
Efficient Deflation for
Communication-Avoiding
Krylov Subspace Methods

Erin Carson

Nicholas Knight, James Demmel

Univ. of California, Berkeley

Monday, June 24, NASCA 2013, Calais, France

Overview

We derive the Deflated Communication-Avoiding Conjugate Gradient
algorithm (Deflated CA-CG), demonstrating that deflation can be
implemented while maintaining asymptotic savings in data movement.

1. Background

• What is communication and why should it be avoided?

• Communication-avoiding (𝑠-step) conjugate gradient (CA-CG)

• Deflated Conjugate Gradient method

2. Derivation of Deflated CA-CG

3. Asymptotic communication and computation costs

4. Evaluating tradeoffs in practice

• Performance model and convergence results for model problem

5. Extensions and future work

2

What is Communication?

• Algorithms have two costs: communication and computation

• Communication: moving data between levels of memory hierarchy
(sequential), between processors (parallel)

3

• On modern computers, communication is expensive, computation is cheap

– Flop time << 1/bandwidth << latency

– Communication a barrier to scalability (runtime and energy)

• We must redesign algorithms to avoid communication

CPU
DRAM

CPU
DRAM

CPU
DRAM

CPU
DRAM

CPU
cache

DRAM

sequential parallel

How do Krylov Subspace Methods Work?

• A Krylov subspace is defined as

𝒦𝑚 𝐴, 𝑟0 = span 𝑟0, 𝐴𝑟0, 𝐴2𝑟0, … , 𝐴𝑚−1𝑟0

• A Krylov subspace method (KSM) is a projection process onto the
subspace 𝒦 orthogonal to ℒ

• The choice of ℒ distinguishes the various methods

• Examples: Conjugate Gradient (CG), Generalized Minimum
Residual Methods (GMRES), Biconjugate Gradient (BICG)

4

KSMs for solving linear systems: in iteration 𝑚,
refine solution 𝑥𝑚 to 𝐴𝑥 = 𝑏 by imposing the
condition

𝑥𝑚 = 𝑥0 + 𝛿, 𝛿 ∈ 𝒦𝑚 and 𝑟0 − 𝐴𝛿 ⊥ ℒ𝑚,

where 𝑟0 = 𝑏 − 𝐴𝑥0

ℒ

𝑟𝑚

𝐴𝛿

𝑟0

0

Communication Limits KSM Performance

2. Orthogonalizing with respect to ℒ𝑚

• Requires inner products

• Parallel: global reductions

• Sequential: multiple reads/writes
to slow memory

5

In each iteration, the projection process proceeds by:

1. Adding a dimension to the Krylov subspace 𝒦𝑚

– Requires sparse matrix-vector multiplication (SpMV)

• Parallel: communicate vector entries with neighbors

• Sequential: read 𝐴 (and 𝑁-vectors) from slow memory

Dependencies between communication-bound kernels in each
iteration limit performance!

SpMV

orthogonalize

SpMVs and inner products
require communication in

each iteration!

Classical Conjugate Gradient (CG)

