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Hardware Support for Multiprecision Computation

Use of low precision in machine learning has driven emergence of low-
precision capabilities in hardware:

* Half precision (FP16) defined as storage format in 2008 |IEEE standard

e ARM NEON: SIMD architecture, instructions for 8x16-bit, 4x32-bit, 2x64-bit
e AMD Radeon Instinct MI25 GPU, 2017:
* single: 12.3 TFLOPS, half: 24.6 TFLOPS
 NVIDIA Tesla P100, 2016: native ISA support for 16-bit FP arithmetic
* NVIDIA Tesla V100, 2017: tensor cores for half precision;
4x4 matrix multiply in one clock cycle
 double: 7 TFLOPS, half+tensor: 112 TFLOPS (16x!)

 Google's Tensor processing unit (TPU): quantizes 32-bit FP computations
into 8-bit integer arithmetic

 Future exascale supercomputers: (72021) Expected extensive support for
reduced-precision arithmetic (32/16/8-bit)



Performance of LU factorization on an NVIDIA V100 GPU
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lterative Refinement for Ax = b

lterative refinement: well-established method for improving an
approximate solution to Ax = b

A is n X n and nonsingular; u is unit roundoff

Solve Axy = b by LU factorization
for i = 0: maxit
r; = b — Ax;
Solve Ad; =1; viad; = UYL 'r)

Xi+1 = X; + d;
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approximate solution to Ax = b

A is n X n and nonsingular; u is unit roundoff

Solve Axy, = b by LU factorization (in precision u)
for i = 0: maxit
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lterative Refinement for Ax = b

4 koo (A) = 1Al Il h

As | Keo(A) <u™?, -
s long as ko (4) cond(4, x) = || [A7H[Allx] lleo/l1%l oo

* relative forward error is O(u)
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lterative Refinement for Ax = b

Solve Axy, = b by LU factorization (in precision u)
for i = 0: maxit
r. = b — Ax; (in precision w.)
Solve Ad; =1, viad; =UY(L7'r;)  (in precision u)

Xiy1 = X; + d; (in precision u)

"Fixed-Precision"
[Jankowski and Wozniakowski, 1977], [Skeel, 1980], [Higham, 1991]



lterative Refinement for Ax = b
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As long as ko, (4) <u™?,
* relative forward error is O(u)cond(4, x)
* relative normwise and componentwise backward errors are O(u)
J
Solve Axy, = b by LU factorization (in precision u)
for i = 0: maxit
r; =b— Ax; (in precision u)

Solve Ad; =1;  viad; = UYL 1r) (in precision u)

Xiy1 = X; + d; (in precision u)

"Fixed-Precision"
[Jankowski and Wozniakowski, 1977], [Skeel, 1980], [Higham, 1991]



lterative Refinement for Ax = b

Solve Axy = b by LU factorization (in precision u!/?)
for i = 0: maxit
r, = b — Ax; (in precision )
Solve Ad; =1, viad; =UY(L7'r;)  (in precision u)
Xiy1 = X; + d; (in precision u)

"Low-precision factorization"

[Langou et al., 2006], [Arioli and Duff, 2009], [Hogg and Scott, 2010], [Abdelfattah et al., 2016]
.



lterative Refinement for Ax = b

4 N
As long as k. (4) < u~1/2,
* relative forward error is O(u)cond(4, x)
* relative normwise and componentwise backward errors are 0(u)
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Solve Axy = b by LU factorization (in precision u!/?)
for i = 0: maxit
r, = b — Ax; (in precision )
Solve Ad; =1, viad; =UY(L7'r;)  (in precision u)
Xiy1 = X; + d; (in precision u)

"Low-precision factorization"

[Langou et al., 2006], [Arioli and Duff, 2009], [Hogg and Scott, 2010], [Abdelfattah et al., 2016]
.
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lterative Refinement in 3 Precisions

Existing analyses only support at most two precisions

Can we combine the performance benefits of low-precision factorization IR with
the accuracy of traditional IR?

