Iterative Refinement

iNn Three Precisions

Erin C. Carson
Department of Numerical Mathematics, Faculty of Mathematics and Physics,

Charles University

Joint work with Nicholas J. Higham, Srikara Pranesh

Advanced Solvers for Modern Architectures

November 11-13, 2019, Miinster, Germany

FACULTY

OF MATHEMATICS

AND PHYSICS This research was supported by Charles University Primus program project No.
PRIMUS/19/SCI/11.

Charles University

Exascale Computing: The Modern Space Race

* "Exascale": 108 floating point operations per second
* with maximum energy consumption around 20-40 MWatts

* Large investment in HPC worldwide

Exascale Computing: The Modern Space Race

* "Exascale": 108 floating point operations per second
* with maximum energy consumption around 20-40 MWatts

* Large investment in HPC worldwide

e Technical challenges at all levels

hardware to algorithms to applications

Exascale Computing: The Modern Space Race

* "Exascale": 108 floating point operations per second
* with maximum energy consumption around 20-40 MWatts

* Large investment in HPC worldwide

e Technical challenges at all levels

hardware to algorithms to applications

- o~
- -~ -
.h- _——' -~ -

Hardware Support for Multiprecision Computation

Use of low precision in machine learning has driven emergence of low-
precision capabilities in hardware:

* Half precision (FP16) defined as storage format in 2008 |IEEE standard

e ARM NEON: SIMD architecture, instructions for 8x16-bit, 4x32-bit, 2x64-bit
e AMD Radeon Instinct MI25 GPU, 2017:
* single: 12.3 TFLOPS, half: 24.6 TFLOPS
 NVIDIA Tesla P100, 2016: native ISA support for 16-bit FP arithmetic
* NVIDIA Tesla V100, 2017: tensor cores for half precision;
4x4 matrix multiply in one clock cycle
 double: 7 TFLOPS, half+tensor: 112 TFLOPS (16x!)

 Google's Tensor processing unit (TPU): quantizes 32-bit FP computations
into 8-bit integer arithmetic

 Future exascale supercomputers: (72021) Expected extensive support for
reduced-precision arithmetic (32/16/8-bit)

Performance of LU factorization on an NVIDIA V100 GPU

Tflop/s

oOnN AOOOONDN

26
24
22
20
18
1

-
= O

FP16 hgetrf LU
FP32 sgetrf LU
=3¢=-FP64 dgetrf LU

iFPH 6-TC ('Il'en'sor Corés) hget'rf LU

-
‘
/
-

N

vy
> &

"
—

14Kk 18k
matrix size

2k 4k 6k 8k 10k

22K

26k

30k

34k

[Haidar, Tomov, Dongarra, Higham, 2018]

lterative Refinement for Ax = b

lterative refinement: well-established method for improving an
approximate solution to Ax = b

A is n X n and nonsingular; u is unit roundoff

Solve Axy = b by LU factorization
for i = 0: maxit
r; = b — Ax;
Solve Ad; =1; viad; = UYL 'r)

Xi+1 = X; + d;

lterative Refinement for Ax = b

lterative refinement: well-established method for improving an
approximate solution to Ax = b

A is n X n and nonsingular; u is unit roundoff

Solve Axy, = b by LU factorization (in precision u)
for i = 0: maxit
1, = b — Ax; (in precision u?)
Solve Ad; =1; viad; =U"Y(L™'r;) (in precision u)

Xiy1 = X; + d; (in precision u)

"Traditional" (high-precision
residual computation)

[Wilkinson, 1948] (fixed point), [Moler, 1967] (floating point)

lterative Refinement for Ax = b

4 koo (A) = 1Al Il h

As | Keo(A) <u™?, -
s long as ko (4) cond(4, x) = || [A7H[Allx] lleo/l1%l oo

* relative forward error is O(u)
* relative normwise and componentwise backward errors are O(u)

-)

Solve Axy, = b by LU factorization (in precision u)
for i = 0: maxit
1, = b — Ax; (in precision u?)
Solve Ad; =1, viad; =UY(L7'r;) (in precision u)

Xiy1 = X; + d; (in precision u)

"Traditional" (high-precision
residual computation)

[Wilkinson, 1948] (fixed point), [Moler, 1967] (floating point)

lterative Refinement for Ax = b

Solve Axy, = b by LU factorization (in precision u)
for i = 0: maxit
r. = b — Ax; (in precision w.)
Solve Ad; =1, viad; =UY(L7'r;) (in precision u)

Xiy1 = X; + d; (in precision u)

"Fixed-Precision"
[Jankowski and Wozniakowski, 1977], [Skeel, 1980], [Higham, 1991]

lterative Refinement for Ax = b

-

_

\
As long as ko, (4) <u™?,
* relative forward error is O(u)cond(4, x)
* relative normwise and componentwise backward errors are O(u)
J
Solve Axy, = b by LU factorization (in precision u)
for i = 0: maxit
r; =b— Ax; (in precision u)

Solve Ad; =1; viad; = UYL 1r) (in precision u)

Xiy1 = X; + d; (in precision u)

"Fixed-Precision"
[Jankowski and Wozniakowski, 1977], [Skeel, 1980], [Higham, 1991]

lterative Refinement for Ax = b

Solve Axy = b by LU factorization (in precision u!/?)
for i = 0: maxit
r, = b — Ax; (in precision)
Solve Ad; =1, viad; =UY(L7'r;) (in precision u)
Xiy1 = X; + d; (in precision u)

"Low-precision factorization"

[Langou et al., 2006], [Arioli and Duff, 2009], [Hogg and Scott, 2010], [Abdelfattah et al., 2016]
.

lterative Refinement for Ax = b

4 N
As long as k. (4) < u~1/2,
* relative forward error is O(u)cond(4, x)
* relative normwise and componentwise backward errors are 0(u)

-)

Solve Axy = b by LU factorization (in precision u!/?)
for i = 0: maxit
r, = b — Ax; (in precision)
Solve Ad; =1, viad; =UY(L7'r;) (in precision u)
Xiy1 = X; + d; (in precision u)

"Low-precision factorization"

[Langou et al., 2006], [Arioli and Duff, 2009], [Hogg and Scott, 2010], [Abdelfattah et al., 2016]
.

lterative Refinement in 3 Precisions

Existing analyses only support at most two precisions

Can we combine the performance benefits of low-precision factorization IR with
the accuracy of traditional IR?

lterative Refinement in 3 Precisions

Existing analyses only support at most two precisions

Can we combine the performance benefits of low-precision factorization IR with
the accuracy of traditional IR?