6

Given: initial approximation 𝑥0 for solving 𝐴𝑥 = 𝑏
Let 𝑝0 = 𝑟0 = 𝑏 − 𝐴𝑥0

for 𝑚 = 0, 1, … , until convergence do

𝛼𝑚 =
𝑟𝑚

𝑇 𝑟𝑚

𝑝𝑚
𝑇 𝐴𝑝𝑚

𝑥𝑚+1 = 𝑥𝑚 + 𝛼𝑚𝑝𝑚

𝑟𝑚+1 = 𝑟𝑚 − 𝛼𝑚𝐴𝑝𝑚

𝛽𝑚+1 =
𝑟𝑚+1

𝑇 𝑟𝑚+1

𝑟𝑚
𝑇 𝑟𝑚

𝑝𝑚+1 = 𝑟𝑚+1 + 𝛽𝑚+1𝑝𝑚

end for

CA-CG Derivation Overview

7

In iteration 𝑚 + 𝑠 we have the relation

𝑝𝑚+𝑠, 𝑟𝑚+𝑠 ∈ 𝒦𝑠+1 𝐴, 𝑝𝑚 + 𝒦𝑠 𝐴, 𝑟𝑚

𝑥𝑚+𝑠 − 𝑥𝑚 ∈ 𝒦𝑠 𝐴, 𝑝𝑚 + 𝒦𝑠−1 𝐴, 𝑟𝑚

Let 𝑉 be a basis for 𝒦𝑠+1 𝐴, 𝑝𝑚 + 𝒦𝑠 𝐴, 𝑟𝑚 , and let Gram matrix G = 𝑉𝑇𝑉.

For 1 ≤ 𝑗 ≤ 𝑠,

𝑝𝑚+𝑗 = 𝑉𝑝𝑗
′ 𝑟𝑚+𝑗 = 𝑉𝑟𝑗

′ 𝑥𝑚+𝑗 − 𝑥𝑚 = 𝑉𝑥𝑗
′

where 𝑝𝑗
′ , 𝑟𝑗

′, and 𝑥𝑗
′ are coordinates for 𝑝𝑚+𝑗, 𝑟𝑚+𝑗,and 𝑥𝑚+𝑗 − 𝑥𝑚 in basis 𝑉.

The product 𝐴𝑝𝑚+𝑗−1 can be written:

𝐴𝑝𝑚+𝑗−1 = 𝐴𝑉𝑝𝑗−1
′ = 𝑉𝑇𝑝𝑗−1

′ ,

and inner products can be written:

𝑟𝑚+𝑗
𝑇 𝑟𝑚+𝑗 = 𝑟𝑗

′𝑇𝐺𝑟𝑗
′ 𝑝𝑚+𝑗−1

𝑇 𝐴𝑝𝑚+𝑗−1 = 𝑝𝑗−1
′𝑇 𝐺𝑇𝑝𝑗−1

′

Communication-Avoiding CG

8

• This formulation allows an 𝑶(𝒔) reduction in communication

• Main idea: Split iteration loop into outer loop 𝑘 and inner loop 𝑗

Outer iteration: 1 communication step

• Compute 𝑉𝑘: read 𝐴/communicate vectors only once (for well-partitioned
𝐴) using matrix powers kernel (see, e.g., Hoemmen et al., 2007)

• Compute Gram matrix 𝐺𝑘 = 𝑉𝑘
𝑇𝑉𝑘: one global reduction

Inner iterations: 𝒔 computation steps

• Perform iterations 𝑠𝑘 + 𝑗, for 0 ≤ 𝑗 < 𝑠, with no communication

• Update 2𝑠 + 1 -vectors of coordinates of 𝑝𝑠𝑘+𝑗 , 𝑟𝑠𝑘+𝑗, 𝑥𝑠𝑘+𝑗 − 𝑥𝑠𝑘 in
𝑉𝑘, replacing SpMVs and inner products

• Quantities either local (parallel) or fit in fast memory (sequential)

Many CA-KSMs (or 𝑠-step KSMs) derived in the literature:
(Van Rosendale, 1983), (Walker, 1988), (Leland, 1989), (Chronopoulos and Gear, 1989),
(Chronopoulos and Kim, 1990, 1992), (Chronopoulos, 1991), (Kim and Chronopoulos, 1991),
(Joubert and Carey, 1992), (Bai, Hu, Reichel, 1991), (Erhel, 1995), (De Sturler, 1991), (De Sturler
and Van der Vorst, 1995), (Toledo, 1995), (Chronopoulos and Kinkaid, 2001), (Hoemmen, 2010).

via CA Matrix
Powers Kernel

Global reduction
to compute G

CA-Conjugate Gradient (CA-CG)

9

Local computations
within inner loop require

no communication!

