Exploiting Mixed Precision in

Numerical Linear Algebra

Erin C. Carson
Faculty of Mathematics and Physics, Charles University

November 2, 2021
MATHICSE Seminar
EPFL

Exascale Computing: A Modern Space Race

 "Exascale": 108 floating point operations per second
* with maximum energy consumption around 20-40 MWatts

* Large investment in HPC worldwide

Exascale Computing: A Modern Space Race

 "Exascale": 108 floating point operations per second
* with maximum energy consumption around 20-40 MWatts

* Large investment in HPC worldwide

e Technical challenges at all levels

hardware to algorithms to applications

Exascale Computing: A Modern Space Race

 "Exascale": 108 floating point operations per second
* with maximum energy consumption around 20-40 MWatts

* Large investment in HPC worldwide

e Technical challenges at all levels

hardware to algorithms to applications

- o~
- -~ -
.h- _——' -~ -

Floating Point Formats

(_l)sign X Z(exponent—offset) x 1. fraction

exponent (11 bits) fraction (52 bits)
AN A
4 ™\
IEEE double (FP64)
exponent (8 bits) fraction (23 bits)
AN

IEEE single (FP32)

exponent (5 bits) fraction (10 bits)

IEEE half (FP16)

size range u
exponent (8 bits) fraction (7 bits) fp64 64 bits | 10%308 1 % 1016
i 138 -8
bfloat16 fp32 32 bits | 10 6 x 10
fpl6 16 bits 10%3 5x107*
bfloat16 | 16 bits | 10%38 4x1073

Hardware Support for Multiprecision Computation

Use of low precision in machine learning has driven emergence of low-
precision capabilities in hardware:

* Half precision (FP16) defined as storage format in 2008 IEEE standard

« ARM NEON: SIMD architecture, instructions for 8x16-bit, 4x32-bit, 2x64-bit
 AMD Radeon Instinct MI25 GPU, 2017:
* single: 12.3 TFLOPS, half: 24.6 TFLOPS
* NVIDIA Tesla P100, 2016: native ISA support for 16-bit FP arithmetic
 NVIDIA Tesla V100, 2017: tensor cores for half precision;
4x4 matrix multiply in one clock cycle
* double: 7 TFLOPS, half+tensor: 112 TFLOPS (16x!)

 NVIDIA A100, 2020: tensor cores with multiple supported precisions: FP16,
FP64, Binary, INT4, INT8, bfloatl6

 Google's Tensor processing unit (TPU)

 Future exascale supercomputers: (72021) Expected extensive support for
reduced-precision arithmetic (32/16/8-bit)

Performance of LU factorization on an NVIDIA V100 GPU

Tflop/s

oOnN AOOOONDN

26
24
22
20
18
1

-
= O

FP16 hgetrf LU
FP32 sgetrf LU
=3¢=-FP64 dgetrf LU

iFPH 6-TC ('Il'en'sor Corés) hget'rf LU

-
‘
/
-

N

vy
> &

"
—

14Kk 18k
matrix size

2k 4k 6k 8k 10k

22K

26k

30k

34k

[Haidar, Tomov, Dongarra, Higham, 2018]

Mixed Precision Capabilities on Supercomputers

From TOP500:
June 2021
Accelerator/CP Family Count System Share (%) Rmax (GFlops) Rpeak (GFlops) Cores
1 NVIDIA Volta a7 19.4 626,503,420 1,049,977,600 11,875,056
2 NVIDIA Ampere 26 5.2 351,252,600 505,841,268 3,435,116
3 NVIDIA Pascal 9 1.8 57,876,640 85,807,525 1,141,300

Mixed Precision Capabilities on Supercomputers

From TOP500:

Accelerator/CP Family
1 NVIDIA Volta
2 NVIDIA Ampere
3 NVIDIA Pascal

Accelerator/CP Family
1 NVIDIA Pascal
3 NVIDIA Volta

Count
97
26

Count
61

12

June 2021

System Share (%)
19.4
5.2
1.8

June 2019

System Share (%)
12.2
24

Rmax (GFlops)
626,503,420
351,252,600

57,876,640

Rmax (GFlops)
106,025,166
224,559,400

Rpeak (GFlops)
1,049,977,600
505,841,268
85,807,525

Rpeak (GFlops)
179,951,012
360,593,742

Cores

11,875,056
3,435,116
1,141,300

Cores
2,738,356
4,488,720

An exaflop of what?

* When will victory be declared?

* When a supercomputer reaches exaflop performance on the HPL
(LINPACK) benchmark (TOP500)

* Solving dense Ax = b using Gaussian elimination with partial
pivoting in double precision (FP64)

An exaflop of what?

* When will victory be declared?

* When a supercomputer reaches exaflop performance on the HPL
(LINPACK) benchmark (TOP500)

* Solving dense Ax = b using Gaussian elimination with partial
pivoting in double precision (FP64)

* HPL benchmark is typically a compute-bound problem ("BLAS-3")

* Not a good indication of performance for a large number of applications!
* Lots of remaining work even after exascale performance is achieved
* Has led to incorporation of other benchmarks into the TOP500 ranking

* e.g., HPCG: Solving sparse Ax = b iteratively using the conjugate
gradient method

An exaflop of what?

 HPL doesn’'t make use of modern mixed precision hardware

* We can already achieve “exaflop” performance today if we allow for mixed
precision computations

(O LT

g,OAK RIDGE |

al Labo

SUMMIT h T
SUPERCOMPUTER

https://www.olcf.ornl.gov/2018/06/08/genomics-code-exceeds-exaops-on-summit-supercomputer/

An exaflop of what?

