\left(\boldsymbol{U}-\mathcal{Q}_{1: s-1} \boldsymbol{W}\right) R_{s, s}^{-1}\)
    : return \(\mathcal{Q}=\left[\boldsymbol{Q}_{1}, \ldots, \boldsymbol{Q}_{s}\right], \mathcal{R}=\left(R_{j k}\right)\)
```

```
    : return \(\mathcal{Q}=\left[\boldsymbol{Q}_{1}, \ldots, \boldsymbol{Q}_{s}\right], \mathcal{R}=\left(R_{j k}\right)\)
```

```

"Monomial" matrices: Each block \(X_{k}=\left[v_{k}, A v_{k}, \ldots, A^{s-1} v_{k}\right]\), where \(A\) is a diagonal \(m \times m\) matrix with uniformly distributed eigenvalues in \((1,10)\) and \(v_{k}\) random

\section*{Summary: BCGS Variants}
\begin{tabular}{|r|c|c|c|}
\hline Algorithm & \(\left\|I-\bar{Q}^{T} \bar{Q}\right\|\) & Assumption on \(\kappa(X)\) & References \\
\hline BCGS & \(O(\varepsilon) \kappa^{n-1}(\mathcal{X})\) & \(O(\varepsilon) \kappa(X)<1\) & conjecture \\
\hline BCGS-P & \(O(\varepsilon) \kappa^{2}(X)\) & \(O(\varepsilon) \kappa^{2}(X)<1\) & [C., Lund, Rozložník, 2021] \\
\hline BCGSI+ & \(O(\varepsilon)\) & \(O(\varepsilon) \kappa(X)<1\) & [Barlow and Smoktunowicz, 2013] \\
\hline BCGSI+1 & \(O(\varepsilon)\) & \(O(\varepsilon) \kappa(X)<1\) & conjecture \\
\hline BCGSS+rpl & \(O(\varepsilon)\) & none & conjecture, [Stewart, 2008] \\
\hline BCGSI+LS & \(O(\varepsilon) \kappa^{2}(X)\) & \(?\) & conjecture \\
\hline
\end{tabular}

\section*{Block Modified GramSchmidt (BMGS)}

\section*{Results of Jalby and Philippe (1991)}

Intuition: From lines 4-8:
\[
W=\left(I-Q_{k} Q_{k}^{T}\right) \cdots\left(I-Q_{1} Q_{1}^{T}\right) X_{k+1}
\]

Each projector \(I-Q_{j} Q_{j}^{T}\) is equivalent to a step of CGS
- \(\Rightarrow\) Underlying "CGS-like" nature of BMGS

\section*{Results of Jalby and Philippe (1991)}

Intuition: From lines 4-8:
\[
W=\left(I-Q_{k} Q_{k}^{T}\right) \cdots\left(I-Q_{1} Q_{1}^{T}\right) X_{k+1}
\]

Each projector \(I-Q_{j} Q_{j}^{T}\) is equivalent to a step of CGS
- \(\Rightarrow\) Underlying "CGS-like" nature of BMGS
[Jalby and Philippe, 1991]:
- BMGSoMGS behaves "like CGS"
- BMGSoMGS+ is as stable as MGS
\begin{tabular}{l}
\hline\([\mathcal{Q}, \mathcal{R}]=\operatorname{BMGS}(\boldsymbol{\mathcal { X }})\) \\
\hline 1: Allocate memory for \(\mathcal{Q}\) and \(\mathcal{R}\) \\
2: \(\left[\boldsymbol{Q}_{1}, R_{11}\right]=\) IntraOrtho \(\left(\boldsymbol{X}_{1}\right)\) \\
3: for \(k=1, \ldots, p-1\) do \\
4: \(\quad \boldsymbol{W}=\boldsymbol{X}_{k+1}\) \\
5: for \(j=1, \ldots, k\) do \\
6: \(\quad R_{j, k+1}=\boldsymbol{Q}_{j}^{T} \boldsymbol{W}\) \\
7: \(\quad \boldsymbol{W}=\boldsymbol{W}-\boldsymbol{Q}_{j} R_{j, k+1}\) \\
8: \(\quad\) end for \\
9: \(\quad\left[\boldsymbol{Q}_{k+1}, R_{k+1, k+1}\right]=\) IntraOrtho \((\boldsymbol{W})\) \\
10: end for \\
11: return \(\boldsymbol{\mathcal { Q } = [ \boldsymbol { Q } _ { 1 } , \ldots , \boldsymbol { Q } _ { p } ] , \mathcal { R } = ( R _ { j k } )}\) \\
\hline
\end{tabular}