= 3-precision iterative refinement

us = factorization precision, u = working precision, u, = residual precision

Up 2 U 2 Uy

lterative Refinement in 3 Precisions

Existing analyses only support at most two precisions

Can we combine the performance benefits of low-precision factorization IR with
the accuracy of traditional IR?

= 3-precision iterative refinement

us = factorization precision, u = working precision, u, = residual precision
Up 2 U 2 Uy

[C. and Higham, SIAM

* New analysis generalizes existing types of IR: SISC 40(2), 2018]

Traditional Ur = U, Uy = u?
Fixed precision Ur = U= Uy
Lower precision factorization u]% =U=1U

(and improves upon existing analyses in some cases)

lterative Refinement in 3 Precisions

Existing analyses only support at most two precisions

Can we combine the performance benefits of low-precision factorization IR with
the accuracy of traditional IR?

= 3-precision iterative refinement

us = factorization precision, u = working precision, u, = residual precision
Up 2 U 2 Uy

[C. and Higham, SIAM

* New analysis generalizes existing types of IR: SISC 40(2), 2018]

Traditional Ur = U, Uy = u?
Fixed precision Ur = U= Uy
Lower precision factorization u]% =U=1U

(and improves upon existing analyses in some cases)

* Enables new types of IR: (half, single, double), (half, single, quad),
(half, double, quad), etc. g

Key Analysis Innovations |

Obtain tighter upper bounds:

Typical bounds used in analysis: [|JA(x — X))l < l|Allollx — X1l

Key Analysis Innovations |

Obtain tighter upper bounds:

Typical bounds used in analysis: ||A(x — X))l < |AllcollX — Zill oo

Define p;: |ACx = X)lloo = willAllollx — Xl o

Key Analysis Innovations |

Obtain tighter upper bounds:

Typical bounds used in analysis: ||A(x — X))l < |AllcollX — Zill oo

Define p;: |ACx = X)lloo = willAllollx — Xl o

For a stable refinement scheme, in early stages we expect

|7]| lx — ;|
— L _ru<K '
|A[]]%;|] || x|

Hi K1

Key Analysis Innovations |

Obtain tighter upper bounds:

Typical bounds used in analysis: ||A(x — X))l < |AllcollX — Zill oo

Define p;: |ACx = X)lloo = willAllollx — Xl o

For a stable refinement scheme, in early stages we expect

|7]| lx — ;|
— 2 uK '
|A[]]%;|] || x|

Hi K1

But close to convergence,
Inll = llAllllx — %] ——— u; = 1

Key Analysis Innovations Il

Allow for general solver:
Let u, be the effective precision of the solve, with u < u, < uy

10

Key Analysis Innovations Il

Allow for general solver:
Let u, be the effective precision of the solve, with u < u, < uy

Assume computed solution d; to Ad; = 7; satisfies:

1. dAi = (I + uSEl-)dl-, uS||El-||oo <1

— normwise relative forward error is bounded
by multiple of ug and is less than 1

10

Key Analysis Innovations Il

Allow for general solver:
Let u, be the effective precision of the solve, with u < u, < uy

example: LU solve:
Assume computed solution d; to Ad; = 7; satisfies:

1. d; = (I +u.E)d, IE;il|l <1

: : . —1(|7 77
— normwise relative forward error is bounded IEillo0 < 3"“f|||A ||L||U|”oo
by multiple of ug and is less than 1

10

Key Analysis Innovations Il

Allow for general solver:
Let u, be the effective precision of the solve, with u < u, < uy

example: LU solve:
Assume computed solution d; to Ad; = 7; satisfies:

1. d; = (I +u.E)d, IE;il|l <1

— normwise relative forward error is bounded
by multiple of ug and is less than 1

IEilleo < Bnugf|lA~H|Z][T]]|,

2.

TA'i - AdAl”OO = (ClllA”oo”dAl”OO + C2”f'i”oo)

— hormwise relative backward error is at most
max(cy, ¢z) Us

10

Key Analysis Innovations Il

Allow for general solver:
Let u, be the effective precision of the solve, with u < u, < uy

example: LU solve:
Assume computed solution d; to Ad; = 7; satisfies:

1. d; = (I +u.E)d, IE;il|l <1

— normwise relative forward error is bounded
by multiple of ug and is less than 1

IEilleo < Bnugf|lA~H|Z][T]]|,

2. |17 = Ady||_ < us(erllAllo||de]l + c2llfillco) o
| . . 3nu||Z]| O]
— normwise relative backward error is at most max(cy, cy) 1. <] =

max(cy, ¢z) Us

10

Key Analysis Innovations Il

Allow for general solver:
Let u, be the effective precision of the solve, with u < u, < uy

example: LU solve:
Assume computed solution d; to Ad; = 7; satisfies:

1. d; = (I +u.E)d, IE;il|l <1

— normwise relative forward error is bounded
by multiple of ug and is less than 1

IEilleo < Bnugf|lA~H|Z][T]]|,

2. TA'i _ AdAl”OO < (ClllA”oo”dAl”OO + C2”f'i”oo) o
. . . 3nu[||Z[]0]]
— normwise relative backward error is at most max(cy, ¢;) 1. < ®
max(cy, ¢z) Us Al
3. |f— Ad;| < u.G;|dy

— componentwise relative backward error is
bounded by a multiple of u,

E;,ci,cy, and G; depend on A, 7;, n, and 10

Key Analysis Innovations Il

Allow for general solver:
Let u, be the effective precision of the solve, with u < u, < uy

example: LU solve:
Assume computed solution d; to Ad; = 7; satisfies:

1. d; = (I +u.E)d, IE;il|l <1

— normwise relative forward error is bounded
by multiple of ug and is less than 1

1Eilloo < 3nug|||A7H|Z]|T]||

2. TA'i _ AdAl”OO = (ClllA”oo”dAl”OO + C2”f'i”oo) o
. . . 3nay[||Z]|01]l,
— normwise relative backward error is at most max(cy, ¢;) 1. <
max(cy, ¢z) Us Al
3. |f— Ad;| < u.G;|dy
— componentwise relative backward error is 1Gilleo < 3nugl||L||T]]]

bounded by a multiple of u,

E;,ci,cy, and G; depend on A, 7;, n, and 10

Key Analysis Innovations Il

Allow for general solver:
Let u, be the effective precision of the solve, with u < u, < uy

example: LU solve:

Assume computed solution d; to Ad; = 7; satisfies: @

1. d; = (I +u.E)d, IE;il|l <1

— normwise relative forward error is bounded
by multiple of ug and is less than 1

1Eilloo < 3nug|||A7H|Z]|T]||

2. TA'i _ AdAl”OO = (ClllA”oo”dAl”OO + C2”f'i”oo) o
. . . 3nay[||Z]|01]l,
— normwise relative backward error is at most max(cy, ¢;) 1. <
max(cy, ¢z) Us Al
3. |f— Ad;| < u.G;|dy
— componentwise relative backward error is 1Gilleo < 3nugl||L||T]]]

bounded by a multiple of u,

E;,ci,cy, and G; depend on A, 7;, n, and 10

Forward Error for IR3

* Three precisions: 9
Koo (A) = |47 oo |l All

cond(4) = [l [A7[1A] Ilo,
cond(4, x) = [l AT 1Alx] lloo /1%l oo

* uy: factorization precision
* u: working precision
* u,: residual computation precision

11

Forward Error for IR3

* Three precisions: 9
Koo (A) = |47 oo |l All

cond(4) = [l [A7[1A] Ilo,
cond(4, x) = [l AT 1Alx] lloo /1%l oo

* uy: factorization precision
* u: working precision
* u,: residual computation precision

Theorem [C. and Higham, SISC 40(2), 2018]

For IR in precisions uy = u = u, and effective solve precision u,, if
¢; = 2u; min(cond(A), koo (A1) + 1| Eill oo

is less than 1, then the forward error is reduced on the ith iteration by a
factor = ¢; until an iterate X; is produced for which

l1x — %;lloo

121l oo

< 4Nu, cond(4, x) + u,

where N is the maximum number of nonzeros per row in A.

11

Forward Error for IR3

* Three precisions: 9
Koo (A) = |47 oo |l All

cond(4) = [l [A7[1A] Ilo,
cond(4, x) = [l AT 1Alx] lloo /1%l oo

* uy: factorization precision
* u: working precision
* u,: residual computation precision

Theorem [C. and Higham, SISC 40(2), 2018]

For IR in precisions uy = u = u, and effective solve precision u,, if

¢; = 2u; min(cond(A), koo (A)) + 1l Eill oo

ml, then the forward error is reduced on the ith iteration by a

factor = ¢; until an iterate X; is produced for which

l1x — %;lloo

121l oo

< 4Nu, cond(4, x) + u,

where N is the maximum number of nonzeros per row in A.

> Analogous traditional bounds: ¢; = 3nusk.(A4)
11

Normwise Backward Error for IR3

Theorem [C. and Higham, SISC 40(2), 2018]

For IR in precisions uy = u = u, and effective solve precision u,, if

$i = (1K (A) + c2)uy

is less than 1, then the residual is reduced on the ith iteration by a factor
~ ¢; until an iterate X; is produced for which

b — A%l = Nu(l[blleo + [[Alleo [l %10,

where N is the maximum number of nonzeros per row in A.

12

IR3: Summary

Standard (LU-based) IR in three precisions (1, = uy)

Half ~ 107*, Single ~ 1078, Double ~ 10716, Quad ~ 10734

Backward error

U U U | MaXKe(A) | norm | comp Forward error

H S S 10* 1078 | 1078 | cond(4,x) 1078
H S D 10* 10°8 1078 1078

H D D 10 1071 | 107 | cond(4,x) 1071
H D Q 10* 1076 | 1071¢ 10716

S S S 108 1078 | 1078 | cond(4,x)- 1078
S S D 108 108 10°8 10~8

S D D 108 1071 | 107 | cond(4,x) 1071
S D Q 108 1076 | 1071° 1016

13

IR3: Summary

Standard (LU-based) IR in three precisions (1, = uy)

Half ~ 107*, Single ~ 1078, Double ~ 10716, Quad ~ 10734

Backward error

U U U | MaXKe(A) | norm | comp Forward error
LP fact. H S S 104 1078 | 1078 | cond(4,x) 1078
H S D 10* 10°8 1078 10°8
LP fact. H D D 10 1071 | 1071® | cond(4,x) 1071
H D Q 10* 1076 | 1071¢ 10716
S S S 108 1078 | 1078 | cond(4,x)- 1078
S S D 108 108 10°8 10~8
LPfacc. S D D 108 107t | 1071 | cond(4,x) 10716
S D Q 108 10~ | 1071¢ 10-16

13

IR3: Summary

Standard (LU-based) IR in three precisions (1, = uy)

Fixed

Half ~ 107*, Single ~ 1078, Double ~ 10716, Quad ~ 10734

Backward error

U U U | MaXKe(A) | norm | comp Forward error
H S S 10* 1078 | 1078 | cond(4,x)-1078
H S D 10* 10°8 1078 1078
H D D 10* 1071 | 107 | cond(4,x) 1071
H D Q 10* 1076 | 1071¢ 10716
S S S 108 1078% | 1078 | cond(4,x)- 1078
S S D 108 108 10°8 10~8
S D D 108 1071 | 107 | cond(4,x) 1071
S D Q 108 1076 | 1071° 1016

13

IR3: Summary

Standard (LU-based) IR in three precisions (1, = uy)

Trad.