 HPL doesn’'t make use of modern mixed precision hardware

* We can already achieve “exaflop” performance today if we allow for mixed
precision computations

g,OAK RIDGE |

al Labo

(O LT

SUMMIT h T
SUPERCOMPUTER

https://www.olcf.ornl.gov/2018/06/08/genomics-code-exceeds-exaops-on-summit-supercomputer/

=>HPL-AIl: A new mixed precision benchmark

lterative Refinement for Ax = b

lterative refinement: well-established method for improving an
approximate solution to Ax = b

A is n X n and nonsingular; u is unit roundoff

Solve Axy = b by LU factorization
for i = 0: maxit
1, = b — Ax;
Solve Ad; =1; viad; = UYL 'r)

Xi+1 = X; + d;

lterative Refinement for Ax = b

lterative refinement: well-established method for improving an
approximate solution to Ax = b

A is n X n and nonsingular; u is unit roundoff

Solve Axy, = b by LU factorization (in precision u)
for i = 0: maxit
1, = b — Ax; (in precision u?)
Solve Ad; =1; viad; =U"Y(L™'r;) (in precision u)

Xiy1 = X; + d; (in precision u)

"Traditional" (high-precision
residual computation)

[Wilkinson, 1948] (fixed point), [Moler, 1967] (floating point)

lterative Refinement for Ax = b

4 B Koo (A) = 14 ol Al A
As long as ko, (A) < u™",

* relative forward error is O(u)
* relative normwise and componentwise backward errors are O(u)

-)

Solve Axy, = b by LU factorization (in precision u)
for i = 0: maxit
1, = b — Ax; (in precision u?)
Solve Ad; =1, viad; =UY(L7'r;) (in precision u)

Xiy1 = X; + d; (in precision u)

"Traditional" (high-precision
residual computation)

[Wilkinson, 1948] (fixed point), [Moler, 1967] (floating point)

lterative Refinement for Ax = b

Solve Axy, = b by LU factorization (in precision u)
for i = 0: maxit
r. = b — Ax; (in precision w.)
Solve Ad; =1, viad; =UY(L7'r;) (in precision u)

Xiy1 = X; + d; (in precision u)

"Fixed-Precision"
[Jankowski and Wozniakowski, 1977], [Skeel, 1980], [Higham, 1991]

lterative Refinement for Ax = b

g 1 cond(4,x) = || [A7*]]Al|x] ”oo/”x”)
As long as ko, (A) < u™",

* relative forward error is O(u)cond(4, x)
* relative normwise and componentwise backward errors are O(u)

-)

Solve Axy, = b by LU factorization (in precision u)
for i = 0: maxit
r. = b — Ax; (in precision w.)
Solve Ad; =1, viad; =UY(L7'r;) (in precision u)

Xiy1 = X; + d; (in precision u)

"Fixed-Precision"
[Jankowski and Wozniakowski, 1977], [Skeel, 1980], [Higham, 1991]

lterative Refinement for Ax = b

Solve Axy = b by LU factorization (in precision u!/?)
for i = 0: maxit
r, = b — Ax; (in precision)
Solve Ad; =1, viad; =UY(L7'r;) (in precision u)
Xiy1 = X; + d; (in precision u)

"Low-precision factorization"

[Langou et al., 2006], [Arioli and Duff, 2009], [Hogg and Scott, 2010], [Abdelfattah et al., 2016]
9

lterative Refinement for Ax = b

4 N
As long as k. (4) < u~1/2,
* relative forward error is O(u)cond(4, x)
* relative normwise and componentwise backward errors are O(u)

-)

Solve Axy = b by LU factorization (in precision u!/?)
for i = 0: maxit
r, = b — Ax; (in precision)
Solve Ad; =1, viad; =UY(L7'r;) (in precision u)
Xiy1 = X; + d; (in precision u)

"Low-precision factorization"

[Langou et al., 2006], [Arioli and Duff, 2009], [Hogg and Scott, 2010], [Abdelfattah et al., 2016]
9

lterative Refinement in 3 Precisions

Existing analyses only support at most two precisions

Can we combine the performance benefits of low-precision factorization IR with
the accuracy of traditional IR?

10

lterative Refinement in 3 Precisions

Existing analyses only support at most two precisions

Can we combine the performance benefits of low-precision factorization IR with
the accuracy of traditional IR?

= 3-precision iterative refinement

us = factorization precision, u = working precision, u, = residual precision

Up 2 U 2 Uy

10

lterative Refinement in 3 Precisions

Existing analyses only support at most two precisions

Can we combine the performance benefits of low-precision factorization IR with
the accuracy of traditional IR?

= 3-precision iterative refinement

us = factorization precision, u = working precision, u, = residual precision
Up 2 U 2 Uy

[C. and Higham, SIAM

* New analysis generalizes existing types of IR:
ysis 8 & LyP SISC 40(2). 2018]

Traditional Ur = U, Uy = u?
Fixed precision Ur = U= Uy
Lower precision factorization u]% = U= U,

(and improves upon existing analyses in some cases)

10

lterative Refinement in 3 Precisions

Existing analyses only support at most two precisions

Can we combine the performance benefits of low-precision factorization IR with
the accuracy of traditional IR?

= 3-precision iterative refinement

us = factorization precision, u = working precision, u, = residual precision
Up 2 U 2 Uy

[C. and Higham, SIAM

* New analysis generalizes existing types of IR:
ysis 8 & LyP SISC 40(2). 2018]

Traditional Ur = U, Uy = u?
Fixed precision Ur = U= Uy
Lower precision factorization u]% = U= U,

(and improves upon existing analyses in some cases)

* Enables new types of IR: (half, single, double), (half, single, quad),
(half, double, quad), etc. 10

Key Aspects of Analysis |

Obtain tighter upper bounds:

Typical bounds used in analysis: [|JA(x — X))l < l|Allollx — X1l

11

Key Aspects of Analysis |

Obtain tighter upper bounds:

Typical bounds used in analysis: ||A(x — X))l < |AllcollX — Zill oo

Define p;: |ACx = X)lloo = willAllollx — Xl o

11

Key Aspects of Analysis |

Obtain tighter upper bounds:

Typical bounds used in analysis: ||A(x — X))l < |AllcollX — Zill oo

Define p;: |ACx = X)lloo = willAllollx — Xl o

For a stable refinement scheme, in early stages we expect

|7]| lx — ;|
— L _ru<K '
|A[]]%;|] || x|

Hi K1

11

Key Aspects of Analysis |

Obtain tighter upper bounds:

Typical bounds used in analysis: ||A(x — X))l < |AllcollX — Zill oo

Define p;: |ACx = X)lloo = willAllollx — Xl o

For a stable refinement scheme, in early stages we expect

|7]| lx — ;|
— 2 uK '
|A[]]%;|] || x|

Hi K1

But close to convergence,
Inll = llAllllx — %] ——— u; = 1

11

Key Aspects of Analysis Il

Allow for general solver:
Let u, be the effective precision of the solve, with u < u, < u,

12

Key Aspects of Analysis Il

Allow for general solver:
Let u, be the effective precision of the solve, with u < u, < u,

Assume computed solution d; to Ad; = 7; satisfies:

1. dAi = (I + uSEl-)dl-, uS||El-||oo <1

— normwise relative forward error is bounded
by multiple of ug and is less than 1

12

Key Aspects of Analysis Il

Allow for general solver:
Let u, be the effective precision of the solve, with u < u, < u,

example: LU solve:
Assume computed solution d; to Ad; = 7; satisfies:

1. d; = (I +u.E)d, IE;il|l <1

: : . 1777
— normwise relative forward error is bounded IEillo0 < 3"“f|||A ||L||U|”oo
by multiple of ug and is less than 1

12

Key Aspects of Analysis Il

Allow for general solver:
Let u, be the effective precision of the solve, with u < u, < u,

example: LU solve:
Assume computed solution d; to Ad; = 7; satisfies:

1. d; = (I +u.E)d, IE;il|l <1

— normwise relative forward error is bounded
by multiple of ug and is less than 1

1Eilleo < Bnugf|lA=H|Z][T]]|,

2.

