Efficient Deflation for

Communication-Avoiding
Krylov Subspace Methods

Erin Carson
Nicholas Knight, James Demmel

Univ. of California, Berkeley

Monday, June 24, NASCA 2013, Calais, France

Overview

We derive the Deflated Communication-Avoiding Conjugate Gradient
algorithm (Deflated CA-CG), demonstrating that deflation can be
implemented while maintaining asymptotic savings in data movement.

1. Background
* What is communication and why should it be avoided?
« Communication-avoiding (s-step) conjugate gradient (CA-CG)
* Deflated Conjugate Gradient method

2. Derivation of Deflated CA-CG
3. Asymptotic communication and computation costs

4. Evaluating tradeoffs in practice
* Performance model and convergence results for model problem

5. Extensions and future work

What is Communication?

* Algorithms have two costs: communication and computation

* Communication: moving data between levels of memory hierarchy
(sequential), between processors (parallel)

CPU CPU CPU
cache DRAM DRAM
sequential oarallel
DRAM CPU CPU
DRAM DRAM

* On modern computers, communication is expensive, computation is cheap
— Flop time << 1/bandwidth << latency
— Communication a barrier to scalability (runtime and energy)

* We must redesign algorithms to avoid communication

How do Krylov Subspace Methods Work?

A Krylov subspace is defined as

K, (A,19) = span{ry, Ary, A%1y, ..., AT 11y}

A Krylov subspace method (KSM) is a projection process onto the
subspace K orthogonal to £

* The choice of L distinguishes the various methods

 Examples: Conjugate Gradient (CG), Generalized Minimum
Residual Methods (GMRES), Biconjugate Gradient (BICG)

KSMs for solving linear systems: in iteration m, 4o

refine solution x,, to Ax = b by imposing the T, -

condition °
Xm =Xo+0, 0 €K, and 1y — A8 L L, 0 r

where ry = b — Ax,

Communication Limits KSM Performance

In each iteration, the projection process proceeds by:

1. Adding a dimension to the Krylov subspace X,
— Requires sparse matrix-vector multiplication (SpMV)
e Parallel: communicate vector entries with neighbors

e Sequential: read A (and N-vectors) from slow memory

2. Orthogonalizing with respect to L,

e Requires inner products SpMV
 Parallel: global reductions

* Sequential: multiple reads/writes .
to slow memory orthogonalize

Dependencies between communication-bound kernels in each
iteration limit performance!

Classical Conjugate Gradient (CG)

Given: initial approximation x, for solving Ax = b
Letpy =1y = b — Ax,
form =0, 1, ..., until convergence do

T

. 'mTm
Im =T,
PmAPm
Xm+1 = Xm T AmPm SpMVs and inner products
"m+1 = Tm — AmApm require communication in
rT / each iteration!
__ "m+1"m+1
| =
m+ r‘)”I)-"er

Pm+1 = "m+1 + BPm+1Pm
end for

CA-CG Derivation Overview

In iteration m + s we have the relation

Pm+s: Tm+s € Ksy1 (A, 0m) + Ks(A, 1)

Xmas — Xm € Ks(A, D) + HKs_1(4, 1)
Let V be a basis for K, (4, p,,) + K(4,7,,), and let Gram matrix G = VTV,
Forl <j <s,

Pm+j = VDj Tm+j = V71y Xm+j — Xm = VX;
where p;,77,and x; are coordinates for py, j, T+ j,and X4 j — X, in basis V.
The product Apy,4j—1 can be written:
APpmyj_1 = AVP]"—1 = VTp],'—ll

and inner products can be written:
T T
rm+]rm+] Ty GT pm+] 1Apm+] 1= P GTp] 1

Communication-Avoiding CG

* This formulation allows an O(s) reduction in communication

* Main idea: Split iteration loop into outer loop (k) and inner loop ()
Outer iteration: 1 communication step

e Compute Vj: read A/communicate vectors only once (for well-partitioned
A) using matrix powers kernel (see, e.g., Hoemmen et al., 2007)