Given: initial approximation 𝑥0 for solving 𝐴𝑥 = 𝑏
Let 𝑝0 = 𝑟0 = 𝑏 − 𝐴𝑥0

for 𝑘 = 0, 1, … , until convergence do
Calculate 𝑃𝑘 , 𝑅𝑘, bases for 𝒦𝑠+1(𝐴, 𝑝𝑠𝑘), 𝒦𝑠(𝐴, 𝑟𝑠𝑘), resp.

Let 𝑉𝑘 = [𝑃𝑘 , 𝑅𝑘] and compute 𝐺𝑘 = 𝑉𝑘
𝑇𝑉𝑘

Let 𝑥0
′ = 02𝑠+1, 𝑟0

′ = 0𝑠+1
𝑇 , 1, 0𝑠−1

𝑇 𝑇 , 𝑝0
′ = 1, 02𝑠

𝑇 𝑇

for 𝑗 = 0, … , 𝑠 − 1 do

𝛼𝑠𝑘+𝑗 =
𝑟𝑗

′𝑇𝐺𝑘𝑟𝑗
′

𝑝𝑗
′𝑇𝐺𝑘𝑇𝑘𝑝𝑗

′

𝑥𝑗+1
′ = 𝑥𝑗

′ + 𝛼𝑠𝑘+𝑗𝑝𝑗
′

𝑟𝑗+1
′ = 𝑟𝑗

′ − 𝛼𝑠𝑘+𝑗𝑇𝑘𝑝𝑗
′

𝛽𝑠𝑘+𝑗+1 =
𝑟𝑗+1

′𝑇 𝐺𝑘𝑟𝑗+1
′

𝑟𝑗
′𝑇𝐺𝑘𝑟𝑗

′

𝑝𝑗+1
′ = 𝑟𝑗+1

′ + 𝛽𝑠𝑘+𝑗+1𝑝𝑗
′

end for
Compute 𝑥𝑠𝑘+𝑠 = 𝑉𝑘𝑥𝑠

′ + 𝑥𝑠𝑘, 𝑟𝑠𝑘+𝑠 = 𝑉𝑘𝑟𝑠
′, 𝑝𝑠𝑘+𝑠 = 𝑉𝑘𝑝𝑠

′

end for

Deflated CG (Saad et al., 2000)

• Deflation: removing eigenvalues that are hard to converge to in order
to increase convergence rate

• Convergence of CG governed by 𝜿 𝑨 = 𝝀𝑵/𝝀𝟏

• Where 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑁 are eigenvalues of 𝐴

• Let 𝑊 be an 𝑁 × 𝑐 matrix to be used in deflation

• Deflated CG is equivalent to CG with system 𝐻𝑇𝐴𝐻 𝑥 = 𝐻𝑇𝑏 where
𝐻 = 𝐼 − 𝑊 𝑊𝑇𝐴𝑊 −1 𝐴𝑊 𝑇 is the matrix of the 𝐴-orthogonal
projection onto 𝑊⊥𝐴

• When columns of 𝑊 are approximate eigenvectors of 𝐴
associated with 𝜆1, 𝜆2, … , 𝜆𝑐, 𝜿 𝑯𝑻𝑨𝑯 ≈ 𝝀𝑵/𝝀𝒄+𝟏

• Deflated CG should increase rate of convergence

10

Can deflation techniques be applied to CA-CG while maintaining
asymptotic reduction in communication cost?

Deflated CG Algorithm (Saad et al., 2000)

11

New term due to
deflation; requires SpMV

and global reduction

SpMVs and dot products
required in each inner

loop, as in CG

Define 𝑊 to be a length 𝑁 × 𝑐 basis. Compute 𝑊𝑇𝐴𝑊.