TA'i - AdAl”OO = (ClllA”oo”dAl”OO + C2”f'i”oo)

— hormwise relative backward error is at most
max(cy, ¢z) Us

12

Key Aspects of Analysis Il

Allow for general solver:
Let u, be the effective precision of the solve, with u < u, < u,

example: LU solve:
Assume computed solution d; to Ad; = 7; satisfies:

1. d; = (I +u.E)d, IE;il|l <1

— normwise relative forward error is bounded
by multiple of ug and is less than 1

1Eilleo < Bnugf|lA=H|Z][T]]|,

2. |17 = Ady||_ < us(erllAllo||de]l + c2llfillco) o
| . . 3nu||Z]| O]
— normwise relative backward error is at most max(cy, cy) 1. <] =

max(cy, ¢z) Us

12

Key Aspects of Analysis Il

Allow for general solver:
Let u, be the effective precision of the solve, with u < u, < u,

example: LU solve:
Assume computed solution d; to Ad; = 7; satisfies:

1. d; = (I +u.E)d, IE;il|l <1

— normwise relative forward error is bounded
by multiple of ug and is less than 1

1Eilleo < Bnugf|lA=H|Z][T]]|,

2. TA'i _ AdAl”OO < (ClllA”oo”dAl”OO + C2”f'i”oo) o
. . . 3nu[||Z[]0]]
— normwise relative backward error is at most max(cy, ¢;) 1. < ®
max(cy, ¢z) Us Al
3. |f— Ad;| < u.G;|dy

— componentwise relative backward error is
bounded by a multiple of u,

E;,ci,cy, and G; depend on A, 7;, n, and 12

Key Aspects of Analysis Il

Allow for general solver:
Let u, be the effective precision of the solve, with u < u, < u,

example: LU solve:
Assume computed solution d; to Ad; = 7; satisfies:

1. d; = (I +u.E)d, IE;il|l <1

— normwise relative forward error is bounded
by multiple of ug and is less than 1

I1Eilloo < 3nug|||A7H|Z]|T]||

2. TA'i _ AdAl”OO = (ClllA”oo”dAl”OO + C2”f'i”oo) o
. . . 3nay[||Z]|01]l,
— normwise relative backward error is at most max(cy, ¢;) 1. <
max(cy, ¢z) Us Al
3. |f— Ad;| < u.G;|dy
— componentwise relative backward error is 1Gilleo < 3nugl||L||T]]]

bounded by a multiple of u,

E;,ci,cy, and G; depend on A, 7;, n, and 12

Key Aspects of Analysis Il

Allow for general solver:
Let u, be the effective precision of the solve, with u < u, < u,

example: LU solve:

Assume computed solution d; to Ad; = 7; satisfies: @

1. d; = (I +u.E)d, IE;il|l <1

— normwise relative forward error is bounded
by multiple of ug and is less than 1

I1Eilloo < 3nug|||A7H|Z]|T]||

2. TA'i _ AdAl”OO = (ClllA”oo”dAl”OO + C2”f'i”oo) o
. . . 3nay[||Z]|01]l,
— normwise relative backward error is at most max(cy, ¢;) 1. <
max(cy, ¢z) Us Al
3. |f— Ad;| < u.G;|dy
— componentwise relative backward error is 1Gilleo < 3nugl||L||T]]]

bounded by a multiple of u,

E;,ci,cy, and G; depend on A, 7;, n, and 12

Forward Error for IR3

* Three precisions: 9
Koo (A) = |47 oo |l All

cond(4) = [l [A7[1A] Ilo,
cond(4, x) = [l AT 1Alx] lloo /1%l oo

* uy: factorization precision
* u: working precision
* u,: residual computation precision

13

Forward Error for IR3

* Three precisions: 9
Koo (A) = |47 oo |l All

cond(4) = [l [A7[1A] Ilo,
cond(4, x) = [l AT 1Alx] lloo /1%l oo

* uy: factorization precision
* u: working precision
* u,: residual computation precision

Theorem [C. and Higham, SISC 40(2), 2018]

For IR in precisions uy = u = u, and effective solve precision 1, if
¢; = 2u; min(cond(A), koo (A1) + 1| Eill oo

is less than 1, then the forward error is reduced on the ith iteration by a
factor = ¢; until an iterate X; is produced for which

l1x — %;lloo

121l oo

< 4Nu, cond(4, x) + u,

where N is the maximum number of nonzeros per row in A.

13

Forward Error for IR3

* Three precisions: 9
Koo (A) = |47 oo |l All

cond(4) = [l [A7[1A] Ilo,
cond(4, x) = [l AT 1Alx] lloo /1%l oo

* uy: factorization precision
* u: working precision
* u,: residual computation precision

Theorem [C. and Higham, SISC 40(2), 2018]

For IR in precisions uy = u = u, and effective solve precision 1, if

¢; = 2u; min(cond(A), koo (A)) + 1l Eill oo

ml, then the forward error is reduced on the ith iteration by a

factor = ¢; until an iterate X; is produced for which

l1x — %;lloo

121l oo

< 4Nu, cond(4, x) + u,

where N is the maximum number of nonzeros per row in A.

> Analogous traditional bounds: ¢; = 3nusk.(A4)
13

Normwise Backward Error for IR3

Theorem [C. and Higham, SISC 40(2), 2018]

For IR in precisions uy = u = u, and effective solve precision u,, if

®i = (1K (A) + cx)uy

is less than 1, then the residual is reduced on the ith iteration by a factor
~ ¢; until an iterate X; is produced for which

b — A%l = Nu(l[blleo + [[Alleo [l %10,

where N is the maximum number of nonzeros per row in A.

