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Floating Point Formats
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exponent (11 bits) fraction (52 bits)

IEEE double (FP64)

IEEE single (FP32)

IEEE half (FP16)

exponent (8 bits) fraction (23 bits)

exponent (5 bits) fraction (10 bits)

−1 sign × 2(exponent−offset) × 1. fraction

size range 𝑢

fp64 64 bits 10±308 1 × 10−16

fp32 32 bits 10±38 6 × 10−8

fp16 16 bits 10±5 5 × 10−4

bfloat16 16 bits 10±38 4 × 10−3

exponent (8 bits) fraction (7 bits)

bfloat16



Hardware Support for Multiprecision Computation

3

• Half precision (FP16) defined as storage format in 2008 IEEE standard

• ARM NEON: SIMD architecture, instructions for 8x16-bit, 4x32-bit, 2x64-bit

• AMD Radeon Instinct MI25 GPU, 2017: 

• single: 12.3 TFLOPS, half: 24.6 TFLOPS

• NVIDIA Tesla P100, 2016: native ISA support for 16-bit FP arithmetic

• NVIDIA Tesla V100, 2017: tensor cores for half precision; 

4x4 matrix multiply in one clock cycle

• double: 7 TFLOPS, half+tensor: 112 TFLOPS (16x!)

• Google's Tensor processing unit (TPU)

• NVIDIA A100, 2020: tensor cores with multiple supported precisions: FP16, 
FP64, Binary, INT4, INT8, bfloat16

• NVIDIA H100, 2022: now with quarter-precision (FP8) tensor cores 

• Future exascale supercomputers: (~2021) Expected extensive support for 
reduced-precision arithmetic (32/16/8-bit)

Use of low precision in machine learning has driven emergence of low-
precision capabilities in hardware:



Mixed precision in NLA

• BLAS: cuBLAS, MAGMA, [Agullo et al. 2009], [Abdelfattah et al., 2019], [Haidar et al., 2018] 

• Iterative refinement:

• Long history: [Wilkinson, 1963], [Moler, 1967], [Stewart, 1973], …

• More recently: [Langou et al., 2006], [C., Higham, 2017], [C., Higham, 2018], [C., 
Higham, Pranesh, 2020], [Amestoy et al., 2021]

• Matrix factorizations: [Haidar et al., 2017], [Haidar et al., 2018], [Haidar et al., 2020], 
[Abdelfattah et al., 2020]

• Eigenvalue problems: [Dongarra, 1982], [Dongarra, 1983], [Tisseur, 2001], [Davies et al., 
2001], [Petschow et al., 2014], [Alvermann et al., 2019]

• Sparse direct solvers: [Buttari et al., 2008]

• Orthogonalization: [Yamazaki et al., 2015] 

• Multigrid: [Tamstorf et al., 2020], [Richter et al., 2014], [Sumiyoshi et al., 2014], [Ljungkvist, 
Kronbichler, 2017, 2019]

• (Preconditioned) Krylov subspace methods: [Emans, van der Meer, 2012], [Yamagishi, 
Matsumura, 2016], [C., Gergelits, Yamazaki, 2021], [Clark, 2019], [Anzt et al., 2019], [Clark et 
al., 2010], [Gratton et al., 2020], [Arioli, Duff, 2009], [Hogg, Scott, 2010]

4For survey and references, see [Abdelfattah et al., IJHPC, 2021]



HPL-AI Benchmark

• Like HPL, solves dense Ax=b, results still to double precision accuracy

• Achieves this via mixed-precision iterative refinement
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Challenges of low precision

• Do error bounds still apply?

• Error bound with constant 𝑛𝑢 provides no information if 𝑛𝑢 > 1

• One solution: probabilistic approach [Higham, Mary, 2019], [Higham, Mary, 2020]
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Inexact computations

• In real computations we have many sources of 
inexactness

• Imperfect data, measurement error

• Modeling error, discretization error

• Intentional approximation to improve 
performance

• Reduced models, Low-rank 
representations, sparsification, 
randomization
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[Schilders, van der Vorst, Rommes, 2008]

Model Reduction

[Sinha, 2018]

Sparsification, Randomized algorithms

Low-rank (hierarchical) approximation

𝐴 ≈



Inexact computations

• In real computations we have many sources of 
inexactness

• Imperfect data, measurement error

• Modeling error, discretization error

• Intentional approximation to improve 
performance

• Reduced models, Low-rank 
representations, sparsification, 
randomization

• Given that we are already working with so much 
inexactness, does it matter if we use lower 
precision?
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• Analysis of accuracy in techniques that use intentional approximation almost 
always assume that roundoff error is small enough to be ignored

• Is this true? Is it true even if we use low precision?