\section*{Results of Jalby and Philippe (1991)}

Intuition: From lines 4-8:
\[
W=\left(I-Q_{k} Q_{k}^{T}\right) \cdots\left(I-Q_{1} Q_{1}^{T}\right) X_{k+1}
\]

Each projector \(I-Q_{j} Q_{j}^{T}\) is equivalent to a step of CGS
- \(\Rightarrow\) Underlying "CGS-like" nature of BMGS
[Jalby and Philippe, 1991]:
\begin{tabular}{l}
\hline\([\mathcal{Q}, \mathcal{R}]=\operatorname{BMGS}(\boldsymbol{\mathcal { X }})\) \\
\hline 1: Allocate memory for \(\mathcal{Q}\) and \(\mathcal{R}\) \\
2: \(\left[\boldsymbol{Q}_{1}, R_{11}\right]=\) IntraOrtho \(\left(\boldsymbol{X}_{1}\right)\) \\
3: for \(k=1, \ldots, p-1\) do \\
4: \(\quad \boldsymbol{W}=\boldsymbol{X}_{k+1}\) \\
5: \(\quad\) for \(j=1, \ldots, k\) do \\
6: \(\quad R_{j, k+1}=\boldsymbol{Q}_{j}^{T} \boldsymbol{W}\) \\
7: \(\quad \boldsymbol{W}=\boldsymbol{W}-\boldsymbol{Q}_{j} R_{j, k+1}\) \\
8: \(\quad\) end for \\
9: \(\quad\left[\boldsymbol{Q}_{k+1}, R_{k+1, k+1}\right]=\) IntraOrtho \((\boldsymbol{W})\) \\
10: end for \\
11: return \(\boldsymbol{\mathcal { Q } = [ \boldsymbol { Q } _ { 1 } , \ldots , \boldsymbol { Q } _ { p } ] , \mathcal { R } = ( R _ { j k } )}\) \\
\hline
\end{tabular}
- BMGSoMGS behaves "like CGS"
- BMGSoMGS+ is as stable as MGS
- Can manipulate proof of Theorem 4.1 from Jalby and Philippe's work to show that BMGS 。 (any IntraOrtho with \(\left\|I-\bar{Q}^{T} \bar{Q}\right\| \leq O(\varepsilon)\) ) is as stable as MGS

\section*{Block Low-Sync Variants}
\begin{tabular}{|c|c|c|}
\hline & Two synchronizations & One synchronization \\
\hline \[
\begin{gathered}
\left(I-Q_{k} T_{T}^{T} Q_{k}^{T}\right) x_{k+1} \\
\text { (matrix-matrix } \\
\text { multiplication) }
\end{gathered}
\] & MGS-SVL
[Barlow, 2019]
(called "MGS2") & \begin{tabular}{l}
MGS-CWY \\
[Świrydowicz et al., 2020]
\end{tabular} \\
\hline \[
\begin{gathered}
\left(I-Q_{k} T_{k}^{-T} Q_{k}^{T}\right) x_{k+1} \\
\text { (triangular solve) }
\end{gathered}
\] & \begin{tabular}{l}
MGS-LTS \\
[Świrydowicz et al., 2020]
\end{tabular} & \begin{tabular}{l}
MGS-ICWY \\
[Świrydowicz et al., 2020]
\end{tabular} \\
\hline
\end{tabular}