14

IR3: Summary

Standard (LU-based) IR in three precisions (1, = uy)

Half ~ 107*, Single ~ 1078, Double ~ 10716, Quad ~ 10734

Backward error

U U U | MaXKe(A) | norm | comp Forward error

H S S 10* 1078 | 1078 | cond(4,x)-1078
H S D 104 1078 | 1078 1078

H D D 10 1071 | 107 | cond(4,x) 1071
H D Q 10* 10716 | 1071 10716

S S S 108 1078 | 1078 | cond(4,x)- 1078
S S D 108 108 10°8 10~8

S D D 108 1071 | 107 | cond(4,x) 1071
S D Q 108 10716 | 1071 1016

15

IR3: Summary

Standard (LU-based) IR in three precisions (1, = uy)

Half ~ 107*, Single ~ 1078, Double ~ 10716, Quad ~ 10734

Backward error

U U U | MaXKe(A) | norm | comp Forward error
LP fact. H S S 104 1078 | 1078 | cond(4,x) 1078
H S D 10* 1078 | 1078 1078
LP fact. H D D 10 1071 | 1071® | cond(4,x) 1071
H D Q 10* 1076 | 1071¢ 10716
S S S 108 1078 | 1078 | cond(4,x)- 1078
S S D 108 108 10°8 10~8
LPfacc. S D D 108 107t | 1071 | cond(4,x) 10716
S D Q 108 10~ | 1071¢ 10-16

15

IR3: Summary

Standard (LU-based) IR in three precisions (1, = uy)

Fixed

Half ~ 107*, Single ~ 1078, Double ~ 10716, Quad ~ 10734

Backward error

U U U | MaXKe(A) | norm | comp Forward error
H S S 10* 1078 | 1078 | cond(4,x)-1078
H S D 104 1078 | 1078 1078
H D D 10* 1071 | 107 | cond(4,x) 1071
H D Q 10* 10716 | 1071 10716
S S S 108 1078% | 1078 | cond(4,x)- 1078
S S D 108 108 10°8 10~8
S D D 108 1071 | 107 | cond(4,x) 1071
S D Q 108 10716 | 1071 1016

15

IR3: Summary

Standard (LU-based) IR in three precisions (1, = uy)

Trad.

Half ~ 107*, Single ~ 1078, Double ~ 10716, Quad ~ 10734

Backward error

ur U U, | MaXKep(A) | norm | comp Forward error
H S S 10* 1078 | 1078 | cond(4,x)-1078
H S D 10* 1078 | 1078 1078
H D D 10* 1071 | 107 | cond(4,x) 1071
H D Q 10* 10716 | 10716 10716
S S S 108 1078% | 1078 | cond(4,x)- 1078
S S D 108 1078 | 1078 1078
S D D 108 1071 | 107 | cond(4,x) 1071
S D Q 108 10716 | 10716 10-1¢6

15

IR3: Summary

Standard (LU-based) IR in three precisions (1, = uy)

New

New

New

Half ~ 107%, Single ~ 108, Double ~ 1076, Quad ~ 1073

Backward error

Uy U U, | MaAXKp(A) | norm | comp Forward error
H S S 10* 1078 | 1078 | cond(4,x)-1078
H S D 10* 1078 1078 1078
H D D 10 1071 | 107 | cond(4,x) 1071
H D Q 10* 10716 | 10716 10-16
S S S 108 1078% | 1078 | cond(4,x)- 1078
S S D 108 1078 1078 1078
S D D 108 1071 | 107 | cond(4,x) 1071
S D Q 108 10716 | 10716 10716

15

IR3: Summary

Standard (LU-based) IR in three precisions (1, = uy)
Half ~ 107%, Single ~ 1078, Double ~ 1071%, Quad ~ 1073*

Backward error
Uy U U, | MaAXKp(A) | norm | comp Forward error
LP fact. | H S S 104 10~8 10~8 cond(4,x) - 1078
New H S D 10* 1078 1078 1078
LP fact.| H D D 104 1071 | 107 | cond(4,x) 1071
New H D Q 10* 10716 | 10716 10-16
LP fact. = S D 108 1071 | 1071 | cond(4,x) 10716
New S D Q 108 1076 | 1071° 10716

= Benefit of IR3 vs. "LP fact.": no cond(4, x) term in forward error
15

IR3: Summary

Standard (LU-based) IR in three precisions (1, = uy)
Half ~ 107%, Single ~ 1078, Double ~ 1071%, Quad ~ 1073*

Backward error
Uy U U, | MaxKex(A) | norm comp Forward error
New H S D 104 108 108 1078
Trad. | S S D 108 1078 | 1078 1078

= Benefit of IR3 vs. traditional IR: As long as ks (4) < 10%*, can use lower
precision factorization w/no loss of accuracy! 15

A = gallery('randsvd', 100, 1le3)
b = randn (100, 1)

Ko(4) = led

Standard (LU-based) IR with u: single, u: double, u,: quad

10° -
—<—ferr 0 2Ugkoo (A) i
X -O-nbe 100 F==mm == 2ugscond(A) [
i\ che B
1 0_1 0 _\\\(| 1 O-Eﬁf?—@‘—‘i_ Z _V_ qb’b
"‘_ﬂ
\ X
LN
B—X
100 wor-—
0O 1 2 3 4 5 6 7 8 9 10 11 0O 1 2 3 4 5 6 7 8 9 10 11

refinement step refinement step

16

A = gallery('randsvd', 100, 1le7)
b = randn (100, 1)

Ko(4) = Te7

Standard (LU-based) IR with u: single, u: double, u,: quad

10°) S —

><\ —x<—ferr . Qus Koo (A) i
><>< —S-nbe 10 K_— T T T T T _ 1 2ugcond(A) |
% N ./ cbe A Can v VA O us|| B oo
10 5 7 o X 107 | o
10791 Qg X |
BB 5B
1 0-20

L 1 1 1 1 1 L L : : _15 | | | L L L 1 1 1 1
10
0123;561;:891011 01 2 3 4 5 6 7 8 9 10 11
rennement step refinement step

16

A = gallery('randsvd', 100, 1le9)
b = randn (100, 1)

k., (A) ~ 2el0

Standard (LU-based) IR with u: single, u: double, u,: quad

ferr Qs Koo (A) 11
“O-nbe 10°V/ ¥ 2ugcond(A) ||
s che| | S| Bl
B— e @ 1072 - 7 Pi
o™
1071°]

0 1 2 0 1 2

refinement step refinement step

16

A = gallery('randsvd',

b = randn (100, 1)

k., (A) ~ 2el0

100, 1le9)

Standard (LU-based) IR with u: double, wu,: quad

ferr > 2Uskoo (A) 11
“O-nbe 107 Y oo cond(A) ||
10°° +/ cbe] S us|| Bl
B— -5 @ 10°7 i _
o™
10715 |
0 1 2 0 1 2

refinement step

refinement step

16

A = gallery('randsvd', 100, 1le9)
b = randn (100, 1)

Ko(4) =~ 2el0

Standard (LU-based) IR with (u: double, wu: double, u,: quad

—<—ferr|; N 2uskoo (A) 14 _
-O-nbe 10 2uscond(A)
</ cbe O us || Ei ||
10° ‘ :
1075~ 7 @i
\V &
10718
0 1 2 0 1

refinement step refinement step

GMRES-Based lterative Refinement

* Observation [Rump, 1990]: if L and U are computed LU factors of 4 in precision uy, then
Koo(U7IL71A) = 1+ koo (A,

even if ke, (4) > ufl.