[Schilders, van der Vorst, Rommes, 2008]

Model Reduction

[Sinha, 2018]

Sparsification, Randomized algorithms

Low-rank (hierarchical) approximation

𝐴 ≈



Example: Randomized Algorithms

• Given 𝑚× 𝑛 𝐴, want truncated SVD with parameter 𝑘
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𝐴 ෡𝑈

෠Σ ෠𝑉𝑇

≈



Example: Randomized Algorithms

• Given 𝑚× 𝑛 𝐴, want truncated SVD with parameter 𝑘
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𝐴
Ω

𝑌 𝑄

𝑅 𝐵 ෩𝑈 ෠Σ ෠𝑉𝑇

෡𝑈

=
𝑄𝑇

𝐴

=

𝑄

෩𝑈=

=
=

• Randomized SVD:

𝐴 ෡𝑈

෠Σ ෠𝑉𝑇

≈

Assuming exact arithmetic:

If 𝑄 satisfies 𝐴 − 𝑄𝑄𝑇𝐴 ≤ 𝜀, then 𝐴 − ෡𝑈෠Σ ෠𝑉𝑇 ≤ 𝜀



What happens in finite precision?

Let’s try different types of randsvd matrices from the MATLAB gallery:

A = gallery('randsvd',[100,40],1e6,mode); k=15;

𝑈, 𝑆, 𝑉 = svd(𝐴) : non-randomized SVD, exact arithmetic

෡𝑈, መ𝑆, ෠𝑉 = rsvd(𝐴) : randomized SVD, exact arithmetic

෡𝑈𝑑, መ𝑆𝑑 , ෠𝑉𝑑 = rsvd(𝐴) : randomized SVD, double precision

෡𝑈ℎ, መ𝑆ℎ, ෠𝑉ℎ = rsvd(𝐴) : randomized SVD, half precision
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Mode 3: Geometrically distributed singular values 

𝐴 − 𝑈𝑆𝑉𝑇
2 = 4.92e-03

𝐴 − ෡𝑈 መ𝑆 ෠𝑉𝑇
2

= 4.92e-03

𝐴 − ෡𝑈𝑑 መ𝑆𝑑 ෠𝑉𝑑
𝑇

2
= 4.92e-03

𝐴 − ෡𝑈ℎ መ𝑆ℎ ෠𝑉ℎ
𝑇

2
= 4.92e-03
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Example: Low-Rank Approximation

• Block low-rank approximation and 
hierarchical matrix representations arise in a 
variety of applications
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𝐴 ሚ𝐴

• Work on mixed and low precision in block low-rank computations

• [Higham, Mary, 2019]: block low-rank LU factorization preconditioner that 
exploits numerically low-rank structure of the error for LU computed in low 
precision

• [Higham, Mary, 2019]: Interplay of roundoff error and approximation error in 
solving block low-rank linear systems using LU

• [Buttari, et al., 2020]: block low-rank single precision coarse grid solves in 
multigrid 

• [Amestoy et al., 2021]: Mixed precision low rank approximation and application 
to block low-rank LU factorization



Inverse multiquadratic kernel:

𝐴 𝑖, 𝑗 =
1

1 + 0.1 𝑥 − 𝑦 2
, 𝑥, 𝑦 ∈ ℝ2

A is SPD. Low-rank approximation 
of A should also be SPD!

𝐴 ሚ𝐴

Example: Low-Rank Approximation
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Inverse multiquadratic kernel:
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Example: Iterative Methods
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A = diag(linspace(.001,1,100));

[V,~] = eig(A);

b = V'*ones(n,1);



Example: Iterative Methods
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[V,~] = eig(A);

b = V'*ones(n,1);

𝑛 = 100, 𝜆1 = 10−3, 𝜆𝑛 = 1

𝜆𝑖 = 𝜆1 +
𝑖−1

𝑛−1
𝜆𝑛 − 𝜆1 (0.65)𝑛−𝑖 , 𝑖 = 2,… , 𝑛 − 1



Takeaway

• Low precision can have massive performance benefits but must be used 
with caution!