* Compute Gram matrix G, = V;! Vj: one global reduction
Inner iterations: s computation steps
* Perform iterations sk + j, for 0 < j < s, with no communication

* Update (2s + 1)-vectors of coordinates of g+ j, Tsk+j, Xsk+j — Xsk IN
V., replacing SpMVs and inner products

e Quantities either local (parallel) or fit in fast memory (sequential)

Many CA-KSMs (or s-step KSMs) derived in the literature:

(Van Rosendale, 1983), (Walker, 1988), (Leland, 1989), (Chronopoulos and Gear, 1989),
(Chronopoulos and Kim, 1990, 1992), (Chronopoulos, 1991), (Kim and Chronopoulos, 1991),
(Joubert and Carey, 1992), (Bai, Hu, Reichel, 1991), (Erhel, 1995), (De Sturler, 1991), (De Sturler
and Van der Vorst, 1995), (Toledo, 1995), (Chronopoulos and Kinkaid, 2001), (Hoemmen, 2010).

CA-Conjugate Gradient (CA-CG)

Given: initial approximation x for solving Ax = b
Letpy =15 = b — Ax, via CA Matrix

fork = 0,1, ..., until convergence do / Powers Kernel
Calculate Py, Ry, bases for K .1 (A4, vsx), K (4, 15k), resp.

Let V, = [Py, Ry] and compute G, = V!V, .
Let xg = 02541, 7o = [0844,1,05_11", po =m3*"\ Global reduction

forj =0,..,s—1do to compute G
IT !/
Ask+j — T?J" il 7
Pj Gkapj
Xjv1 = X + Agics jD; Local computations
7"jl+1 — 7}" — “sk+kaP]" within inner loop require
_ Tj41GkT e no communication!
,Bsk+j+1 — r]{TGkr]{

! R !
Pjt1 =Tj41 T ,Bsk+j+1pj
end for
— / _ / _ /
ComPUte Xsk+s — kas + Xskr Tsk+s = Vkrs» Psk+s = Vkps
end for

Deflated CG (Saad et al., 2000)

» Deflation: removing eigenvalues that are hard to converge to in order
to increase convergence rate

* Convergence of CG governed by ic(A4) = Ay /44
* Whered; < A, < --- < Ay are eigenvalues of 4

e Let W be an N X ¢ matrix to be used in deflation

* Deflated CG is equivalent to CG with system H'AHX = H" b where
H=1-WWTAW) 1(AW)T is the matrix of the A-orthogonal
projection onto W14

* When columns of W are approximate eigenvectors of A
associated with A4, 1,, ..., 4, K(HTAH) ~ An/Acs1

* Deflated CG should increase rate of convergence

Can deflation techniques be applied to CA-CG while maintaining
asymptotic reduction in communication cost?

Deflated CG Algorithm (Saad et al., 2000)

Define W to be a length N X ¢ basis. Compute WT AW .
Compute x, = W(WTAW) W Th
T0o = b — Axg, o = WTAW) W' Arg, po = 19 — W g
form = 0, 1, ..., until convergence do
OIm = rnq;,rm/pngpm
Xm+1 = Xm T AmPm
"m+1 = Tm — AmAPm
Bm+1 = r1311+1rm+1/7ﬂn7;rm
Solve WIAW .1 = WT AT, 1 for .1
Pm+1 = Bm+1Pm + Tms1 — W.um-l—\l New term due to

end for deflation; requires SpMV
and global reduction

SpMVs and dot products
required in each inner
loop, as in CG

11

Avoiding Communication in Deflation Process

In Deflated CG, we have
Psk+jr Vsk+j € :Ks+1(A: psk) + :K:S(Al rsk) + :Ks—l(A: W)
xsk+j — Xsk € :Ks(Ar psk) + 7(5—1(14; rsk) + ‘7(5—2(‘4: W)

To compute [4 j+1, We also need
Arsk+j+1 < :7(5+2(A, psk) + :Ks+1(A» rsk) + :}CS(AJ W)

Let V), be an N X (2s + 3 + ¢s) matrix whose columns span this space, i.e.,
Vk € ‘7(5+2(AJ pSk) + ‘7(5+1(A) rSk) + :}CS(A; W)

If we compute Gy, = V! Vi, and extract Z,, = WTV,, from G, then

T _ /
W ATsyjr1 = ZiTiT ja-

As in CA-CG, we compute inner products and mult. by A in the inner loop by
updating length-(2s + 3 + c¢s) coordinate vectors in basis V/j.