= 3-precision iterative refinement

us = factorization precision, u = working precision, u, = residual precision
Up 2 U 2 Uy

[C. and Higham, SIAM

* New analysis generalizes existing types of IR: SISC 40(2), 2018]

Traditional Ur = U, Uy = u?
Fixed precision Ur = U= Uy
Lower precision factorization u]% =U=1U

(and improves upon existing analyses in some cases)

* Enables new types of IR: (half, single, double), (half, single, quad),
(half, double, quad), etc. g



Key Analysis Innovations |

Obtain tighter upper bounds:

Typical bounds used in analysis: [|JA(x — X))l < l|Allollx — X1l



Key Analysis Innovations |

Obtain tighter upper bounds:

Typical bounds used in analysis: ||A(x — X))l < |AllcollX — Zill oo

Define p;: |ACx = X)lloo = willAllollx — Xl o



Key Analysis Innovations |

Obtain tighter upper bounds:

Typical bounds used in analysis: ||A(x — X))l < |AllcollX — Zill oo

Define p;: |ACx = X)lloo = willAllollx — Xl o

For a stable refinement scheme, in early stages we expect

|7 ]| lx — ;|
— L _ru<K '
|A[]]%;|] || x|

Hi K1



Key Analysis Innovations |
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Typical bounds used in analysis: ||A(x — X))l < |AllcollX — Zill oo

Define p;: |ACx = X)lloo = willAllollx — Xl o

For a stable refinement scheme, in early stages we expect

|7 ]| lx — ;|
— 2 uK '
|A[]]%;|] || x|

Hi K1

But close to convergence,
Inll = llAllllx — %] ——— u; = 1
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Forward Error for IR3

* Three precisions: 9
Koo (A) = |47 oo |l All

cond(4) = [l [A7[1A] Ilo,
cond(4, x) = [l AT 1Alx] lloo /1%l oo

* uy: factorization precision
* u: working precision
* u,: residual computation precision
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* uy: factorization precision
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factor = ¢; until an iterate X; is produced for which

l1x — %;lloo

121l oo

< 4Nu, cond(4, x) + u,
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Forward Error for IR3

* Three precisions: 9
Koo (A) = |47 oo |l All

cond(4) = [l [A7[1A] Ilo,
cond(4, x) = [l AT 1Alx] lloo /1%l oo

* uy: factorization precision
* u: working precision
* u,: residual computation precision

Theorem [C. and Higham, SISC 40(2), 2018]

For IR in precisions uy = u = u, and effective solve precision u,, if

¢; = 2u; min(cond(A), koo (A) ) + 1l Eill oo

ml, then the forward error is reduced on the ith iteration by a

factor = ¢; until an iterate X; is produced for which

l1x — %;lloo

121l oo

< 4Nu, cond(4, x) + u,

where N is the maximum number of nonzeros per row in A.

> Analogous traditional bounds: ¢; = 3nusk.(A4)
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Normwise Backward Error for IR3

Theorem [C. and Higham, SISC 40(2), 2018]

For IR in precisions uy = u = u, and effective solve precision u,, if

$i = (1K (A) + c2)uy

is less than 1, then the residual is reduced on the ith iteration by a factor
~ ¢; until an iterate X; is produced for which

b — A%l = Nu(l[blleo + [[Alleo [l %10,

where N is the maximum number of nonzeros per row in A.

12



IR3: Summary

Standard (LU-based) IR in three precisions (1, = uy)

Half ~ 107*, Single ~ 1078, Double ~ 10716, Quad ~ 10734

Backward error

U U U | MaXKe(A) | norm | comp Forward error

H S S 10* 1078 | 1078 | cond(4,x) 1078
H S D 10* 10°8 1078 1078

H D D 10 1071 | 107 | cond(4,x) 1071
H D Q 10* 1076 | 1071¢ 10716

S S S 108 1078 | 1078 | cond(4,x)- 1078
S S D 108 108 10°8 10~8

S D D 108 1071 | 107 | cond(4,x) 1071
S D Q 108 1076 | 1071° 1016
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H D Q 10* 1076 | 1071¢ 10716
S S S 108 1078 | 1078 | cond(4,x)- 1078
S S D 108 108 10°8 10~8
LPfacc. S D D 108 107t | 1071 | cond(4,x) 10716
S D Q 108 10~ | 1071¢ 10-16
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IR3: Summary

Standard (LU-based) IR in three precisions (1, = uy)

Fixed

Half ~ 107*, Single ~ 1078, Double ~ 10716, Quad ~ 10734

Backward error
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IR3: Summary

Standard (LU-based) IR in three precisions (1, = uy)

Trad.