Half ~ 107*, Single ~ 1078, Double ~ 10716, Quad ~ 10734

Backward error

U U U | MaXKe(A) | norm | comp Forward error
H S S 10* 1078 | 1078 | cond(4,x)-1078
H S D 10* 10°8 1078 1078
H D D 10* 1071 | 107 | cond(4,x) 1071
H D Q 10* 10716 | 1071 10716
S S S 108 1078% | 1078 | cond(4,x)- 1078
S S D 108 1078 | 1078 1078
S D D 108 1071 | 107 | cond(4,x) 1071
S D Q 108 10716 | 1071 1016

13

IR3: Summary

Standard (LU-based) IR in three precisions (1, = uy)

Half ~ 10~%, Single ~ 108, Double ~ 1076, Quad ~ 1073

Backward error

Uy U U, | MaAXKp(A) | norm | comp Forward error

H S S 10* 1078 | 1078 | cond(4,x)-1078
New H S D 10* 1078 1078 1078

H D D 10 1071 | 107 | cond(4,x) 1071
New H D Q 10* 10716 | 10716 10-16

S S S 108 1078% | 1078 | cond(4,x)- 1078

S S D 108 1078 1078 1078

S D D 108 1071 | 107 | cond(4,x) 1071
New S D Q 108 1076 | 1071° 1016

13

IR3: Summary

Standard (LU-based) IR in three precisions (1, = uy)
Half ~ 107%, Single ~ 1078, Double ~ 1071¢, Quad ~ 1073*

Backward error
Uy U U, | MaAXKp(A) | norm | comp Forward error
LP fact. | H S S 104 10~8 10~8 cond(4,x) - 1078
New H S D 10* 1078 1078 1078
LP fact.| H D D 104 1071 | 107 | cond(4,x) 1071
New H D Q 10* 10716 | 10716 10-16
LP fact. = S D 108 1071 | 1071 | cond(4,x) 10716
New S D Q 108 1076 | 1071° 10716

= Benefit of IR3 vs. "LP fact.": no cond(4, x) term in forward error
14

IR3: Summary

Standard (LU-based) IR in three precisions (1, = uy)
Half ~ 107%, Single ~ 1078, Double ~ 1071¢, Quad ~ 1073*

Backward error
Uy U U, | MaxKex(A) | norm comp Forward error
New H S D 104 108 108 1078
Trad. | S S D 108 1078 | 1078 1078

= Benefit of IR3 vs. traditional IR: As long as ks (4) < 10%*, can use lower
precision factorization w/no loss of accuracy! 14

A = gallery('randsvd', 100, 1le3)
b = randn (100, 1)

Ko(4) = led

Standard (LU-based) IR with u: single, u: double, u,: quad

10° -
—<—ferr 0 2Ugkoo (A) i
X -O-nbe 100 F==mm == 2ugscond(A) [
i\ che B
1 0_1 0 _\\\(| 1 O-Eﬁf?—@‘—‘i_ Z _V_ qb’b
"‘_ﬂ
\ X
LN
B—X
100 wor-—
0O 1 2 3 4 5 6 7 8 9 10 11 0O 1 2 3 4 5 6 7 8 9 10 11

refinement step refinement step

15

A = gallery('randsvd', 100, 1le7)
b = randn (100, 1)

Ko(4) = Te7

2Uskoo (A)
Standard (LU-based) IR with u;: single, u: double, u,: quad ~ 2u,cond(A)
7 i
10° —
- ><\ —X— ferr
X -O-nbe
“ <
pug X </ cbe
Ci%g X
N e 51
= ;' I N
100

L 1 1 1 1 1 L L : : _15 | | | L L L 1 1 1 1
10
0123;561;:891011 01 2 3 4 5 6 7 8 9 10 11
rennement step refinement step

15

A = gallery('randsvd', 100, 1le9)
b = randn (100, 1)

k., (A) ~ 2el0

Standard (LU-based) IR with u: single, u: double, u,: quad

ferr Qs Koo (A) 11
“O-nbe 10°V/ ¥ 2ugcond(A) ||
s che| | S| Bl
B— e @ 1072 - 7 Pi
o™
1071°]

0 1 2 0 1 2

refinement step refinement step

15

A = gallery('randsvd',

b = randn (100, 1)

k., (A) ~ 2el0

100, 1le9)

Standard (LU-based) IR with u: double, wu,: quad

ferr > 2Uskoo (A) 11
“O-nbe 107 Y oo cond(A) ||
10°° +/ cbe] S us|| Bl
B— -5 @ 10°7 i _
o™
10715 |
0 1 2 0 1 2

refinement step

refinement step

15

A = gallery('randsvd', 100, 1le9)
b = randn (100, 1)

Ko(4) =~ 2el0

Standard (LU-based) IR with (u: double, wu: double, u,: quad

—<—ferr|; b 2uskoo (A) 14 _
-O-nbe 10 2uscond(A)
</ cbe O us || Ei ||
10° ‘ :
1075~ 7 @i
\V &
10718
0 1 2 0 1

refinement step refinement step

GMRES-Based lterative Refinement

« Observation [Rump, 1990]: if L and U are computed LU factors of 4 in
precision uy, then

Koo(UTIL71A) = 1 + Koo (Auy,

even if e, (A) » uz '

16

GMRES-Based lterative Refinement

« Observation [Rump, 1990]: if L and U are computed LU factors of 4 in
precision uy, then

Koo(UTIL71A) = 1 + Koo (Auy,

even if e, (A) » uz '

~ ~

T
—— —M
« To compute the updates d;, apply GMRES to UL 'Ad; = UL 1r;

GMRES-IR [C. and Higham, SISC 39(6), 2017]

16

GMRES-Based lterative Refinement

« Observation [Rump, 1990]: if L and U are computed LU factors of 4 in
precision uy, then

Koo(UTIL71A) = 1 + Koo (Auy,

even if e, (A) » uz '