Deflated CA-CG

Define W to be a length N X ¢ basis. Compute WTAW .
xo = WWTAW) TWTh, 1y = b — Axy, ug = WTAW) W T Ary, g = 19 — Wiy
Compute W, a basis for K (A, W)
fork = 0,1, ..., until convergence do
Compute Py, Ry, bases for K¢, - (A, psi), Ksi1 (A4, 151), resp.
Construct Ty such that A[Py, Ry, W| = [Py, Rk, W]Ty

Let V, = [Py, Rk, W], compute G;, = Vk Verk =WTy, < Additional bandwidth
cost once per s

One-time (offline) call
to CA matrix powers
kernel with ¢ vectors

p(’) - [1 OZS+2+CS]T' T(; - [Os+2: 1 Os+cs] X(’) = O25+3+cs

forj = 0tos — 1 do iterations
ask+] = ’TGkT’/P]’TGkaP]"
]+1 — x + ask+1p1 Local operations,
]+1 7} aSk+]Tkp] requires no
Bsk+j+1 =]+1Gk +1/7"’TGk7” / communication
Solve WTAWMsk+]+1 = ZkaT Or Usk+j+1
p],'+1 — :Bsk+j+1p]" + T)" [025+3r.u5k+]+1' Oc(s 1)]T

end for

_ / _ / _ /
Xskts = VieXs + Xsi, Vskas = ViTs) Dsk+s = ViDs

T

Computation and Communication Complexity

Model Problem (2D Laplacian), s iterations of parallel algorithm

Flops Words moved Messages

CG 0 <SN> + 0(s) 0 (S\/N/p) + 0(s) |0O(slog,p)+ 0(s)

CA-CG () +0(s3) |0 (S\/N/p) + 0(s2) 0(log, p)

Degzéted (T) +0(c%s) | 0 (S\/T/P) + 0(cs) | O(slogyp) + 0(s)
S2N

Deflated 0 <

CA-CG

.) +0(c?s3) |0 (SN/N/p) + 0(cs?) O(log, p)

Note: offline costs of computing and factoring WT AW omitted for Deflated CG and Deflated
CA-CG (as well as computing K (A, W) for Deflated CA-CG)

Is This Efficient in Practice?

* In practice, evaluating tradeoffs between s and c is nontrivial

e Larger s means faster speed per iteration, but can potentially
decrease convergence rate in finite precision

* Larger c gives better theoretical convergence rate, but can
potentially decrease speed per iteration

e Performance modeling for a specific problem, method, and machine
must take both

1. How time per iteration changes with s and ¢

2. How the number of iterations required for convergence changes
with s and ¢, and

into account.

* We will demonstrate the tradeoffs involved for our model problem
(2D Laplacian) on two large distributed memory machine models

CA Speedup per Iteration

Plot of modeled speedup per iteration relative to CG for 2 machines, for 2D Laplacian
with N = 262,144, p = 512 where
Time = y(arithmetic operations) + f(words moved) + a(messages sent)

Peta Grid

30 ‘ 30
2071231 @ 23.1 23.1 23.1 23.1\1

25 25

16-118.5 18.5 18.5 18.5 18.5 185 |

L 120 - 120
12-113.9 13.9 13.9 13.9 13.9 13.9 H

r 119 2 - 115

8] 93 93 9.3 93 9.3 93 |

110

I5
0

0 2 4 6 8 10 0 2 4 6 8 10
c (# deflation vectors) c (# deflation vectors)

Peta: ¥y =210 (s/flop), @ = 107°(s), B = 2-10°(s/word)
Grid: y = 1071%(s/flop), a=10"1(s), B =25-10"%(s/word)

16

Convergence for Model Problem

----- e Monomial Basis,
——CACG
-2 —

107 NN | DCGc=2 || s =10

S —— DCACG,c=2

S o DCG,c=10 |

E DCACG,c=10

E . ,00(14) =1,

8 10 pj(A) =A-p;_1(4)

O

=

= 10"

-10_1D]]]
0 500 1000 1500 2000

lteration

Matrix: 2D Laplacian(512), N = 262,144. Right hand side set such that true solution has
entries x; = 1/+/n. Deflated CG algorithm (DCG) from (Saad et al., 2000).