Half ~ 107*, Single ~ 1078, Double ~ 10716, Quad ~ 10734
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S D Q 108 10716 | 1071 1016
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IR3: Summary

Standard (LU-based) IR in three precisions (1, = uy)
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Backward error
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IR3: Summary

Standard (LU-based) IR in three precisions (1, = uy)
Half ~ 107%, Single ~ 1078, Double ~ 1071¢, Quad ~ 1073*

Backward error
Uy U U, | MaAXKp(A) | norm | comp Forward error
LP fact. | H S S 104 10~8 10~8 cond(4,x) - 1078
New H S D 10* 1078 1078 1078
LP fact.| H D D 104 1071 | 107 | cond(4,x) 1071
New H D Q 10* 10716 | 10716 10-16
LP fact. = S D 108 1071 | 1071 | cond(4,x) 10716
New S D Q 108 1076 | 1071° 10716

= Benefit of IR3 vs. "LP fact.": no cond(4, x) term in forward error
14



IR3: Summary

Standard (LU-based) IR in three precisions (1, = uy)
Half ~ 107%, Single ~ 1078, Double ~ 1071¢, Quad ~ 1073*

Backward error
Uy U U, | MaxKex(A) | norm comp Forward error
New H S D 104 108 108 1078
Trad. | S S D 108 1078 | 1078 1078

= Benefit of IR3 vs. traditional IR: As long as ks (4) < 10%*, can use lower
precision factorization w/no loss of accuracy! 14



A = gallery('randsvd', 100, 1le3)
b = randn (100, 1)

Ko(4) = led

Standard (LU-based) IR with  u: single, u: double, u,: quad

10° -
—<—ferr 0 2Ugkoo (A) i
X -O-nbe 100 F==mm == 2ugscond(A) [
i\ che B
1 0_1 0 _\\\( | 1 O-Eﬁf?—@‘—‘i\_ Z _V_ qb’b
"‘\\_ﬂ
\ X
LN
B—X
100 wor-—
0O 1 2 3 4 5 6 7 8 9 10 11 0O 1 2 3 4 5 6 7 8 9 10 11

refinement step refinement step

15



A = gallery('randsvd', 100, 1le7)
b = randn (100, 1)

Ko(4) = Te7

2Uskoo (A)
Standard (LU-based) IR with u;: single, u: double, u,: quad ~ 2u,cond(A)
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A = gallery('randsvd', 100, 1le9)
b = randn (100, 1)

k., (A) ~ 2el0

Standard (LU-based) IR with  u: single, u: double, u,: quad

ferr Qs Koo (A) 11
“O-nbe 10°V/ ¥ 2ugcond(A) ||
s che| | S| Bl
B— e @ 1072 - 7 Pi
o™
1071°]

0 1 2 0 1 2

refinement step refinement step
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A = gallery('randsvd',

b = randn (100, 1)

k., (A) ~ 2el0

100, 1le9)

Standard (LU-based) IR with u: double, wu,: quad

ferr > 2Uskoo (A) 11
“O-nbe 107 Y oo cond(A) ||
10°° +/ cbe] S us|| Bl
B— -5 @ 10°7 i _
o™
10715 |
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refinement step

refinement step
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A = gallery('randsvd', 100, 1le9)
b = randn (100, 1)

Ko(4) =~ 2el0

Standard (LU-based) IR with (u: double, wu: double, u,: quad

—<—ferr|; b 2uskoo (A) 14 _
-O-nbe 10 2uscond(A)
</ cbe O us || Ei ||
10° ‘ :
1075~ 7 @i
\V &
10718
0 1 2 0 1

refinement step refinement step



GMRES-Based lterative Refinement

« Observation [Rump, 1990]: if L and U are computed LU factors of 4 in
precision uy, then