GMRES-IR [C. and Higham, SISC 39(6), 2017] Ti

—— —M
« To compute the updates d;, apply GMRES to UL 'Ad; = UL 1r;

Solve Axy = b by LU factorization

for i = 0: maxit
1, =b — Ax;
Solve Ad; =r; via GMRES on Ad; = #;
Xi+1 = X; + d;

16

GMRES-Based lterative Refinement

« Observation [Rump, 1990]: if L and U are computed LU factors of 4 in
precision uy, then

Koo(UTIL71A) = 1 + Koo (Auy,

even if e, (A) » uz '

GMRES-IR [C. and Higham, SISC 39(6), 2017] Ti

—— —M
« To compute the updates d;, apply GMRES to UL 'Ad; = UL 1r;

Solve Axy = b by LU factorization

for i = 0: maxit —u
T = b — Axi ﬁ

Solve Ad; =r; via GMRES on Ad; = #;
Xiy1 = X; t+ d;

16

A = gallery('randsvd', 100,
b = randn (100, 1)

Ko(A) = 210, cond(4,x) = 5e9

1e9, 2)

Standard (LU-based) IR with u;: single, u: double, wu,.:

ferr |
-O-nbe
o5 cbe_
O— —9 D
1 0'1 5 -—_ __________________________ -
0 1 2

refinement step

quad
. 2 Koo (A) i
10V v 2ugscond(A) ||
1072 - _V_qﬁz
107°] ,
0 1

refinement step

A = gallery('randsvd', 100, 1e9, 2)
b = randn (100, 1)

Ko(A) & 2e10, cond(4,x) = 59, ko(4)~ 2e4

@ with u;: single, u: double, u,: quad

—<—ferr|] N 2UsKoo (A) 1 ||
-5-nbe 10 2uscond(A)
</ cbe|| O us|| Bl

7 @i

0 1 2 0 1
refinement step refinement step

Number of GMRES iterations: (2,3)

GMRES-IR: Summary

Benefits of GMRES-IR:

Backward error

Uy U U, | MaXxKy(A) norm comp Forward error
LU-IR H S D 10 1078 1078 1078
GMRES-IR H S D 108 1078 1078 1078
LU-IR S D Q 108 10716 | 10716 10716
GMRES-IR S D Q 1016 10716 | 10716 10716
LU-IR H D Q 10* 10716 | 10716 10716
GMRES-IR H D Q 1012 10716 | 1071 10716

18

GMRES-IR: Summary

Benefits of GMRES-IR:

Backward error

Uy U U, | MaxKy(A4) norm comp Forward error
LU-IR H S D 10 1078 1078 1078
GMRES-IR H S D 108 1078 1078 1078
LU-IR S D Q 108 10716 | 10716 10716
GMRES-IR S D Q 1016 10716 | 10716 10716
LU-IR H D Q 10* 10716 | 10716 10716
GMRES-IR H D Q 1012 10716 | 1071 10716

=With GMRES-IR, lower precision factorization will work for higher k. (A)

18

GMRES-IR: Summary

Benefits of GMRES-IR:

Backward error
Uy U U, | MaXxKy(A) norm comp Forward error
LU-IR H S D 10 1078 1078 1078
GMRES-IR H S D 108 1078 1078 1078
LU-IR S D Q 108 10716 | 10716 10716
GMRES-IR S D Q 1016 10716 | 10716 10716
LU-IR H D Q 10* 10716 | 10716 10716
GMRES-IR H D Q 1012 10716 | 1071 10716

=>With GMRES-IR, lower precision\factorization will work for higher k. (A)

Koo (A) < u™1/2 ust

18

GMRES-IR: Summary

Benefits of GMRES-IR:

Backward error

Uy U U, | MaXxKy(A) norm comp Forward error
LU-IR H S D 10 1078 1078 1078
GMRES-IR H S D 108 1078 1078 1078
LU-IR S D Q 108 10716 | 10716 10716
GMRES-IR ®\ D Q 10%° 107 | 1071 10716
LU-IR H D Q 10* 10716 | 10716 10716
GMRES-IR @Z D Q 1012 10716 | 10716 10716

= If ki, (A) < 102, can use

lower precision factorization w/no loss of accuracy!

18

GMRES-IR: Summary

Benefits of GMRES-IR:

Backward error

Uy U U, | MaXxKy(A) norm comp Forward error
LU-IR H S D 10 1078 1078 1078
GMRES-IR H S D 108 1078 1078 1078
LU-IR S D Q 108 10716 | 10716 10716
GMRES-IR ®\ D Q 10%° 107 | 1071 10716
LU-IR H D Q 10* 10716 | 10716 10716
GMRES-IR @Z D Q 1012 10716 | 10716 10716

Try IR3! MATLAB codes available at: https://github.com/eccarson/ir3

18

https://github.com/eccarson/ir3/

Comments and Caveats

» Convergence tolerance T for GMRES?
* Smaller T - more GMRES iterations, potentially fewer refinement steps
» Larger T — fewer GMRES iterations, potentially more refinement steps

19

Comments and Caveats

» Convergence rate of GMRES?

19

Comments and Caveats

» Convergence rate of GMRES?

* If A is ill conditioned and LU factorization is performed in very low precision, it
can be a poor preconditioner

* e.g., if 4 still has cluster of eigenvalues near origin, GMRES can stagnate
until n™® iteration, regardless of k4 (A) [Liesen and Tichy, 2004]

» Potential remedies: deflation, Krylov subspace recycling, using additional
preconditioner

19

Comments and Caveats

» Convergence rate of GMRES?

* If A is ill conditioned and LU factorization is performed in very low precision, it
can be a poor preconditioner

* e.g., if 4 still has cluster of eigenvalues near origin, GMRES can stagnate
until n™® iteration, regardless of k4 (A) [Liesen and Tichy, 2004]

» Potential remedies: deflation, Krylov subspace recycling, using additional
preconditioner

« Depending on conditioning of A, applying 4 to a vector must be done accurately
(precision u?) in each GMRES iteration

19

Comments and Caveats

» Convergence rate of GMRES?