Compute 𝑥0 = 𝑊 𝑊𝑇𝐴𝑊 −1𝑊𝑇𝑏

𝑟0 = 𝑏 − 𝐴𝑥0, 𝜇0 = 𝑊𝑇𝐴𝑊 −1𝑊𝑇𝐴𝑟0, 𝑝0 = 𝑟0 − 𝑊𝜇0

for 𝑚 = 0, 1, … , until convergence do

𝛼𝑚 = 𝑟𝑚
𝑇𝑟𝑚/𝑝𝑚

𝑇 𝐴𝑝𝑚

𝑥𝑚+1 = 𝑥𝑚 + 𝛼𝑚𝑝𝑚

𝑟𝑚+1 = 𝑟𝑚 − 𝛼𝑚𝐴𝑝𝑚

𝛽𝑚+1 = 𝑟𝑚+1
𝑇 𝑟𝑚+1/𝑟𝑚

𝑇𝑟𝑚
Solve 𝑊𝑇𝐴𝑊𝜇𝑚+1 = 𝑊𝑇𝐴𝑟𝑚+1 for 𝜇𝑚+1

𝑝𝑚+1 = 𝛽𝑚+1𝑝𝑚 + 𝑟𝑚+1 − 𝑊𝜇𝑚+1

end for

Avoiding Communication in Deflation Process

12

In Deflated CG, we have

𝑝𝑠𝑘+𝑗, 𝑟𝑠𝑘+𝑗 ∈ 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 + 𝒦𝑠 𝐴, 𝑟𝑠𝑘 + 𝒦𝑠−1 𝐴, 𝑊

𝑥𝑠𝑘+𝑗 − 𝑥𝑠𝑘 ∈ 𝒦𝑠 𝐴, 𝑝𝑠𝑘 + 𝒦𝑠−1 𝐴, 𝑟𝑠𝑘 + 𝒦𝑠−2 𝐴, 𝑊

To compute 𝜇𝑠𝑘+𝑗+1, we also need

𝐴𝑟𝑠𝑘+𝑗+1 ∈ 𝒦𝑠+2 𝐴, 𝑝𝑠𝑘 + 𝒦𝑠+1 𝐴, 𝑟𝑠𝑘 + 𝒦𝑠 𝐴, 𝑊

Let 𝑉𝑘 be an 𝑁 × (2𝑠 + 3 + 𝑐𝑠) matrix whose columns span this space, i.e.,

𝑉𝑘 ∈ 𝒦𝑠+2 𝐴, 𝑝𝑠𝑘 + 𝒦𝑠+1 𝐴, 𝑟𝑠𝑘 + 𝒦𝑠 𝐴, 𝑊 .

If we compute 𝐺𝑘 = 𝑉𝑘
𝑇𝑉𝑘, and extract 𝑍𝑘 = 𝑊𝑇𝑉𝑘 from 𝐺𝑘, then

𝑊𝑇𝐴𝑟𝑠𝑘+𝑗+1 = 𝑍𝑘𝑇𝑘𝑟𝑘,𝑗+1
′ .

As in CA-CG, we compute inner products and mult. by 𝐴 in the inner loop by
updating length-(2𝑠 + 3 + 𝑐𝑠) coordinate vectors in basis 𝑉𝑘.

Deflated CA-CG

13

Local operations,
requires no

communication

Additional bandwidth
cost once per 𝑠

iterations

One-time (offline) call
to CA matrix powers
kernel with 𝑐 vectors

Define 𝑊 to be a length 𝑁 × 𝑐 basis. Compute 𝑊𝑇𝐴𝑊.
𝑥0 = 𝑊 𝑊𝑇𝐴𝑊 −1𝑊𝑇𝑏, 𝑟0 = 𝑏 − 𝐴𝑥0, 𝜇0 = 𝑊𝑇𝐴𝑊 −1𝑊𝑇𝐴𝑟0, 𝑝0 = 𝑟0 − 𝑊𝜇0

Compute 𝒲, a basis for 𝒦𝑠(𝐴, 𝑊)
for 𝑘 = 0, 1, … , until convergence do

Compute 𝑃𝑘 , 𝑅𝑘, bases for 𝒦𝑠+2(𝐴, 𝑝𝑠𝑘), 𝒦𝑠+1(𝐴, 𝑟𝑠𝑘), resp.