Koo(UTIL71A) = 1 + Koo (Auy,

even if e, (A) » uz '
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GMRES-Based lterative Refinement

« Observation [Rump, 1990]: if L and U are computed LU factors of 4 in
precision uy, then

Koo(UTIL71A) = 1 + Koo (Auy,

even if e, (A) » uz '

GMRES-IR [C. and Higham, SISC 39(6), 2017] Ti

—— —M
« To compute the updates d;, apply GMRES to UL 'Ad; = UL 1r;

Solve Axy = b by LU factorization

for i = 0: maxit —u
T = b — Axi ﬁ

Solve Ad; =r; via GMRES on Ad; = #;
Xiy1 = X; t+ d;

16



A = gallery('randsvd', 100,
b = randn (100, 1)

Ko(A) = 210, cond(4,x) = 5e9

1e9, 2)

Standard (LU-based) IR with  u;: single, u: double, wu,.:

ferr |
-O-nbe
o5 cbe_
O— —9 D
1 0'1 5 -—_ __________________________ -
0 1 2

refinement step

quad
. 2 Koo (A) i
10V v 2ugscond(A) ||
1072 - _V_qﬁz
107°] ,
0 1

refinement step




A = gallery('randsvd', 100, 1e9, 2)
b = randn (100, 1)

Ko(A) & 2e10, cond(4,x) = 59, ko(4)~ 2e4

@ with  u;: single, u: double, u,: quad

—<—ferr|] N 2UsKoo (A) 1 ||
-5-nbe 10 2uscond(A)
</ cbe|| O us|| Bl

7 @i

0 1 2 0 1
refinement step refinement step

Number of GMRES iterations: (2,3)



GMRES-IR: Summary

Benefits of GMRES-IR:

Backward error

Uy U U, | MaXxKy(A) norm comp Forward error
LU-IR H S D 10 1078 1078 1078
GMRES-IR H S D 108 1078 1078 1078
LU-IR S D Q 108 10716 | 10716 10716
GMRES-IR S D Q 1016 10716 | 10716 10716
LU-IR H D Q 10* 10716 | 10716 10716
GMRES-IR H D Q 1012 10716 | 1071 10716

18



GMRES-IR: Summary

Benefits of GMRES-IR:

Backward error

Uy U U, | MaxKy(A4) norm comp Forward error
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LU-IR H D Q 10* 10716 | 10716 10716
GMRES-IR H D Q 1012 10716 | 1071 10716

=>With GMRES-IR, lower precision\factorization will work for higher k. (A)

Koo (A) < u™1/2 ust
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GMRES-IR: Summary

Benefits of GMRES-IR:

Backward error

Uy U U, | MaXxKy(A) norm comp Forward error
LU-IR H S D 10 1078 1078 1078
GMRES-IR H S D 108 1078 1078 1078
LU-IR S D Q 108 10716 | 10716 10716
GMRES-IR ®\ D Q 10%° 107 | 1071 10716
LU-IR H D Q 10* 10716 | 10716 10716
GMRES-IR @Z D Q 1012 10716 | 10716 10716

= If ki, (A) < 102, can use

lower precision factorization w/no loss of accuracy!
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GMRES-IR: Summary

Benefits of GMRES-IR:

Backward error

Uy U U, | MaXxKy(A) norm comp Forward error
LU-IR H S D 10 1078 1078 1078
GMRES-IR H S D 108 1078 1078 1078
LU-IR S D Q 108 10716 | 10716 10716
GMRES-IR ®\ D Q 10%° 107 | 1071 10716
LU-IR H D Q 10* 10716 | 10716 10716
GMRES-IR @Z D Q 1012 10716 | 10716 10716

Try IR3! MATLAB codes available at: https://github.com/eccarson/ir3
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https://github.com/eccarson/ir3/

Comments and Caveats

» Convergence tolerance T for GMRES?
* Smaller T - more GMRES iterations, potentially fewer refinement steps
» Larger T — fewer GMRES iterations, potentially more refinement steps

19
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Comments and Caveats

» Convergence rate of GMRES?