* If A is ill conditioned and LU factorization is performed in very low precision, it
can be a poor preconditioner

* e.g., if 4 still has cluster of eigenvalues near origin, GMRES can stagnate
until n™® iteration, regardless of k4 (A) [Liesen and Tichy, 2004]

» Potential remedies: deflation, Krylov subspace recycling, using additional
preconditioner

« Depending on conditioning of A, applying 4 to a vector must be done accurately
(precision u?) in each GMRES iteration

» Why GMRES?

 Theoretical purposes: existing analysis and proof of backward stability [Paige,
Rozloznik, Strakos, 2006]

* In practice, use any solver you want!

19

Extension to Least Squares Problems

 Want to solve
min||b — Ax||,
X

where A € R™*" (m > n) has rank n

* Commonly solved using QR factorization:
U
A=QR=1010]|]

where Q is an m X m orthogonal matrix and U is upper triangular.
x=U"Q(b, IIb—Axll, = |[Q7b],

20

Extension to Least Squares Problems

 Want to solve
min||b — Ax||,
X

where A € R™*" (m > n) has rank n

* Commonly solved using QR factorization:
U
A=QR=1010]|]

where Q is an m X m orthogonal matrix and U is upper triangular.
x=U"Q(b, IIb—Axll, = |[Q7b],

* As in linear system case, for ill-conditioned problems, iterative refinement
often needed to improve accuracy and stability

20

Least Squares lterative Refinement

* For inconsistent systems, must simultaneously refine both solution and residual

* (Bjorck,1967): Least squares problem can be written as a linear system with
square matrix of size (m + n):

[olld =[]

21

Least Squares lterative Refinement

* For inconsistent systems, must simultaneously refine both solution and residual

* (Bjorck,1967): Least squares problem can be written as a linear system with
square matrix of size (m + n):

[olld =[]

* Refinement proceeds as follows:

1. Compute "residuals"

s =01-Le Q1= e

2. Solve for corrections

i olle) =l

3. Update "solution":
[n+1] [An]
xl+1

21

Least Squares lterative Refinement

* For inconsistent systems, must simultaneously refine both solution and residual

* (Bjorck,1967): Least squares problem can be written as a linear system with
square matrix of size (m + n):

[AIT f)l]] = lﬁ] A%¥ = b

* Refinement proceeds as follows:

1. Compute "residuals"

s =01-Le Q1= e

2. Solve for corrections

i olle) =l

3. Update "solution":
[n+1] [An]
xl+1

21

Least Squares lterative Refinement

* For inconsistent systems, must simultaneously refine both solution and residual

* (Bjorck,1967): Least squares problem can be written as a linear system with
square matrix of size (m + n):

[AIT f)l]] = lﬁ] A%¥ = b

* Refinement proceeds as follows:
1. Compute "residuals"
fi]_ [i] 7 = b — A%,
R P R A 1 | l
2. Solve for corrections

A1 AT fi Ad. —
[AT ” l]] Adi =T,
3. Update "solution": ~ -~
[Tl_,_l] [Arl] Xi+1 = X + di
xl+1

21

Least Squares lterative Refinement

* For inconsistent systems, must simultaneously refine both solution and residual

* (Bjorck,1967): Least squares problem can be written as a linear system with

square matrix of size (m + n): o ,
r
ol = Lol

* Refinement proceeds as follows:

1. Compute "residuals"

s =01-Le Q1= e

2. Solve for corrections

i ollae) = o, el

3. Update "solution™: Results for 3-precision
rl_,_l Ar; IR for linear systems
[xz+1] [] also applies to least

squares problems

~

AX = b
7 = b — A%;
Adi — 77'1

21

Least Squares lterative Refinement

* To apply the existing analysis, we must consider:

1.

2.

How is the condition number of A related to the condition number of
A?

What are bounds on the forward and backward error in solving the
correction equation Ad; = 7;?

* We now have a QR factorization rather than an LU factorization,
and the augmented system has structure which can be exploited

22

Augmented System Condition Number

* Result of Bjorck (1967):

The matrix
ol 4

has condition number bounded by
\/EKZ (A) < min Kz(/‘i'a) < ZKz(A), max Kz(Aa) > Kz(A)Z
(04 (04

~ _1
and min Kz(Aa) is attained for @ = 2 2 g,,,;,(4).
a

23

Augmented System Condition Number

* Result of Bjorck (1967):
The matrix
~ _[al A
Aq = [AT o]

has condition number bounded by
\/EKZ (A) < main Kz(/‘i'a) < ZKz(A), max KZ(AQ) > Kz(A)z
(04

~ _1
and min Kz(Aa) is attained for @ = 2 2 g,,,;,(4).
a

* Scaling does not change the solution to least squares problem; further, if a
is a power of the machine base, it doesn't affect rounding errors

= Safe to assume that k,(A4) is the same order of magnitude as x,(4)

23

LS-IR in 3 precisions

Compute QR factorization 4 = QR = [Ql, Qz] [g] ———> precision Ur

24

LS-IR in 3 precisions

Compute QR factorization 4 = QR = [Ql, Qz] [g] ———> precision Ur

Compute xo = U1QTb, 79 = b — Ax, > precision u

24

LS-IR in 3 precisions

Compute QR factorization 4 = QR = [Ql, Qz] [g] ———> precision Ur

Compute xo = U1QTb, 79 = b — Ax, > precision u

Fori=20,..
: b
Compute residuals [g‘] = [
l

— 71— Axi]

—> precision 1.,
—ATTi

24

LS-IR in 3 precisions

Compute QR factorization 4 = QR = [Ql, Qz] [g] ———> precision Ur

Compute xo = U1QTb, 79 = b — Ax,

> precision u

Fori=0,..
_ fl.]_[b—ri—Axi]
Compute residuals [gl_ = —ATr,

Solve [AIT ‘g] Ari] = f"], via

Axi I Lgi
h=U"g; N
Z;] - [Q1»hQ2]Tfi
i =g

—> precision 1,

— precision u

Axl' — U_l(dl - h) _/

24

LS-IR in 3 precisions

Compute QR factorization 4 = QR = [Ql, Qz] [g] ———> precision Ur

> precision u

Compute xo = U1QTb, 79 = b — Ax,

—> precision 1,

Fori=0,..
Compute residuals [L]qcll] = [b —_T‘;l;r:lxi]
Solve [AIT g] ﬁ;ﬂi] = L]qcz] via
h=U"g; n
Z;] = [Q1»hQ2]Tfi —— precision u
= Qg

> precision u

Update Xip1 = X; + A.X'i, Tig1 =17 + A'I"i

24

Returning to IR3 Analysis...