17

GMRES-Based lterative Refinement

* Observation [Rump, 1990]: if L and U are computed LU factors of 4 in precision uy, then
Koo(UTIL7A) = 1+ koo (Auy,

even if ke, (4) > ufl.

~

A Ty
AP SN
* To compute the updates d;, apply GMRES to U~!L71Ad; = UL 1r;

GMRES-IR [C. and Higham, SISC 39(6), 2017]

17

GMRES-Based lterative Refinement

* Observation [Rump, 1990]: if L and U are computed LU factors of 4 in precision uy, then
Koo(UTIL7A) = 1+ koo (Auy,

even if ke, (4) > ufl.

~

A Ty
AP SN
* To compute the updates d;, apply GMRES to U~!L71Ad; = UL 1r;

GMRES-IR [C. and Higham, SISC 39(6), 2017]

Solve Axy = b by LU factorization

for i = 0: maxit
1, =b — Ax;
Solve Ad; =r; via GMRES on Ad; = #;
Xi+1 = X; + d;

17

GMRES-Based lterative Refinement

* Observation [Rump, 1990]: if L and U are computed LU factors of 4 in precision uy, then
Koo(UTIL7A) = 1+ koo (Auy,

even if ke, (4) > ufl.

~

A Ty
AP SN
* To compute the updates d;, apply GMRES to U~!L71Ad; = UL 1r;

GMRES-IR [C. and Higham, SISC 39(6), 2017]

Solve Axy = b by LU factorization

for i = 0: maxit —u
T = b — Axi ﬁ

Solve Ad; =r; via GMRES on Ad; = #;
Xiy1 = X; t+ d;

17

A = gallery('randsvd', 100,
b = randn (100, 1)

Ko(A) = 210, cond(4,x) = 5e9

1e9, 2)

Standard (LU-based) IR with u;: single, u: double, wu,.:

ferr |
-O-nbe
o5 cbe_
O— —9 D
1 0'1 5 -—_ __________________________ -
0 1 2

refinement step

quad
. 2 Koo (A) i
10V v 2ugscond(A) ||
1072 - _V_qﬁz
107°] ,
0 1

refinement step

A = gallery('randsvd', 100, 1e9,

b = randn (100, 1)

2)

Ko(A) & 2e10, cond(4,x) = 59, ko(4)~ 2e4

@ with u;: single, u: double, u,: quad

—¢—ferr|

-S-nbe

</ cbe|

0 1 2
refinement step

Number of GMRES iterations: (2,3)

10°

2uskoo (A) 14

2uscond(A) |
%us ||Ez ||oo
7 i

0 1

refinement step

GMRES-IR: Summary

Benefits of GMRES-IR:

Backward error

Uy U U, | MaXxKy(A) norm comp Forward error
LU-IR H S D 10 1078 1078 1078
GMRES-IR H S D 108 1078 1078 1078
LU-IR S D Q 108 10716 | 10716 10716
GMRES-IR S D Q 1016 10716 | 10716 10716
LU-IR H D Q 10* 10716 | 10716 10716
GMRES-IR H D Q 1012 10716 | 1071 10716

19

GMRES-IR: Summary

Benefits of GMRES-IR:

Backward error

Uy U U, | MaXxKy(A) norm comp Forward error
LU-IR H S D 10 1078 1078 1078
GMRES-IR H S D 108 1078 1078 1078
LU-IR S D Q 108 10716 | 10716 10716
GMRES-IR S D Q 1016 10716 | 10716 10716
LU-IR H D Q 10* 10716 | 10716 10716
GMRES-IR H D Q 1012 10716 | 1071 10716

=With GMRES-IR, low precision factorization will work for higher k. (A)

19

GMRES-IR: Summary

Benefits of GMRES-IR:

Backward error
Uy U U, | MaXxKy(A) norm comp Forward error
LU-IR H S D 10 1078 1078 1078
GMRES-IR H S D 108 1078 1078 1078
LU-IR S D Q 108 10716 | 10716 10716
GMRES-IR S D Q 1016 10716 | 10716 10716
LU-IR H D Q 10* 10716 | 10716 10716
GMRES-IR H D Q 1012 10716 | 1071 10716

=>With GMRES-IR, lower precision\factorization will work for higher k. (A)

Koo (A) < u™1/2 ust

19

GMRES-IR: Summary

Benefits of GMRES-IR:

Backward error

Uy U U, | MaXxKy(A) norm comp Forward error
LU-IR H S D 10 1078 1078 1078
GMRES-IR H S D 108 1078 1078 1078
LU-IR S D Q 108 10716 | 10716 10716
GMRES-IR S D Q 1016 10716 | 10716 10716
LU-IR H D Q 10* 10716 | 10716 10716
GMRES-IR @ D Q 1012 10716 | 10716 10716

= As long as ks (A) < 1012, can use half precision factorization and still obtain

double precision accuracy!

19

Comments and Caveats |

» Convergence tolerance T for GMRES?
* Smaller T > more GMRES iterations, potentially fewer refinement steps
» Larger T — fewer GMRES iterations, potentially more refinement steps

20

Comments and Caveats |

» Convergence tolerance T for GMRES?
* Smaller T > more GMRES iterations, potentially fewer refinement steps
» Larger T — fewer GMRES iterations, potentially more refinement steps

 What about overflow, underflow, subnormal numbers?
* Sophisticated scaling methods can help avoid this

* “Squeezing a Matrix into Half Precision, with an Application to Solving
Linear Systems” [Higham, Pranesh, Zounon, 2019]

20

Comments and Caveats I

» Convergence rate of GMRES?

21

Comments and Caveats I

» Convergence rate of GMRES?