Block generalizations:
- BMGS-SVLoMGS-SVL [Barlow, 2019] (called "MGS3")
- BMGS-SVLoHouseQR [Barlow, 2019] (called "BMGS_H")
- BMGS-LTS: [C. Lund, Rozložník, Thomas, 2020]
- BMGS-CWY, BMGS-ICWY ([C. Lund, Rozložník, Thomas, 2020] and [Yamazaki et al., 2020])

\section*{Barlow's Analysis [2019]}

Key quantities:
\[
\begin{gathered}
\Delta_{\mathcal{T S}}=\overline{\mathcal{T}} \mathcal{S}-I \\
\Delta_{\overline{\mathcal{R}} \overline{\mathcal{R}}}=\overline{\mathcal{Q}} \overline{\mathcal{R}}-\chi \\
\Gamma_{\mathcal{T R}}=(I-\overline{\mathcal{T}}) \overline{\mathcal{R}}
\end{gathered}
\]
\(\mathcal{S}=\operatorname{triu}\left(\bar{Q}^{T} \bar{Q}\right)\), and in exact arithmetic, \(\mathcal{S}=\mathcal{T}^{-1}\).

\section*{Barlow's Analysis [2019]}

Key quantities:
\[
\begin{gathered}
\Delta_{\mathcal{T S}}=\overline{\mathcal{T}} \mathcal{S}-I \\
\Delta_{\overline{\mathcal{R}} \overline{\mathcal{R}}}=\overline{\mathcal{Q}} \overline{\mathcal{R}}-\mathcal{X} \\
\Gamma_{\mathcal{T} \mathcal{R}}=(I-\overline{\mathcal{T}}) \overline{\mathcal{R}}
\end{gathered}
\]
\(\mathcal{S}=\operatorname{triu}\left(\bar{Q}^{T} \bar{Q}\right)\), and in exact arithmetic, \(\mathcal{S}=\mathcal{T}^{-1}\).
[Barlow, 2019]: If \([\bar{Q}, \bar{R}, \bar{T}]=\) IntraOrtho \((X)\) satisfies
\[
\begin{aligned}
\Delta_{T S} & =\bar{T} S-I_{S}, \quad\left\|\Delta_{T S}\right\|_{F} \leq O(\varepsilon) \\
\Delta_{\bar{Q} \bar{R}} & =\bar{Q} \bar{R}-X, \quad\left\|\Delta_{\bar{Q} \bar{R}}\right\|_{F} \leq O(\varepsilon)\|X\|_{F} \\
\Gamma_{T R} & =(I-\bar{T}) \bar{R}, \quad\left\|\Gamma_{T R}\right\|_{F} \leq O(\varepsilon)\|X\|_{F},
\end{aligned}
\]
then BMGS-SVL \(\circ\) IntraOrtho \((\mathcal{X})\) satisfies
\[
\begin{aligned}
& \left\|\Delta_{\mathcal{T S}}\right\|_{F} \leq O(\varepsilon) \\
& \left\|\Delta_{\bar{Q} \overline{\mathcal{R}}}\right\|_{F} \leq O(\varepsilon)\|\mathcal{X}\|_{F} \\
& \left\|\Gamma_{\mathcal{T \mathcal { R }}}\right\|_{F} \leq O(\varepsilon)\|\mathcal{X}\|_{F} .
\end{aligned}
\]