* If A is ill conditioned and LU factorization is performed in very low precision, it
can be a poor preconditioner

* e.g., if 4 still has cluster of eigenvalues near origin, GMRES can stagnate
until n™® iteration, regardless of k4 (A) [Liesen and Tichy, 2004]

» Potential remedies: deflation, Krylov subspace recycling, using additional
preconditioner
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Comments and Caveats

» Convergence rate of GMRES?

* If A is ill conditioned and LU factorization is performed in very low precision, it
can be a poor preconditioner

* e.g., if 4 still has cluster of eigenvalues near origin, GMRES can stagnate
until n™® iteration, regardless of k4 (A) [Liesen and Tichy, 2004]

» Potential remedies: deflation, Krylov subspace recycling, using additional
preconditioner

« Depending on conditioning of A, applying 4 to a vector must be done accurately
(precision u?) in each GMRES iteration

» Why GMRES?

 Theoretical purposes: existing analysis and proof of backward stability [Paige,
Rozloznik, Strakos, 2006]

* In practice, use any solver you want!
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Extension to Least Squares Problems

 Want to solve
min||b — Ax||,
X

where A € R™*" (m > n) has rank n

* Commonly solved using QR factorization:
U
A=QR=1010]|]

where Q is an m X m orthogonal matrix and U is upper triangular.
x=U"Q(b, IIb—Axll, = |[Q7b],
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Extension to Least Squares Problems

 Want to solve
min||b — Ax||,
X

where A € R™*" (m > n) has rank n

* Commonly solved using QR factorization:
U
A=QR=1010]|]

where Q is an m X m orthogonal matrix and U is upper triangular.
x=U"Q(b, IIb—Axll, = |[Q7b],

* As in linear system case, for ill-conditioned problems, iterative refinement
often needed to improve accuracy and stability
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Least Squares lterative Refinement

* For inconsistent systems, must simultaneously refine both solution and residual

* (Bjorck,1967): Least squares problem can be written as a linear system with
square matrix of size (m + n):

[ olld =[]

21



Least Squares lterative Refinement

* For inconsistent systems, must simultaneously refine both solution and residual
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[ olld =[]

* Refinement proceeds as follows:
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2. Solve for corrections

i olle) =l

3. Update "solution":
[n+1 ] [An]
xl+1

21



Least Squares lterative Refinement

* For inconsistent systems, must simultaneously refine both solution and residual

* (Bjorck,1967): Least squares problem can be written as a linear system with
square matrix of size (m + n):

[AIT f)l] ] = lﬁ] A%¥ = b

* Refinement proceeds as follows:

1. Compute "residuals"

s =01-Le Q1= e

2. Solve for corrections

i olle) =l

3. Update "solution":
[n+1 ] [An]
xl+1

21



Least Squares lterative Refinement

* For inconsistent systems, must simultaneously refine both solution and residual

* (Bjorck,1967): Least squares problem can be written as a linear system with
square matrix of size (m + n):

[AIT f)l] ] = lﬁ] A%¥ = b

* Refinement proceeds as follows:
1. Compute "residuals"
fi]_ [ i ] 7 = b — A%,
R P R A 1 | l
2. Solve for corrections

A1 AT fi Ad. —
[AT ” l] ] Adi =T,
3. Update "solution": ~ -~
[Tl_,_l ] [Arl] Xi+1 = X + di
xl+1
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Least Squares lterative Refinement

* For inconsistent systems, must simultaneously refine both solution and residual

* (Bjorck,1967): Least squares problem can be written as a linear system with

square matrix of size (m + n): o ,
r
ol = Lol

* Refinement proceeds as follows:

1. Compute "residuals"

s =01-Le Q1= e

2. Solve for corrections

i ollae) = o, el

3. Update "solution™: Results for 3-precision
rl_,_l Ar; IR for linear systems
[xz+1 ] [ ] also applies to least

squares problems

~

AX = b
7 = b — A%;
Adi — 77'1
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Least Squares lterative Refinement

* To apply the existing analysis, we must consider:

1.

2.

How is the condition number of A related to the condition number of
A?

What are bounds on the forward and backward error in solving the
correction equation Ad; = 7;?