* If A is ill conditioned and LU factorization is performed in very low precision, it
can be a poor preconditioner

* e.g., if 4 still has cluster of eigenvalues near origin, GMRES can stagnate
until n™® iteration, regardless of k4 (A4) [Liesen and Tichy, 2004]

» Potential remedies: deflation, Krylov subspace recycling, using additional
preconditioner

21

Comments and Caveats I

» Convergence rate of GMRES?

* If A is ill conditioned and LU factorization is performed in very low precision, it
can be a poor preconditioner

* e.g., if 4 still has cluster of eigenvalues near origin, GMRES can stagnate
until n™® iteration, regardless of k4 (A4) [Liesen and Tichy, 2004]

» Potential remedies: deflation, Krylov subspace recycling, using additional
preconditioner

« Depending on conditioning of A, applying 4 to a vector must be done accurately
(precision u?) in each GMRES iteration

* Recent development of 5-precision GMRES-IR algorithm [Amestoy et al., 2021]

* Defines working precision u, for GMRES and u,, for preconditioning within
GMRES

21

Comments and Caveats I

» Convergence rate of GMRES?

* If A is ill conditioned and LU factorization is performed in very low precision, it
can be a poor preconditioner

* e.g., if 4 still has cluster of eigenvalues near origin, GMRES can stagnate
until n™® iteration, regardless of k4 (A4) [Liesen and Tichy, 2004]

» Potential remedies: deflation, Krylov subspace recycling, using additional
preconditioner

« Depending on conditioning of A, applying 4 to a vector must be done accurately
(precision u?) in each GMRES iteration

* Recent development of 5-precision GMRES-IR algorithm [Amestoy et al., 2021]

* Defines working precision u, for GMRES and u,, for preconditioning within
GMRES

» Why GMRES?

 Theoretical purposes: existing analysis and proof of backward stability [Paige,
Rozloznik, Strakos, 2006]

* In practice, use any solver you want!
21

GMRES-IR in Libraries and Applications

* MAGMA: Dense linear algebra routines for heterogeneous/hybrid
architectures

D magma / src / dxgesv_gmres_gpu.cpp r|:|

—_— ——————

128 -------

129 DSGESV or DHGESV expert interface.

138 It computes the solution to a real system of Linear equations

131 A*X =B, A**T * X =B, or A*¥H * X =B,

132 where A is an N-by-N matrix and X and B are N-by-NRHS matrices.

133 the accomodate the Single Precision DSGESV and the Half precision dhgesv API.

134 precision and iterative refinement solver are specified by facto_type, solver_type.
135 For other API parameter please refer to the corresponding dsgesv or dhgesv.

* NVIDIA's cuSOLVER Library

2.2.1.6. cusolverIRSRefinement_t

The cusolverIRSRefinement_t type indicates which solver type would be used for the specific
cusolver function. Most of our experimentation shows that CUSOLVER_IRS_REFINE_GMRES is the best
option.

CUSOLVER_IRS_REFINE_GMRES GMRES (Generalized Minimal Residual) based
iterative refinement solver. In recent study, the
GMRES method has drawn the scientific
community attention for its ability to be used as
refinement solver that outperforms the classical
iterative refinement method. based on our
experimentation, we recommend this setting.

* In production codes: FK6D/ASGarD code (Oak Ridge National Lab, USA)

for tokomak containment problem
22

Performance Results (MAGMA)

 [Haidar, Tomov, Dongarra, Higham, 2018|

» 2-precision GMRES-IR approach (u = u,) on NVIDIA V100
* IR run to FP64 accuracy, max 400 iterations in GMRES
 Tflops/s measured as (2n3/3)/time

T

FP16->64 dhgesv |
FP32->64 dsgesv ,
-94-FP64 dgesv |

24 »\iphsird»sh dhgesv

..

ok ak 6k 8k10k 14k 18k 22k 26k 30k 34k
Matrix size

(a) Matrix of type I: diagonally dominant. 0

Performance Results (MAGMA)

 [Haidar, Tomov, Dongarra, Higham, 2018|

24 T) T T ¢’\
FP1 6-TC->64 dhgesv 9 10°
22 -.8-FP16->64 dhgesv -
20 - FP32->64 dsgesv
-)(-FP64 dgesv 3
18+ 8 10°
16+ s _A
w14}
o ~,
g 12+ - 102
=10
8 .
6 + 10’
4
2|
0 " 1 0()

ok 4k 6k 8k10k 14k 18k 22k 26k 30k 34k
Matrix size

a) Matrix of type 3: positive A with clustered singular values, o;=(1, ---, I,
).

(uml

24

Performance Results (MAGMA)

 [Haidar, Tomov, Dongarra, Higham, 2018|

20 T T T T T T T T 14
¢»FP16-TC->64 dhgesv|
18 | |=&=FP16->64 dhgesv
FP32->64 dsgesv 10°
16 = M=FP6adgesy [... .ccummeenenngg
14+ 1101
@ 12+ |
10 10°
- g | "
10°
6 I
=T 330 4 '
2 L
0 10"

ok 4k 6k 8k10k 14k 18k 22k 26k 30k 34k
Matrix size

(b) Matrix of type 4: clustered singular values, o;=(1, ---, 1, ——).

cond /

24

Performance Results

[Haidar, Tomov, Dongarra, Higham, 2018|

Performance for Matrices from SuiteSparse

name Description size Kl dgesv dsgesv dhgesv dhgesv-TC

time(s) # iter time (s) # iter time (s) # iter time (s)
em|92 radar design 26896 10° 270 3 3.l 4 a2l 1) 2.05 2.8X
appu NASA app benchmark 14000 10* 0.43 2 0.27 7 0.24 4 0.19 2.3%
ns3Da 3D Mawvier Stokes 20414 7.6 107 1.12 2 (.69 §] 0.54 4 0.43 2.6X
ndak ND problem set 18000 3.5 108 0.81 2 0.45 -+ 0.36 3 0.30 27X
nd 12k ND problem set 36000 4.3 1P 5.36 2 275 3 1.76 3 1.31 4.1%

26

HPL-Al Benchmark

* HPL/LINPACK benchmark has been used in TOP500 since the 90s
* Double precision, dense Ax=b using GEPP

* Not necessarily indicative of application performance, especially for
ML/AI applications

* Doesn't take advantage of low-precision hardware!

27

HPL-Al Benchmark

* HPL/LINPACK benchmark has been used in TOP500 since the 90s
* Double precision, dense Ax=b using GEPP

* Not necessarily indicative of application performance, especially for
ML/AI applications

* Doesn't take advantage of low-precision hardware!