• Many opportunities for using mixed and low precision computation in 
scientific applications

• Need to develop a theoretical understanding of how mixed precision 
algorithms behave; need to revisit analyses of algorithms and techniques 
that ignore finite precision
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Iterative Refinement for 𝐴𝑥 = 𝑏

Solve 𝐴𝑥0 = 𝑏 by LU factorization

for 𝑖 = 0:maxit

𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖

Solve 𝐴𝑑𝑖 = 𝑟𝑖

𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖

𝐴 is 𝑛 × 𝑛 and nonsingular; 𝑢 is unit roundoff
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Iterative refinement: well-established method for improving an 
approximate solution to 𝐴𝑥 = 𝑏

(in precision 𝒖𝒇)

(in precision 𝒖𝒓)

(in precision 𝒖𝒔)

(in precision 𝒖)



• New analysis generalizes existing types of IR:

Iterative Refinement in 3 Precisions

Traditional 𝑢𝑓 = 𝑢, 𝑢𝑟 = 𝑢2

Fixed precision 𝑢𝑓 = 𝑢 = 𝑢𝑟

Lower precision factorization 𝑢𝑓
2 = 𝑢 = 𝑢𝑟

𝑢𝑓 = factorization precision, 𝑢 = working precision,   𝑢𝑟 = residual precision

𝑢𝑓 ≥ 𝑢 ≥ 𝑢𝑟

• Enables new types of IR: (half, single, double), (half, single, quad), 
(half, double, quad), etc. 14

𝒖𝒔 is the effective precision of the solve, with 𝒖 ≤ 𝒖𝒔 ≤ 𝒖𝒇

• For triangular solves with LU factors: 𝒖𝒔 = 𝒖𝒇
• For GMRES preconditioned by LU factors, 𝒖𝒔 = 𝒖 [C. and Higham, 2017]

• 3-precision iterative refinement [C. and Higham, 2018]



IR3: Summary

15

Standard (LU-based) IR in three precisions (𝒖𝒔 = 𝒖𝒇)

Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16,Quad ≈ 10−34

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

H S S 104 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

H S D 104 10−8 10−8 10−8

H D D 104 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

H D Q 104 10−16 10−16 10−16

S S S 108 10−8 10−8 cond 𝐴, 𝑥 ⋅ 10−8

S S D 108 10−8 10−8 10−8

S D D 108 10−16 10−16 cond 𝐴, 𝑥 ⋅ 10−16

S D Q 108 10−16 10−16 10−16
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Standard (LU-based) IR in three precisions (𝒖𝒔 = 𝒖𝒇)
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Backward error
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Half ≈ 10−4, Single ≈ 10−8, Double ≈ 10−16,Quad ≈ 10−34
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Standard (LU-based) IR in three precisions (𝒖𝒔 = 𝒖𝒇)

⇒ Benefit of IR3 vs. traditional IR: As long as 𝜅∞ 𝐴 ≤ 104, can use lower  
precision factorization w/no loss of accuracy! 
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GMRES-IR: Summary

Backward error

𝒖𝒇 𝒖 𝒖𝒓 max 𝜅∞(𝐴) norm comp Forward error

LU-IR H S D 104 10−8 10−8 10−8

GMRES-IR H S D 108 10−8 10−8 10−8

LU-IR S D Q 108 10−16 10−16 10−16

GMRES-IR S D Q 1016 10−16 10−16 10−16

LU-IR H D Q 104 10−16 10−16 10−16

GMRES-IR H D Q 1012 10−16 10−16 10−16

⇒With GMRES-IR, lower precision factorization will work for higher 𝜅∞(𝐴)

17
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GMRES-IR: Solve for 𝑑𝑖 via GMRES on 𝑈−1𝐿−1𝐴𝑑𝑖 = 𝑈−1𝐿−1 𝑟𝑖
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Recent work: 5-precision GMRES-IR [Amestoy, et al., 2021]
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Extension: Least Squares Problems

• Want to solve
min
𝑥

𝑏 − 𝐴𝑥 2

where 𝐴 ∈ ℝ𝑚×𝑛 (𝑚 > 𝑛) has rank 𝑛

• Commonly solved using QR factorization:

𝐴 = 𝑄𝑅 = [𝑄1, 𝑄2]
𝑈
0

where 𝑄 is an 𝑚 ×𝑚 orthogonal matrix and 𝑈 is upper triangular.
𝑥 = 𝑈−1𝑄1

𝑇𝑏, 𝑏 − 𝐴𝑥 2 = 𝑄2
𝑇𝑏

2
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𝑥

𝑏 − 𝐴𝑥 2

where 𝐴 ∈ ℝ𝑚×𝑛 (𝑚 > 𝑛) has rank 𝑛

• Commonly solved using QR factorization:

𝐴 = 𝑄𝑅 = [𝑄1, 𝑄2]
𝑈
0

where 𝑄 is an 𝑚 ×𝑚 orthogonal matrix and 𝑈 is upper triangular.
𝑥 = 𝑈−1𝑄1

𝑇𝑏, 𝑏 − 𝐴𝑥 2 = 𝑄2
𝑇𝑏

2

• As in linear system case, for ill-conditioned problems, iterative refinement 
often needed to improve accuracy and stability
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• For inconsistent systems, must simultaneously refine both solution and residual

• (Björck,1967): Least squares problem can be written as a linear system with 
square matrix of size (𝑚+ 𝑛):

𝐼 𝐴
𝐴𝑇 0

𝑟
𝑥

=
𝑏
0

Extension: Least Squares Problems
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• (Björck,1967): Least squares problem can be written as a linear system with 
square matrix of size (𝑚+ 𝑛):

𝐼 𝐴
𝐴𝑇 0

𝑟
𝑥

=
𝑏
0

• Refinement proceeds as follows:

1. Compute "residuals" 

𝑓𝑖
𝑔𝑖

=
𝑏
0

−
𝐼 𝐴
𝐴𝑇 0

𝑟𝑖
𝑥𝑖

=
𝑏 − 𝑟𝑖 − 𝐴𝑥𝑖

−𝐴𝑇𝑟𝑖
2. Solve for corrections

𝐼 𝐴
𝐴𝑇 0

Δ𝑟𝑖
Δ𝑥𝑖

=
𝑓𝑖
𝑔𝑖

3. Update "solution":
𝑟𝑖+1
𝑥𝑖+1

=
𝑟𝑖
𝑥𝑖

+
Δ𝑟𝑖
Δ𝑥𝑖

Extension: Least Squares Problems

19



• For inconsistent systems, must simultaneously refine both solution and residual

• (Björck,1967): Least squares problem can be written as a linear system with 
square matrix of size (𝑚+ 𝑛):

𝐼 𝐴
𝐴𝑇 0

𝑟
𝑥

=
𝑏
0

• Refinement proceeds as follows:

1. Compute "residuals" 

𝑓𝑖
𝑔𝑖

=
𝑏
0

−
𝐼 𝐴
𝐴𝑇 0

𝑟𝑖
𝑥𝑖

=
𝑏 − 𝑟𝑖 − 𝐴𝑥𝑖

−𝐴𝑇𝑟𝑖
2. Solve for corrections

𝐼 𝐴
𝐴𝑇 0

Δ𝑟𝑖
Δ𝑥𝑖

=
𝑓𝑖
𝑔𝑖

3. Update "solution":
𝑟𝑖+1
𝑥𝑖+1

=
𝑟𝑖
𝑥𝑖

+
Δ𝑟𝑖
Δ𝑥𝑖

Extension: Least Squares Problems

ሚ𝐴 ෤𝑥 = ෨𝑏

19



• For inconsistent systems, must simultaneously refine both solution and residual

• (Björck,1967): Least squares problem can be written as a linear system with 
square matrix of size (𝑚+ 𝑛):

𝐼 𝐴
𝐴𝑇 0

𝑟
𝑥

=
𝑏
0

• Refinement proceeds as follows:

1. Compute "residuals" 

𝑓𝑖
𝑔𝑖

=
𝑏
0

−
𝐼 𝐴
𝐴𝑇 0

𝑟𝑖
𝑥𝑖

=
𝑏 − 𝑟𝑖 − 𝐴𝑥𝑖

−𝐴𝑇𝑟𝑖
2. Solve for corrections

𝐼 𝐴
𝐴𝑇 0

Δ𝑟𝑖
Δ𝑥𝑖

=
𝑓𝑖
𝑔𝑖

3. Update "solution":
𝑟𝑖+1
𝑥𝑖+1

=
𝑟𝑖
𝑥𝑖

+
Δ𝑟𝑖
Δ𝑥𝑖

Extension: Least Squares Problems

ሚ𝐴 ෤𝑥 = ෨𝑏

19

ǁ𝑟𝑖 = ෨𝑏 − ሚ𝐴෤𝑥𝑖

ሚ𝐴𝑑𝑖 = ǁ𝑟𝑖

෤𝑥𝑖+1 = ෤𝑥𝑖 + 𝑑𝑖



Extension: Least Squares Problems

• For inconsistent systems, must simultaneously refine both solution and residual