Total Speedup, Monomial Basis

Total speedup = (speedup per iteration) X (number of iterations(Monomial))

Peta Grid

10/ | 5.4 ﬁ 7 82 73 % I12 10l 6 @
sl |66 8.3 85 8.6 g2 | 10 sl |72 9.7

6l |66 7.2 7 76 73 7 bl 6 |69 7.9 7.9 8.8 8.8 88 | | |

4r1 45) 49 5.4 5.2 22 | 4r146 52 9.2 5.9 9.9 29 |

0 2 4 6 8 10 0 2 4 6 8 10
c (# deflation vectors) c (# deflation vectors)

e Since CA-CG method suffers delayed convergence with monomial basis, higher s doesn’t
always give better performance (convergence fails for s > 10).
* On Peta, since relative latency is not as bad as on Grid, speedups decrease for large c values.

18

Convergence for Model Problem

A better choice of basis leads to stability for higher s values:

0

10

_____ o Newton Basis,
Nk —— CACG

107 NN, | DCG,c=2 | s = 20
o ——DCACG,c=2
& DCG,c=10 —
T 107 DCACG,c=10 || po(4) =1,
= p;i(A) = (A—6,I)pj_1(A)
© 10 ¢
P where 6; are Leja-ordered
2 00l _ points on F(A)

10 | | | *For details on better bases

0 500 1000 1500 2000 for Krylov subspaces, see, e.g.,
Iteration Phillipe and Reichel, 2012.

Matrix: 2D Laplacian(512), N = 262,144. Right hand side set such that true solution has
entries x; = 1/+/n. Deflated CG algorithm (DCG) from (Saad, et al., 2000).

Total Speedup

Total speedup = (speedup per iteration) X (number of iterations(Newton))
Peta Grid

30 30
20F |226
25 25

161 118.4 209 20.9 237 23.7 237 |k
20 20
12+ 113.8 15.8 15.8 17.6 17.6 176 |
L 115 %) - 415
8r 193 106 10.6 11.9 11.9 119 |
L _10 L
4
5
1
0
0 2 4 6 8 10 0 2 4 6 8 10
c (# deflation vectors) c (# deflation vectors)

* Peta: Speedup decreases with increasing c; CA deflation doesn’t lead to significant
overall performance improvements over CA-CG
e Grid: since O(s) speedup from CA techniques remains constant for increasing ¢, CA

deflation increases overall sieedui for all s values!

Conclusions and Future Work

* Summary

* Proof-of-concept that deflation techniques can be implemented in CA-CG in a
way that still avoids communication

* Asymptotic bounds confirm that Deflated CA-CG maintains the
O(s) reduction in latency over CG and Deflated CG

* Performance modeling demonstrates nontrivial tradeoffs between speed per
iteration and convergence rate for different methods
e Future Work
* Extending other deflation techniques to CA methods

* Solving (slowly-changing) series of linear systems (recycling Krylov
subspaces)

* Reorthogonalization to fix instability in Deflated CA-CG (r L W fails in
finite precision, setr = (I — WWTW)~1WT)r) (Saad et al., 2000)

e Equivalent ‘augmented’ formulations (Gaul et al., 2013)
e Claim: CA deflation can be applied to other deflated Krylov methods

* GMRES, MINRES, BICG(STAB), QMR, Arnoldi, Lanczos, etc., see, e.g.,
(Gutknecht, 2012)

Thank youl!