The backward error for the correction solve:

(A+A4A)d; =7, ||AA||Oo < cm,nuf||,ai||oo

25

Returning to IR3 Analysis...

The backward error for the correction solve:

(A+24)d; =7, ||AA]|_ < cmaug|lA] U = uy

25

Returning to IR3 Analysis...

The backward error for the correction solve:

(A+24)d; =7, ||AA]|_ < cmaug|lA] U = uy

1. Czi = (I + uSEi)di; us“Ei“oo <1 us“Ei”oo < Cm,nuf”A'“oo

25

Returning to IR3 Analysis...

The backward error for the correction solve:

(A+24)d; =7, ||AA]|_ < cmaug|lA] U = uy
1. d; = +wE)d;, wElle <1 1w llEilleo < cmntis||4]]
2. ||f = Ady||_ < usCeallAlloo||dil| . + callfilloo) max(cy, ¢3) 1, = 0(uy)

25

Returning to IR3 Analysis...

The backward error for the correction solve:

1.

2.

(A+A4A)d; =7, ||AA||OO < cm,nuf||,ai||oo

d; = (I +u,E)d;, IEi]le < 1

A

i — Ady|| <

(exllAlloo|del , + €211Fillo)

G;|d;|

max(cq, cz) 1, = 0(uy)

1Giller = 0(up)]4]],

25

Returning to IR3 Analysis...

The backward error for the correction solve:

(A+24)d; =7, ||AA]|_ < cmaug|lA] = uy

1 di=U+uE)d;, Bl < 1 IEilleo < cmnusl|4]l,,

As Iong as KOO(A) S ufl, expect convergence to

limiting relative forward error

I t .. ~ 1, cond(4, %) + u
1% 1] 00

2. || = Ady|| | < vs(erllAllo |||, + c2lIfilleo) max(cy, ¢z) 11, = 0(uy)
3. | — Ad;| < u.G;ld;] 1Gilloo = O(uy)|| 4]

25

Returning to IR3 Analysis...

The backward error for the correction solve:

(A+24)d; =7, ||AA]|_ < cmaug|lA] = uy

1 di=(+wEd, wllElle <1 1Edlleo < crmtty ||

As long as KOO(A) < ufl, expect convergence to

limiting relative forward error

I% t .. ~ 1, cond(4, %) + u
1%l
2. || = Ady|| | < vs(erllAllo |||, + c2lIfilleo) max(cy, ¢z) 11, = 0(uy)
I

3. | — Ad;| < u.G;ld;] 1Gilloo = O(uy)|| 4]

As long as KOO(A) < ufl, expect normwise and /

componentwise backward errors to be O(u)

25

m
oo

= gallery('randsvd', [100, 10], kappa, 3)
randn (100, 1) ;

Standard (QR-based) least squares IR with

Relative forward error

k =1e+4+01
1072 ' '
""" ¢ g0l

CQ """ > res
10'43"‘;_,
105x
1078} ®
10710 | '

0 5 10

b = b./norm(b)

Us: half, wu: single, wu,: double

Refinement step

15

26

m
oo

= gallery('randsvd', [100, 10], kappa, 3)
= randn(100,1); b = b./norm(b)

Standard (QR-based) least squares IR with
Us: half, wu: single, wu,: double

Kk =1e+4+02
1020 O sol
s res
S
O a4l ¢
s 1077 §
‘-IQ 10'6 — ‘é}- -
g %
@ 108} ?
10710 ! !
0 5 10 15

Refinement step

m
oo

= gallery('randsvd', [100, 10], kappa, 3)
randn (100,1); b = b./norm(b)

Standard (QR-based) least squares IR with

Relative forward error

r =1e+03

2@ """ ‘E(D """ sol

104 e res
X,

107 ¢
10‘5_
10-8 L
10-10 | !

0 5 10

Us: half, wu: single, wu,: double

Refinement step

15

26

m
oo

= gallery('randsvd', [100, 10], kappa, 3)

randn (100,1); b = b./norm(b)

Standard (QR-based) least squares IR with

Us: half, wu: single, wu,: double

r =1le+04
100 F ' '
G- G g0l
2 '2“: """ X """ res
= %),
o “@qu
® '-»-.‘.‘:Q..
E 6| “WQ
s 1w 9 o
2 Qg
= K,
= ®
('
10710 ' '
0 5 10 15

Refinement step

26

m
oo

= gallery('randsvd', [100, 10], kappa, 3)

randn (100,1); b = b./norm(b)

Standard (QR-based) least squares IR with
Us: half, wu: single, wu,: double

k =1e+05
1009---@-'--.

O RS S e W
o
)
fS
©
:
L 51
o 10
=
=
[
'

10710 ' '
0 5 10 15

Refinement step

26

GMRES-IR for Least Squares

* Similar to the linear system case, we can use a lower precision factorization for even
more ill-conditioned problems if we improve the effective precision of the solver

» Again, don't want to compute an LU factorization of the augmented system

* How can we use existing QR factors to construct an effective and inexpensive
preconditioner for the augmented system?

* Note that augmented system is a saddle-point system; lots of existing work (block
diagonal, triangular, constraint-based, ...)