* We now have a QR factorization rather than an LU factorization,
and the augmented system has structure which can be exploited

22



Augmented System Condition Number

* Result of Bjorck (1967):

The matrix
ol 4

has condition number bounded by
\/EKZ (A) < min Kz(/‘i'a) < ZKz(A), max Kz(Aa) > Kz(A)Z
(04 (04

~ _1
and min Kz(Aa) is attained for @ = 2 2 g,,,;,(4).
a
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Augmented System Condition Number

* Result of Bjorck (1967):
The matrix
~ _[al A
Aq = [AT o]

has condition number bounded by
\/EKZ (A) < main Kz(/‘i'a) < ZKz(A), max KZ(AQ) > Kz(A)z
(04

~ _1
and min Kz(Aa) is attained for @ = 2 2 g,,,;,(4).
a

* Scaling does not change the solution to least squares problem; further, if a
is a power of the machine base, it doesn't affect rounding errors

= Safe to assume that k,(A4) is the same order of magnitude as x,(4)
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LS-IR in 3 precisions

Compute QR factorization 4 = QR = [Ql, Qz] [g] ———> precision Ur
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Compute QR factorization 4 = QR = [Ql, Qz] [g] ———> precision Ur

Compute xo = U1QTb, 79 = b — Ax, > precision u
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LS-IR in 3 precisions

Compute QR factorization 4 = QR = [Ql, Qz] [g] ———> precision Ur

Compute xo = U1QTb, 79 = b — Ax, > precision u

Fori=20,..
: b
Compute residuals [g‘] = [
l

— 71— Axi]

—> precision 1.,
—ATTi
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LS-IR in 3 precisions

Compute QR factorization 4 = QR = [Ql, Qz] [g] ———> precision Ur

Compute xo = U1QTb, 79 = b — Ax,

> precision u

Fori=0,..
_ fl.]_[b—ri—Axi]
Compute residuals [gl_ = —ATr,

Solve [AIT ‘g] Ari] = f"], via

Axi I Lgi
h=U"g; N
Z;] - [Q1»hQ2]Tfi
i =g

—> precision 1,

—  precision u

Axl' — U_l(dl - h) _/
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LS-IR in 3 precisions

Compute QR factorization 4 = QR = [Ql, Qz] [g] ———> precision Ur

> precision u

Compute xo = U1QTb, 79 = b — Ax,

—> precision 1,

Fori=0,..
Compute residuals [L]qcll] = [b —_T‘;l;r:lxi]
Solve [AIT g] ﬁ;ﬂi] = L]qcz] via
h=U"g; n
Z;] = [Q1»hQ2]Tfi ——  precision u
= Qg

> precision u

Update Xip1 = X; + A.X'i, Tig1 =17 + A'I"i
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Returning to IR3 Analysis...

The backward error for the correction solve:

(A+A4A)d; =7, ||AA||Oo < cm,nuf||,ai||oo
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Returning to IR3 Analysis...

The backward error for the correction solve:

1.

2.

(A+A4A)d; =7, ||AA||OO < cm,nuf||,ai||oo

d; = (I +u,E)d;, IEi]le < 1

A

i — Ady|| <

(exllAlloo|del , + €211Fillo)

G;|d;|

max(cq, cz) 1, = 0(uy)

1Giller = 0(up)]4]],
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Returning to IR3 Analysis...

The backward error for the correction solve:

(A+24)d; =7,  ||AA]|_ < cmaug|lA] = uy

1 di=U+uE)d;, Bl < 1 IEilleo < cmnusl|4]l,,

As Iong as KOO(A) S ufl, expect convergence to

limiting relative forward error

I t .. ~ 1, cond(4, %) + u
1% 1] 00

2. || = Ady|| | < vs(erllAllo |||, + c2lIfilleo) max(cy, ¢z) 11, = 0(uy)
3. | — Ad;| < u.G;ld;] 1Gilloo = O(uy)|| 4]
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Returning to IR3 Analysis...