* HPL-Al benchmark (2019)
» Highlights confluence of HPC+AI workloads
* Like HPL, solves dense Ax=b, results still to double precision accuracy
* Achieves this via mixed-precision GMRES-IR

* may be implemented in a way that takes advantage of the current
and upcoming devices for accelerating Al workloads

27

HPL-Al Benchmark Performance

HPL-AI Results (June 2021):

1. Fugaku: 2 EXAFLOP/s (vs. 442 PETAFLOP/s on HPL; 4.5%)
2. Summit: 1.15 EXAFLOP/s (vs. 149 PETAFLOP/s on HPL; 7.7%)

HPLAI

NOVEMBER 2020°

RRRRRRRRRRRR

- Fugaku 2.0 criop/s

28

HPL-Al Benchmark

In the future, HPL-AI will gain same status as benchmarks that
complement HPL, like HPCG, Graph500, Green500

Usage is growing:
* 1 machine (2019), 5 machines (2020), 11 machines (2021)

More information: https://icl.bitbucket.io/hpl-ai/

Reference implementation: https://bitbucket.org/icl/hpl-ai/src/

29

https://icl.bitbucket.io/hpl-ai/
https://bitbucket.org/icl/hpl-ai/src/master/

Extension to Least Squares Problems

 Want to solve
min||b — Ax||,
X

where A € R™*" (m > n) has rank n

* Commonly solved using QR factorization:
U
A=QR=1010]|]

where Q is an m X m orthogonal matrix and U is upper triangular.
x=U"Q(b, IIb—Axll, = |[Q7b],

30

Extension to Least Squares Problems

 Want to solve
min||b — Ax||,
X

where A € R™*" (m > n) has rank n

* Commonly solved using QR factorization:
U
A=QR=1010]|]

where Q is an m X m orthogonal matrix and U is upper triangular.
x=U"Q(b, IIb—Axll, = |[Q7b],

* As in linear system case, for ill-conditioned problems, iterative refinement
often needed to improve accuracy and stability

30

Least Squares lterative Refinement

* For inconsistent systems, must simultaneously refine both solution and residual

* (Bjorck,1967): Least squares problem can be written as a linear system with
square matrix of size (m + n):

i olld=1o

30

Least Squares lterative Refinement

* For inconsistent systems, must simultaneously refine both solution and residual

* (Bjorck,1967): Least squares problem can be written as a linear system with
square matrix of size (m + n):

i olld=1o

* Refinement proceeds as follows:

1. Compute "residuals"

A=1-L allal= Zn™

2. Solve for corrections

i o)l =13

3. Update "solution":
] = L)+ [
Xi+1

30

Least Squares lterative Refinement

* For inconsistent systems, must simultaneously refine both solution and residual

* (Bjorck,1967): Least squares problem can be written as a linear system with
square matrix of size (m + n):

oolld=ll A

* Refinement proceeds as follows:

1. Compute "residuals"

A=1-L allal= Zn™

2. Solve for corrections

i o)l =13

3. Update "solution":
] = L)+ [
Xi+1

30

Least Squares lterative Refinement

* For inconsistent systems, must simultaneously refine both solution and residual

* (Bjorck,1967): Least squares problem can be written as a linear system with
square matrix of size (m + n):

oolld=ll A

* Refinement proceeds as follows:

1. Compute "residuals"

0 I A T] i B

2. Solve for corrections

o ollael =[5 i

AT Axl Adl —_ 77'1'

3. Update "solution":
Tit1 Ti ATL . -
[xi+1] [] [] Xivn =X + d;

30

Least Squares lterative Refinement

* For inconsistent systems, must simultaneously refine both solution and residual

* (Bjorck,1967): Least squares problem can be written as a linear system with
square matrix of size (m + n):

oolld=ll A

* Refinement proceeds as follows:

1. Compute "residuals"

0 I A T] i B

2. Solve for corrections

o ollael =[5 i
AT Axl Adl — 77'1'
3. Update "solution": /

Ti+1 7”1 Arl Results for 3-precision " "
Xit1 IR for linear systems Xit1 = X; T di
also applies to least

squares problems
30

m
oo

= gallery('randsvd', [100, 10], kappa, 3)
randn (100, 1) ;

Standard (QR-based) least squares IR with

Relative forward error

k =1e+4+01
1072 ' '
""" ¢ g0l

CQ """ > res
10'43"‘;_,
105x
1078} ®
10710 | '

0 5 10

b = b./norm(b)

Us: half, wu: single, wu,: double

Refinement step

15

31

m
oo

= gallery('randsvd', [100, 10], kappa, 3)
randn (100,1); b = b./norm(b)

Standard (QR-based) least squares IR with

Relative forward error

r =1e+03

2@ """ ‘E(D """ sol

104 e res
X,

107 ¢
10‘5_
10-8 L
10-10 | !

0 5 10

Us: half, wu: single, wu,: double

Refinement step

15

31

m
oo

= gallery('randsvd', [100, 10], kappa, 3)

randn (100,1); b = b./norm(b)

Standard (QR-based) least squares IR with
uf:haﬁ, u: single, u,.: double

k =1e+05
1009---@-'--.

O RS S e W
_ : R ,“&V@W@w@%§@@¢"
o
)
fS
©
:
L 51
o 10
=
=
[
'

10710 ' '
0 5 10 15

Refinement step

31

GMRES-IR for Least Squares

* Similar to the linear system case, we can use a lower precision factorization for even
more ill-conditioned problems if we improve the effective precision of the solver

» Again, don't want to compute an LU factorization of the augmented system

* How can we use existing QR factors to construct an effective and inexpensive
preconditioner for the augmented system?

* Note that augmented system is a saddle-point system; lots of existing work (block
diagonal, triangular, constraint-based, ...)