• (Björck,1967): Least squares problem can be written as a linear system with 
square matrix of size (𝑚+ 𝑛):

𝐼 𝐴
𝐴𝑇 0

𝑟
𝑥

=
𝑏
0

• Refinement proceeds as follows:

1. Compute "residuals" 

𝑓𝑖
𝑔𝑖

=
𝑏
0

−
𝐼 𝐴
𝐴𝑇 0

𝑟𝑖
𝑥𝑖

=
𝑏 − 𝑟𝑖 − 𝐴𝑥𝑖

−𝐴𝑇𝑟𝑖
2. Solve for corrections

𝐼 𝐴
𝐴𝑇 0

Δ𝑟𝑖
Δ𝑥𝑖

=
𝑓𝑖
𝑔𝑖

3. Update "solution":
𝑟𝑖+1
𝑥𝑖+1

=
𝑟𝑖
𝑥𝑖

+
Δ𝑟𝑖
Δ𝑥𝑖

ሚ𝐴 ෤𝑥 = ෨𝑏

ǁ𝑟𝑖 = ෨𝑏 − ሚ𝐴෤𝑥𝑖

ሚ𝐴𝑑𝑖 = ǁ𝑟𝑖

෤𝑥𝑖+1 = ෤𝑥𝑖 + 𝑑𝑖Results for 3-precision IR for 
linear systems also applies 
to least squares problems
[C., Higham, Pranesh, 2020] 19



Extension: Multistage Mixed Precision IR

• Many different variants of mixed precision IR

• “standard IR” (SIR): LU solves

• SGMRES-IR: preconditioned GMRES entirely in working precision

• GMRES-IR: preconditioned GMRES with extra precision
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Extension: Multistage Mixed Precision IR

• Many different variants of mixed precision IR

• “standard IR” (SIR): LU solves

• SGMRES-IR: preconditioned GMRES entirely in working precision

• GMRES-IR: preconditioned GMRES with extra precision

• Problem: constraints for convergence often overly strict in practice

• Hard to pick the best variant

• Opportunity: typically implementations increase precisions if lack of 
convergence detected

• Requires recomputing the expensive LU factorization in higher precision

• Before resorting to increasing precisions, we can first try using a better 
inner solver with the existing LU factors!

→ Multistage Iterative Refinement (MSIR) [Oktay, C., NLAA, 2022]
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21

well-conditioned: 
same as SIR



medium-conditioned: 
switch to SGMRES-IR

21



ill-conditioned: switch 
twice to GMRES-IR

21



Extension: SPAI-GMRES-IR

• Existing analyses of GMRES-IR assume we use full LU factors

• In practice, often want to use sparse preconditioners (ILU, SPAI, etc.)

• [C., Khan, arXiv:2202.10204, 2022]: analysis of GMRES-IR with SPAI 
preconditioning)

• Convergence to limiting accuracy as long as 𝑛𝑢𝑓𝑐𝑜𝑛𝑑(𝐴
𝑇) ≲ 𝑛𝜀 ≲ 𝑢−1/2
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• Existing analyses of GMRES-IR assume we use full LU factors

• In practice, often want to use sparse preconditioners (ILU, SPAI, etc.)

• [C., Khan, arXiv:2202.10204, 2022]: analysis of GMRES-IR with SPAI 
preconditioning)

• Convergence to limiting accuracy as long as 𝑛𝑢𝑓𝑐𝑜𝑛𝑑(𝐴
𝑇) ≲ 𝑛𝜀 ≲ 𝑢−1/2

22nnz(𝐿 + 𝑈) = 21,657

matrix: steam1, 𝑢𝑓 , 𝑢, 𝑢𝑟 = (single, double, quad)

nnz(𝑀) = 2,248
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The rise of multiprecision hardware

• Future machines will support a range of precisions: quarter, half, single, 
double, quad

• New, non-IEEE compliant floating point formats will appear in 
commercially-available hardware

• e.g., bfloat16 (truncated 16-bit version of single precision), posits

• Lower-precision arithmetic is faster and more energy efficient, but the 
potential for its use depends heavily on the particular problem and 
algorithm

• As numerical analysts, we must determine when and where we can exploit 
lower-precision hardware to improve performance
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Thank you!
carson@karlin.mff.cuni.cz

www.karlin.mff.cuni.cz/~carson/