Erin Carson: ecc2z@cs.berkeley.edu
Nick Knight: knight@cs.berkeley.edu
-]

Extra Slides

CA-CG Derivation Overview

In iteration sk + j,fors > 0,0 < j < s, we exploit the relation

psk+j» Tsk+j € jcs+1(A» psk) + st (A: Tsk)
Xsk+j — Xsk € jCS(A' psk) + :Ks—l(A: Tsk)

Let V. be a matrix whose columns span K., 1(A4,ps,) + K (A, 1er).

Then for iterations sk + 1 through sk + s, we can implicitly update
the length n vectors pgi., Tsk+j, and Xgi4j — X5, by updating their
coordinates (length 2s + 1 vectors) in basis V.

_ / _ / — /
Psk+j = Vkpk,j Tsk+j = Vk’”k,j Xsk+j — Xsk = kak,j

CA-CG Derivation Overview

In iteration sk + j,fors > 0,0 < j < s, we exploit the relation
Psk+jr Vsk+j € :}CS+1(AJ psk) + %S(Al rsk)
Xsk+j — Xsk € :KS(A: psk) + :Ks—l(A: rsk)

If we compute basis V), for K., 1 (A4, ps) + K (4, g,) and compute Gram
matrix G, = VkTVk, then for iterations 0 < j < s we can implicitly update the
length n vectors pgy 4 j, Tsk+j, and Xge4j — Xsx by updating their coordinates
(length 2s 4+ 1 vectors) in basis V.

Psk+j = VP, j Tsk+j = Vil j Xsktj — Xsk = ViXp
The product Apgy 4 ; can be represented implicitly in basis Vj by ka;c,j, since
Apsk+j = AVipy i = Vi BiDPy,j»
and we can write dot products as

T — IT / T _IT /
Tsk+jTsk+j = Tk, jGkTk,j Psk+jAPsk+j = Pk,jGkBrPk, j

CA-CG Derivation Overview

The product Apgy .+ ; can be represented implicitly in basis Vj, by
Bypy, j, since

Apsk+j = AVkp;c,j — Vkkal’c,j

If we compute Gy, = V!V, we can write dot products as

T _ JIT / T T /
Tsk+jTsk+j = Tk jOrTk Psich jADsk+j = Pk,jGkBrPr,j

B, and Gy, are small O(s) X O(s) matrices
that fits in fast/local memory; Multiplication
by Bj and Gj require no communication!

Related Work: s-step methods

Van Rosendale, CG Monomial Polynomial No No
1983
Leland, 1989 CG Monomial Polynomial No No
Walker, 1988 GMRES Monomial None No No
Chronopoulos and CG Monomial None No No
Gear, 1989
Chronopoulos and Orthomin, @ Monomial None No No
Kim, 1990 GMRES
Chronopoulos, MINRES Monomial None No No
1991
Kim and Symm. Monomial None No No
Chronopoulos, Lanczos,
1991 Arnoldi

de Sturler, 1991 GMRES Chebyshev None No No

Related Work: s-step methods

Joubert and
Carey, 1992

Chronopoulos and
Kim, 1992

Bai, Hu, and
Reichel, 1991

Erhel, 1995

de Sturler and van
der Vorst, 1995

Toledo, 1995

Chronopoulos and
Swanson, 1996

Chronopoulos and
Kinkaid, 2001

GMRES

Nonsymm.
Lanczos

GMRES

GMRES
GMRES

CG

CGR,
Orthomin

Orthodir

Chebyshev

Monomial

Newton

Newton
Chebyshev

Monomial

Monomial

Monomial

No

No

No

No

General

Polynomial

No

No

Yes*

No

No

No
No

Yes*

No

No

No

No

No

No
No

No
No

No

Convergence in Finite Precision

CA-KSMs are mathematically equivalent to classical KSMs

But have different behavior in finite precision!
* Roundoff error causes
* Bounds on magnitude of roundoff error increase with s

* In solving practical problems, roundoff error can

* |f # iterations increases more than time per iteration decreases
due to CA techniques,