27

GMRES-IR for Least Squares

* Ex: block diagonal precondltloner ([Murphy, Golub, Wathen, 2000], [Ipsen, 2001])

al \/ al 0 val 0
1A . ~

IO —RT R RT
a

28

GMRES-IR for Least Squares

* Ex: block diagonal preconditioner ([Murphy, Golub, Wathen, 2000], [Ipsen, 2001])
al Jal 0 Jal 0
l 0 —RTR

RT 0 —R
* Assuming QR factorization is exact,

I
a R-IRTAT 0

M, *M{1A =

is nonsymmetric, diagonalizable, with eigenvalues {1,%(1 + \/g)}

* However, condition number can still be quite large; unsuitable for proving
backward stability of GMRES

28

GMRES-IR for Least Squares

» Ex: block diagonal preconditioner ([Murphy, Golub, Wathen, 2000], [Ipsen, 2001])

al 0 Val 0 Val 0
1 P~ o~ = 1 ~ 1 ~| =
lo —R"R 0 — || o —=g|FMM
a Va Va
* Assuming QR factorization is exact,
1
M, M4 = ! EA

a RIR7TAT 0
is nonsymmetric, diagonalizable, with eigenvalues {1,%(1 + \/g)}

* However, condition number can still be quite large; unsuitable for proving
backward stability of GMRES

* |f we take split preconditioner
M-1AM. 1 = [A I AR]
o RTAT 0
we will have a well-conditioned system
* However, split-preconditioned GMRES is not backward stable

* Potentially useful in practice, not but in theory
28

GMRES-IR for Least Squares

* One option:

* Then we can prove that for the left-preconditioned system,
5 2
k(M™14) < (1 + upC K(A))

where ¢ = 0(m?), where we note this bound is pessimistic.

* Thus even if k(A) > u;l, the preconditioned system can still be reasonably
well conditioned

29

GMRES-IR for Least Squares

* One option:

* Then we can prove that for the left-preconditioned system,
5 2
k(M™14) < (1 + upC K(A))

where ¢ = 0(m?), where we note this bound is pessimistic.

* Thus even if k(A) > u;l, the preconditioned system can still be reasonably
well conditioned

« GMRES run on A with left-preconditioner M gives
IEillco = v f(m + n)ko (M~ A)

where f is a quadratic polynomial

29

GMRES-IR for Least Squares

* One option:

* Then we can prove that for the left-preconditioned system,
5 2
k(M™14) < (1 + upC K(A))

where ¢ = 0(m?), where we note this bound is pessimistic.

* Thus even if k(A) > u;l, the preconditioned system can still be reasonably
well conditioned

« GMRES run on A with left-preconditioner M gives
IEillco = v f(m + n)ko (M~ A)

where f is a quadratic polynomial

* So for GMRES-based LSIR, 1. = u; expect convergence of forward error

~1/2, -1
when KOO(A) <u u]r 29

gallery('randsvd', [100,10], kappa(i), 3)
QR factorization computed in half precision; preconditioned system computed exactly

1070 S e a—
== =Ko (A))
Ok (M 1A)

(1 + ugha(4))° >
1010- """""" u_l ,// 4
10%" g j
10° S S —

10° 1010
H’oo(A)

30

m
oo

= gallery('randsvd', [100, 10], kappa, 3)

randn (100,1); b = b./norm(b)

GMRES-LSIR and "Standard" LSIR with
Us: half, wu: single, wu,: double

k =1e+03

—o—LSIR «
—»—LSIR r
-6 -G-LSIR z
— % -G-LSIR r |
-@- G-LSIR BD «z
% G-LSIR BD r | 1

refinement step

31

m
oo

A = gallery('randsvd', [100, 10], kappa, 3)
b = randn(100,1); b = b./norm(b)

GMRES-LSIR and "Standard" LSIR with
Us: half, wu: single, wu,: double

k =1e+04

—&—LSIR z
—»—LSIR r
-3 -G-LSIR =
— % -G-LSIR r

10°G

<y G-LSTR BD 7

~©-G-LSIR BD z| |

refinement step

15

31

m
oo

= gallery('randsvd', [100, 10], kappa, 3)

randn (100,1); b = b./norm(b)

GMRES-LSIR and "Standard" LSIR with
Us: half, wu: single, wu,: double

k =1e+06

—&—LSIR z
—»—LSIR r
-3 -G-LSIR =
— % -G-LSIR r

@~ G-LSIR BD z| |

refinement step

15

31

m
oo

A = gallery('randsvd', [100, 10], kappa, 3)
b = randn(100,1); b = b./norm(b)

GMRES-LSIR and "Standard" LSIR with
Us: half, wu: single, wu,: double

k =1e+09
0CBs _,.'P_‘_r"\ RAP\AA N |——LSIR r
1073 NG T OO U0 oGSk .
I \\ XX XXX)(
\® - % -G-LSIR r
¥ @+ G-LSIR BD z| |
\\\\ . G-LSIR BD r
\\
by
A\
] X\
107° | \\
_ \ !
\
------- Q2992000900
0 5 10 15

refinement step

31

The rise of multiprecision hardware

* Future machines will support a range of precisions: quarter, half, single,
double, quad

32

The rise of multiprecision hardware

* Future machines will support a range of precisions: quarter, half, single,
double, quad

* New, non-lIEEE compliant floating point formats will appear in
commercially-available hardware

* e.g., bfloatl6 (truncated 16-bit version of single precision)

32

The rise of multiprecision hardware

* Future machines will support a range of precisions: quarter, half, single,
double, quad

* New, non-lIEEE compliant floating point formats will appear in
commercially-available hardware

* e.g., bfloatl6 (truncated 16-bit version of single precision)

» Lower-precision arithmetic is faster and more energy efficient, but the
potential for its use depends heavily on the particular problem and
algorithm

32

The rise of multiprecision hardware

* Future machines will support a range of precisions: quarter, half, single,
double, quad

* New, non-lIEEE compliant floating point formats will appear in
commercially-available hardware

* e.g., bfloatl6 (truncated 16-bit version of single precision)

» Lower-precision arithmetic is faster and more energy efficient, but the
potential for its use depends heavily on the particular problem and
algorithm

* As numerical analysts, we must determine when and where we can exploit
lower-precision hardware to improve performance

32

Thank Youl

carson@karlin.mff.cuni.cz
www.karlin.mff.cuni.cz/ carson/