32

GMRES-IR for Least Squares

* Ex: block diagonal preconditioner ([Murphy, Golub, Wathen, 2000], [Ipsen, 2001])

al \/ al 0 val 0
1A . ~

IO —RT R RT
a

33

GMRES-IR for Least Squares

* Ex: block diagonal preconditioner ([Murphy, Golub, Wathen, 2000], [Ipsen, 2001])
al Jal 0 Jal 0
l 0 —RTR

RT 0 —R
* Assuming QR factorization is exact,

I
a R-IRTAT 0

M, *M{1A =

is nonsymmetric, diagonalizable, with eigenvalues 1,l 1++/5)¢.
2

* However, condition number can still be quite large; unsuitable for proving
backward stability of GMRES

33

GMRES-IR for Least Squares

» Ex: block diagonal preconditioner ([Murphy, Golub, Wathen, 2000], [Ipsen, 2001])

al 0 Val 0 Val 0
1 P~ o~ = 1 ~ 1 ~| =
lo —R"R 0 — || o —=g|FMM
a Va Va
* Assuming QR factorization is exact,
1
M, M4 = ! EA

a RIR7TAT 0
is nonsymmetric, diagonalizable, with eigenvalues {1,%(1 + \/g)}

* However, condition number can still be quite large; unsuitable for proving
backward stability of GMRES

* |f we take split preconditioner
M-1AM. 1 = [A I AR]
o RTAT 0
we will have a well-conditioned system
* However, split-preconditioned GMRES is not backward stable

* Potentially useful in practice, not but in theory
33

GMRES-IR for Least Squares

* One option:

* Then we can prove that for the left-preconditioned system,
5 2
k(M™14) < (1 + upC K(A))

where ¢ = 0(m?), where we note this bound is pessimistic.

* Thus even if k(A) > u;l, the preconditioned system can still be reasonably
well conditioned

33

GMRES-IR for Least Squares

* One option:

* Then we can prove that for the left-preconditioned system,
5 2
k(M™14) < (1 + upC K(A))

where ¢ = 0(m?), where we note this bound is pessimistic.

* Thus even if k(A) > u;l, the preconditioned system can still be reasonably
well conditioned

« GMRES run on A with left-preconditioner M gives
IEillco = v f(m + n)ko (M~ A)

where f is a quadratic polynomial

33

GMRES-IR for Least Squares

* One option:

* Then we can prove that for the left-preconditioned system,
5 2
k(M™14) < (1 + upC K(A))

where ¢ = 0(m?), where we note this bound is pessimistic.

* Thus even if k(A) > u;l, the preconditioned system can still be reasonably
well conditioned

« GMRES run on A with left-preconditioner M gives
IEillco = v f(m + n)ko (M~ A)

where f is a quadratic polynomial

* So for GMRES-based LSIR, 1. = u; expect convergence of forward error

when k. (4) < u‘l/zujj1
[C., Higham, Pranesh, SISC 2020] 33

Further Extensions

* Multistage mixed precision iterative refinement
[Oktay, C., 2021]

* Other variants of least squares: underdetermined LS,
total LS, data LS

* Use of inexact preconditioners: ILU, SPAI, etc.

The rise of multiprecision hardware

* Future machines will support a range of precisions: quarter, half, single,
double, quad

34

The rise of multiprecision hardware

* Future machines will support a range of precisions: quarter, half, single,
double, quad

* New, non-lIEEE compliant floating point formats will appear in
commercially-available hardware

* e.g., bfloatl6 (truncated 16-bit version of single precision), posits

34

The rise of multiprecision hardware

* Future machines will support a range of precisions: quarter, half, single,
double, quad

* New, non-lIEEE compliant floating point formats will appear in
commercially-available hardware

* e.g., bfloatl6 (truncated 16-bit version of single precision), posits

» Lower-precision arithmetic is faster and more energy efficient, but the
potential for its use depends heavily on the particular problem and
algorithm

34

The rise of multiprecision hardware

* Future machines will support a range of precisions: quarter, half, single,
double, quad

* New, non-lIEEE compliant floating point formats will appear in
commercially-available hardware

* e.g., bfloatl6 (truncated 16-bit version of single precision), posits

» Lower-precision arithmetic is faster and more energy efficient, but the
potential for its use depends heavily on the particular problem and
algorithm

* As numerical analysts, we must determine when and where we can exploit
lower-precision hardware to improve performance

34

Mixed precision in NLA

Iterative refinement:
* Long history: [Wilkinson, 1963], [Moler, 1967], [Stewart, 1973], ...

* More recently: [Langou et al., 2006], [C., Higham, 2017], [C., Higham, 2018], [C.,
Higham, Pranesh, 2020], [Amestoy et al., 2021]

» BLAS: cuBLAS, MAGMA, [Agullo et al. 2009], [Abdelfattah et al., 2019], [Haidar et al., 2018]

* Matrix factorizations: [Haidar et al., 2017], [Haidar et al., 2018], [Haidar et al., 2020],
[Abdelfattah et al., 2020]

* Eigenvalue problems: [Dongarra, 1982], [Dongarra, 1983], [Tisseur, 2001], [Davies et al.,
2001], [Petschow et al., 2014], [Alvermann et al., 2019]

 Sparse direct solvers: [Buttari et al., 2008]
* Orthogonalization: [Yamazaki et al., 2015]

* Multigrid: [Tamstorf et al., 2020], [Richter et al., 2014], [Sumiyoshi et al., 2014], [Ljungkvist,
Kronbichler, 2017, 2019]

* (Preconditioned) Krylov subspace methods: [Emans, van der Meer, 2012], [Yamagishi,
Matsumura, 2016], [C., Gergelits, Yamazaki, 2021], [Clark, 2019], [Anzt et al., 2019], [Clark et
al., 2010], [Gratton et al., 2020], [Arioli, Duff, 2009], [Hogg, Scott, 2010]

For survey and references, see [Abdelfattah et al., [JHPC, 2021] 35

Thank Youl

carson@karlin.mff.cuni.cz
www.karlin.mff.cuni.cz/~carson/

Select References

Carson, E., & Higham, N. J. (2018). Accelerating the solution of linear
systems by iterative refinement in three precisions. SIAM J. SISC, 40(2),
A817-A847.

Carson, E., & Higham, N. J. (2017). A new analysis of iterative refinement
and its application to accurate solution of ill-conditioned sparse linear
systems. SIAM J. SISC, 39(6), A2834-A2856.

Carson, E., Higham, N. J., & Pranesh, S. (2020). Three-Precision GMRES-
Based Iterative Refinement for Least Squares Problems. SIAM J. SISC (to

appear).

Haidar, A., Tomov, S., Dongarra, J., & Higham, N. J. (2018, Novemberg.

Harnessing GPU tensor cores for fast FP16 arithmetic to speed up mixe
precision iterative refinement solvers. In Proc. SC18 (pp. 603-613). IEEE.

Higham, N. J., Pranesh, S., & Zounon, M. (2019). Squeezing a matrix into
half precision, with an application to solving linear systems. SIAM J.

SISC, 41(4), A2536-A2551.

Abdelfattah, A., Anzt, H., Boman, E. G., Carson, E., Cojean, T., Dongarra,
J., et al. (2021). A survey of numerical methods utilizing mixed precision
arithmetic. IJHPC, 35(1), 344-369.