* To perform a practical performance comparison amongst CG,
Deflated CG, CA-CG and Deflated CA-CG,

Detailed Complexity Analysis: CG

-) 2S N 19ns
OpPScc = 28 — —
CG » p

2S
Words ; = 25 — ? + 4s\/n/p

Messce; = 4s + 2slog,p

Detailed Complexity Analysis: CA-CG

Flopscace
= 49s — 2s%/p + 36s%\n/p + 25n/p — 3s/p + 72sn/p
— 1/p + 74s? + 3653 + 36+/n/p +36ns/p + 4ns?/p + 12

WOrdSCACG

=11s — 2s%/p — 3s/p +8syn/p— 1/p + 6s% + 8yn/p
+ 5

MesScace = log, p + 8

Detailed Complexity Analysis: DCG

Flopspce = 2s + 2¢%s — 2s/p — cs/p + 29ns/p + 4cns)/p

Wordspce =25 + ¢s — 2s/p + 8syn/p — cs/p

Messpce = 8s + 3slog,p

Detailed Complexity Analysis: DCACG

Flopspcacec = 240s — 2s?/p + 36s%\n/p + 5cs + 60cs? +

2¢%s + 32c¢s3 + 65n/p — 7s/p + 144sn/p — 6/p +
184s? + 44s3 + 2c¢%s? + 8c¢%s® + 144./n/p — 3cs/p +
44ns/p — 2cs?/p + 4ns?/p + 12cns/p + 4cens?/p + 96

WOTdSDCACG

= 23s — 2s%/p + 3cs + 2¢s? — 7s/p + 8s{n/p— 6/p
+ 6s% + 164n/p — 3cs/p — 2cs?/p + 22

Messpcacc =10g2p + 8

Better Polynomial Bases

In general, columns v;, 41 of V computed by the 3-term recurrence
Vig1 = ((A —a;Dv; — 31‘”1‘—1)/)71'
Scaled Monomial: For scalars {o;};_4,
@ =0,p; = 0,7; = o;
Newton: For Leja-ordered Ritz values {6;};—, and scalars {g;};-4
a; =0y,6 =0,y = 0;
Chebyshev: Given bounding ellipse for spectrum with foci at

d + c, the scaled and shifted polynomials are

7;(z) = 1,((d —2)/c) /0y,
A CO; . COj4+1

a.:d} P —) P

Leja Ordering

Let S be a compact set in C. (Note that here S is set of approx. Ritz
values). Then a Leja ordering can be computed by

0, = argmax,cs|z|

|Z_Zk|
0

i
0i41 = argmax;cg
k=

Leja (1957)

Many references for using different polynomials for Krylov subspace
calculation:

See, e.g., Philippe and Reichel (2012), Bai et al. (1994), Joubert and
Carey (1992), de Sturler and van der Vorst (1994, 1995), Erhel (1995).

Residual Replacement Strategy

e Van der Vorst and Ye (1999) : Residual replacement used in combination
with group-update to improve the maximum attainable accuracy

* Given computable upper bound for deviation of residuals,
replacement steps chosen to satisfy two constraints:

1. Deviation must not grow so large that attainable accuracy is
limited

2. Replacement must not perturb Lanczos recurrence relation for
computed residuals such that convergence deteriorates

* When the computed residual converges to level O(¢)||Al|||x]|| strategy
reduces true residual, to level O (&) ||Al|||x||

* We devise an analogous strategy for CA-CG and CA-BICG

e Our strategy does not asymptotically increase communication or
computation!

S:

Classical CG+RR

-‘g L Monomial

b e Newton

g 0 |- Chebyshev

1

g 4 —— Monomial+RR
o 10 Newton+RR
_g g — Chebyshev+RR
10+ NL |- -

D Classical CG
(4]

o

(4]

=

|-

I_

0 1000 2000 3000
lteration

s =12

True Residual (2-norm)

0 2000 4000 6000 8000 10000 12000
lteration

0 1000 2000 3000
lteration

Matrix: consph (FEM), SPD, N =
8.3E4, NZ = 6E6,k(A) =~ 9.7E3.
In all tests #replacements < 5.
Orders of magnitude improvement
in accuracy for little additional cost!