\section*{Barlow's Analysis [2019]}

Key quantities:
\[
\begin{gathered}
\Delta_{\mathcal{T S}}=\overline{\mathcal{T}} \mathcal{S}-I \\
\Delta_{\overline{\mathcal{Q}} \overline{\mathcal{R}}}=\bar{Q} \overline{\mathcal{R}}-\mathcal{X} \\
\Gamma_{\mathcal{T} \mathcal{R}}=(I-\overline{\mathcal{T}}) \overline{\mathcal{R}}
\end{gathered}
\]
\(\mathcal{S}=\operatorname{triu}\left(\bar{Q}^{T} \bar{Q}\right)\), and in exact arithmetic, \(\mathcal{S}=\mathcal{T}^{-1}\).
[Barlow, 2019]: If \([\bar{Q}, \bar{R}, \bar{T}]=\) IntraOrtho \((X)\) satisfies
\[
\begin{aligned}
\Delta_{T S} & =\bar{T} S-I_{S}, \quad\left\|\Delta_{T S}\right\|_{F} \leq O(\varepsilon) \\
\Delta_{\bar{Q} \bar{R}} & =\bar{Q} \bar{R}-X, \quad\left\|\Delta_{\bar{Q} \bar{R}}\right\|_{F} \leq O(\varepsilon)\|X\|_{F} \\
\Gamma_{T R} & =(I-\bar{T}) \bar{R}, \quad\left\|\Gamma_{T R}\right\|_{F} \leq O(\varepsilon)\|X\|_{F},
\end{aligned}
\]
then BMGS-SVL 。 IntraOrtho \((X)\) satisfies
\[
\begin{aligned}
& \left\|\Delta_{\mathcal{T} \mathcal{S}}\right\|_{F} \leq O(\varepsilon) \\
& \left\|\Delta_{\bar{Q} \overline{\mathcal{P}}}\right\|_{F} \leq O(\varepsilon)\|\mathcal{X}\|_{F} \quad\left[\quad\left\|I-\bar{Q}^{T} \overline{\mathcal{Q}}\right\|_{F} \leq O(\varepsilon) \kappa(\mathcal{X})\right. \\
& \left\|\Gamma_{\mathcal{T R}}\right\|_{F} \leq O(\varepsilon)\|X\|_{F} .
\end{aligned} \quad \text { if } O(\varepsilon) \kappa(\mathcal{X})<1
\]

Barlow proves directly that MGS-SVL satisfies the IntraOrtho constraints

\section*{Barlow's Analysis [2019]}
- What about BMGS-SVL with IntraOrthos that don't produce T's?

\section*{Barlow's Analysis [2019]}
- What about BMGS-SVL with IntraOrthos that don't produce T's?
- Implicitly, they produce \(\bar{T}=I\)
- In this case,
\[
\begin{gathered}
\left\|\Delta_{T S}\right\|_{F}=\|\bar{T} S-I\|_{F}=\left\|I-\operatorname{triu}\left(\bar{Q}^{T} \bar{Q}\right)\right\|_{F} \leq\left\|I-\bar{Q}^{T} \bar{Q}\right\|_{F} \\
\left\|\Delta_{\bar{Q} \bar{R}}\right\|_{F}=\|\bar{Q} \bar{R}-X\|_{F} \\
\left\|\Gamma_{T R}\right\|_{F}=\|(I-\bar{T}) \bar{R}\|_{F}=0
\end{gathered}
\]

\section*{Barlow's Analysis [2019]}
- What about BMGS-SVL with IntraOrthos that don't produce T's?
- Implicitly, they produce \(\bar{T}=I\)
- In this case,
\[
\begin{gathered}
\left\|\Delta_{T S}\right\|_{F}=\|\bar{T} S-I\|_{F}=\left\|\mathrm{I}-\operatorname{triu}\left(\bar{Q}^{T} \bar{Q}\right)\right\|_{F} \leq\left\|I-\bar{Q}^{T} \bar{Q}\right\|_{F} \\
\left\|\Delta_{\bar{Q} \bar{R}}\right\|_{F}=\|\bar{Q} \bar{R}-X\|_{F} \\
\left\|\Gamma_{T R}\right\|_{F}=\|(I-\bar{T}) \bar{R}\|_{F}=0
\end{gathered}
\]

For "non-T-based" IntraOrthos, must have \(\left\|I-\bar{Q}^{T} \bar{Q}\right\|_{F} \leq O(\varepsilon)\)
- HouseQR, CGSI+, TSQR, ...