The backward error for the correction solve:

(A+24)d; =7,  ||AA]|_ < cmaug|lA] = uy

1 di=(+wEd,  wllElle <1 1Edlleo < crmtty ||

As long as KOO(A) < ufl, expect convergence to

limiting relative forward error

I% t .. ~ 1, cond(4, %) + u
1%l
2. || = Ady|| | < vs(erllAllo |||, + c2lIfilleo) max(cy, ¢z) 11, = 0(uy)
I

3. | — Ad;| < u.G;ld;] 1Gilloo = O(uy)|| 4]

As long as KOO(A) < ufl, expect normwise and /

componentwise backward errors to be O(u)
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Relative forward error
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GMRES-IR for Least Squares

* Similar to the linear system case, we can use a lower precision factorization for even
more ill-conditioned problems if we improve the effective precision of the solver

» Again, don't want to compute an LU factorization of the augmented system

* How can we use existing QR factors to construct an effective and inexpensive
preconditioner for the augmented system?

* Note that augmented system is a saddle-point system; lots of existing work (block
diagonal, triangular, constraint-based, ... )
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GMRES-IR for Least Squares

* Ex: block diagonal precondltloner ([Murphy, Golub, Wathen, 2000], [Ipsen, 2001])

al \/ al 0 val 0
1A . ~

IO —RT R RT
a
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GMRES-IR for Least Squares

* Ex: block diagonal preconditioner ([Murphy, Golub, Wathen, 2000], [Ipsen, 2001])
al Jal 0 Jal 0
l 0 —RTR

RT 0 —R
* Assuming QR factorization is exact,

I
a R-IRTAT 0

M, *M{1A =

is nonsymmetric, diagonalizable, with eigenvalues {1,%(1 + \/g)}

* However, condition number can still be quite large; unsuitable for proving
backward stability of GMRES
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GMRES-IR for Least Squares

» Ex: block diagonal preconditioner ([Murphy, Golub, Wathen, 2000], [Ipsen, 2001])

al 0 Val 0 Val 0
1 P~ o~ = 1 ~ 1 ~| =
lo —R"R 0 — || o —=g|FMM
a Va Va
* Assuming QR factorization is exact,
1
M, M4 = ! EA

a RIR7TAT 0
is nonsymmetric, diagonalizable, with eigenvalues {1,%(1 + \/g)}

* However, condition number can still be quite large; unsuitable for proving
backward stability of GMRES

* |f we take split preconditioner
M-1AM. 1 = [A I AR]
o RTAT 0
we will have a well-conditioned system
* However, split-preconditioned GMRES is not backward stable

* Potentially useful in practice, not but in theory
28



GMRES-IR for Least Squares

* One option:

* Then we can prove that for the left-preconditioned system,
5 2
k(M™14) < (1 + upC K(A))

where ¢ = 0(m?), where we note this bound is pessimistic.

* Thus even if k(A) > u;l, the preconditioned system can still be reasonably
well conditioned
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GMRES-IR for Least Squares

* One option:

* Then we can prove that for the left-preconditioned system,
5 2
k(M™14) < (1 + upC K(A))

where ¢ = 0(m?), where we note this bound is pessimistic.

* Thus even if k(A) > u;l, the preconditioned system can still be reasonably
well conditioned

« GMRES run on A with left-preconditioner M gives
IEillco = v f(m + n)ko (M~ A)

where f is a quadratic polynomial

* So for GMRES-based LSIR, 1. = u; expect convergence of forward error

~1/2, -1
when KOO(A) <u u]r 29



gallery('randsvd', [100,10], kappa(i), 3)
QR factorization computed in half precision; preconditioned system computed exactly
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The rise of multiprecision hardware

* Future machines will support a range of precisions: quarter, half, single,
double, quad
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The rise of multiprecision hardware

* Future machines will support a range of precisions: quarter, half, single,
double, quad

* New, non-lIEEE compliant floating point formats will appear in
commercially-available hardware

* e.g., bfloatl6 (truncated 16-bit version of single precision)

» Lower-precision arithmetic is faster and more energy efficient, but the
potential for its use depends heavily on the particular problem and
algorithm

* As numerical analysts, we must determine when and where we can exploit
lower-precision hardware to improve performance
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Thank Youl

carson@karlin.mff.cuni.cz
www.karlin.mff.cuni.cz/ carson/