But doesn’t fix slow convergence
due to ill-conditioned basis.

Total Speedup, Monomial Basis

Total speedup = (speedup per iteration) X (number of iterations(Monomial))

Peta Grid
10/ | 5.4 ﬂ 7 82 73 % I12 10| 6 @
sl |66 8.3 85 8.9 8.6 g2 | 10 sl |72 97
L 18 - 18
6lles || 72 7 76 73 7 | 6lleo|| 79 79 88 88 88 |
)
“ - 6 - 6
all 45 5 49 54 52 52 | allas|| 52 52 59 59 59|

0 2 4 6 8 10 0 2 4 6 8 10
c (# deflation vectors) c (# deflation vectors)

Since the CA-CG method without deflation suffers delayed convergence, deflation results in
performance improvements on both machines (note that delayed convergence also means that
higher s doesn’t always give better performance for monomial). On Peta, since relative latency
is not as bad as on Grid, speedups start to decrease for large c values.

38

Overlapping Communication and Computation

Plot of modeled speedup per iteration relative to CG for 2 machines, for 2D Laplacian

withn = 262,144, p = 512 where

Time = max(y(arithmetic operations), [(words moved) + a(messages sent))

| _Peta | Grid

30 ‘ ‘ ‘ ‘ ‘ ‘ 30

20t |21.3 6.7 20.2 14 10.3 20| 23.1 61 231 231 231 %
25 25

161 |17.4 17 168 166 136 106 | 16-|185| | 185 185 185 185 185 |
- 120 - {20

1271133 | 131 13 129 128 127 | 12t139] | 139 139 139 139 139

%) 15 n 15

S 8.9 8.9 8.9 8.8 88 | 8| 9.3 93 93 93 93 93 |

0 2 4 6 8 10 0 2 4 6 8 10
c (# deflation vectors) c (# deflation vectors)

Peta: ¥y =2-10"1(s/flop), a =107>(s), B = 2-10"°(words/s)
Grid: y = 1071%(s/flop), a =10"%(s), B = 25-10"°(words/s)
39

Total Speedup with Overlap (Newton)

Total speedup = (speedup per iteration) X (number of iterations(Newton))

Peta

30

20l {209 62 226 178 131 m
25

16/1173] | 192 19 212 174 138
- 120

121132] | 149 148 163 162 161 |
%) - 115

st 9 || 102 102 114 113 113]

0 2 4 6 8 10
c (# deflation vectors)

20

161

12

226

18.4

13.8

] 93

Grid

I30

25
209 209 237 237 237 |

L 120
158 158 176 176 176 |}

L 415
106 106 119 119 119}

L 410

2 4 6 8 10
c (# deflation vectors)

Peta: Overlapping communication and computation decreases cost of increasing c, so
deflation results in performance improvement
Grid: Overlapping communication and computation doesn’t change anything, since

extremeli communication bound

Total Speedup with Overlap (Monomial)

Total speedup = (speedup per iteration) X (number of iterations(Monomial))
Peta Grid

0 2 4 6 8 10 0 2 4 6 8 10
c (# deflation vectors) c (# deflation vectors)

Peta: Overlapping communication and computation decreases cost of increasing c;
deflation results in speedup (but since convergence decreases s, best speedup at s=8.
Grid: Overlapping communication and computation doesn’t change anything, since

extremeli communication bound

The Matrix Powers Kernel

 Compute dependencies up front for computing Av, A%v, ..., A5y
e s steps of the transitive closure of A
* Only need to read A once assuming A is well-partitioned

IoA
o2 0

NN g e 00000009 U
/‘::’: (XS ©
Q RO
Date¥ Sateta) . o
ot S Beis s s esesseses
SRIIIK aQ
NN e
33 40

\®@ @ @ @ © 0 & ¢ o

i
g
\\\
i
7 a=

o\® ® ®© ® o & ¢ o
N ,
1 10 13 20 23 30 33 40

Figures: [MHDYO09]
42