\section*{Barlow's Analysis [2019]}
- What about BMGS-SVL with IntraOrthos that don't produce T's?
- Implicitly, they produce \(\bar{T}=I\)
- In this case,
\[
\begin{gathered}
\left\|\Delta_{T S}\right\|_{F}=\|\bar{T} S-I\|_{F}=\left\|I-\operatorname{triu}\left(\bar{Q}^{T} \bar{Q}\right)\right\|_{F} \leq\left\|I-\bar{Q}^{T} \bar{Q}\right\|_{F} \\
\left\|\Delta_{\bar{Q} \bar{R}}\right\|_{F}=\|\bar{Q} \bar{R}-X\|_{F} \\
\left\|\Gamma_{T R}\right\|_{F}=\|(I-\bar{T}) \bar{R}\|_{F}=0
\end{gathered}
\]

For "non-T-based" IntraOrthos, must have \(\left\|I-\bar{Q}^{T} \bar{Q}\right\|_{F} \leq O(\varepsilon)\)
- HouseQR, CGSI+, TSQR, ...
- What about BMGS with another T-variant IntraOrtho?

Läuchli matrix
\[
m=1000, p=100, s=5
\]


Läuchli matrix
\[
m=1000, p=100, s=5
\]


\section*{BMGS Variants}
\begin{tabular}{|c|c|c|c|c|}
\hline Algorithm & \begin{tabular}{c} 
IntraOrtho \\
reqs.
\end{tabular} & \(\left\|I-\bar{Q}^{T} \bar{Q}\right\|\) & Assumption on \(\kappa(X)\) & References \\
\hline \multirow{2}{*}{ BMGS } & \(O(\varepsilon)\) & \(O(\varepsilon) \kappa(X)\) & \(O(\varepsilon) \kappa(X)<1\) & [Jalby and Philippe, 1991] \\
\cline { 2 - 5 } & \(O(\varepsilon) \kappa(X)\) & \(O(\varepsilon) \kappa^{2}(X)\) & \(O(\varepsilon) \kappa(X)<1\) & [Jalby and Philippe, 1991] \\
\hline BMGS-SVL & \begin{tabular}{c}
\(O(\varepsilon)\) or \\
MGS-SVL
\end{tabular} & \(O(\varepsilon) \kappa(X)\) & \(O(\varepsilon) \kappa(X)<1\) & [Barlow, 2019] \\
\hline BMGS-LTS & \begin{tabular}{c}
\(O(\varepsilon)\) or \\
MGS-LTS
\end{tabular} & \(O(\varepsilon) \kappa(X)\) & \(O(\varepsilon) \kappa(X)<1\) & conjecture \\
\hline BMGS-CWY & any & \(O(\varepsilon) \kappa^{2}(X)\) & \(O(\varepsilon) \kappa^{2}(X)<1\) & conjecture \\
\hline BMGS-ICWY & any & \(O(\varepsilon) \kappa^{2}(X)\) & \(O(\varepsilon) \kappa^{2}(X)<1\) & conjecture \\
\hline
\end{tabular}

\section*{Open Questions}

\section*{Looking forward...}
- Much work to do in proving stability, in particular for low-sync variants
- What is the effect of normalization lag?
- What skeletons work with what muscles?
- Randomized Gram-Schmidt variants [Balabanov, Grigori, 2020]
- Opportunities for mixed precision?
- [Yamazaki, Tomov, Kurzak, Dongarra, Barlow, 2015]: mixed precision CholQR within BMGS and BCGS
- [Yang, Fox, Sanders, 2019]: mixed precision HouseQR
- What are the necessary and sufficient conditions on degree of orthogonality in order to have backward stable block GMRES? Communication-avoiding GMRES?

\section*{Thank You!}

\section*{carson@karlin.mff.cuni.cz www.karlin.mff.cuni.cz/~carson/}

Survey paper: https://arxiv.org/pdf/2010.12058.pdf BCGS-P variants: http://www.math.cas.cz/fichier/preprints/IM 20210124200723 43.pdf BlockStab MATLAB package: https://github.com/katlund/BlockStab```