Construct 𝑇𝑘 such that 𝐴 𝑃𝑘 , 𝑅𝑘 , 𝒲 = 𝑃𝑘, 𝑅𝑘 , 𝒲 𝑇𝑘

Let 𝑉𝑘 = 𝑃𝑘, 𝑅𝑘 , 𝒲 , compute 𝐺𝑘 = 𝑉𝑘
𝑇𝑉𝑘 , 𝑍𝑘 = 𝑊𝑇𝑉𝑘

𝑝0
′ = [1, 02𝑠+2+𝑐𝑠

𝑇]𝑇, 𝑟0
′ = [0𝑠+2

𝑇 , 1, 0𝑠+𝑐𝑠
𝑇]𝑇 , 𝑥0

′ = 02𝑠+3+𝑐𝑠

for 𝑗 = 0 to 𝑠 − 1 do

𝛼𝑠𝑘+𝑗 = 𝑟𝑗
′𝑇𝐺𝑘𝑟𝑗

′/𝑝𝑗
′𝑇𝐺𝑘𝑇𝑘𝑝𝑗

′

𝑥𝑗+1
′ = 𝑥𝑗

′ + 𝛼𝑠𝑘+𝑗𝑝𝑗
′

𝑟𝑗+1
′ = 𝑟𝑗

′ − 𝛼𝑠𝑘+𝑗𝑇𝑘𝑝𝑗
′

𝛽𝑠𝑘+𝑗+1 = 𝑟𝑗+1
′𝑇 𝐺𝑘𝑟𝑗+1

′ /𝑟𝑗
′𝑇𝐺𝑘𝑟𝑗

′

Solve 𝑊𝑇𝐴𝑊𝜇𝑠𝑘+𝑗+1 = 𝑍𝑘𝑇𝑘𝑟𝑗
′ for 𝜇𝑠𝑘+𝑗+1

𝑝𝑗+1
′ = 𝛽𝑠𝑘+𝑗+1𝑝𝑗

′ + 𝑟𝑗+1
′ − [02𝑠+3

𝑇 , 𝜇𝑠𝑘+𝑗+1
𝑇 , 0𝑐(𝑠−1)

𝑇]𝑇

end for
𝑥𝑠𝑘+𝑠 = 𝑉𝑘𝑥𝑠

′ + 𝑥𝑠𝑘, 𝑟𝑠𝑘+𝑠 = 𝑉𝑘𝑟𝑠
′, 𝑝𝑠𝑘+𝑠 = 𝑉𝑘𝑝𝑠

′

end for

Computation and Communication Complexity

14

Flops Words moved Messages

CG 𝑂
𝑠𝑁

𝑝
+ 𝑂(𝑠) 𝑂 𝑠 𝑁 𝑝 + 𝑂 𝑠 𝑂(𝑠 log2 𝑝) + 𝑂(𝑠)

CA-CG 𝑂
𝑠2𝑁

𝑝
+ 𝑂 𝑠3 𝑂 𝑠 𝑁 𝑝 + 𝑂 𝑠2 𝑂(log2 𝑝)

Deflated
CG

𝑂
𝑐𝑠𝑁

𝑝
+ 𝑂(𝑐2𝑠) 𝑂 𝑠 𝑁 𝑝 + 𝑂 𝑐𝑠 𝑂(𝑠 log2 𝑝) + 𝑂(𝑠)

Deflated
CA-CG

𝑂
𝑐𝑠2𝑁

𝑝
+ 𝑂 𝑐2𝑠3 𝑂 𝑠 𝑁 𝑝 + 𝑂 𝑐𝑠2 𝑂(log2 𝑝)

Model Problem (2D Laplacian), 𝑠 iterations of parallel algorithm

Note: offline costs of computing and factoring 𝑊𝑇𝐴𝑊 omitted for Deflated CG and Deflated
CA-CG (as well as computing 𝒦𝑠(𝐴, 𝑊) for Deflated CA-CG)

Is This Efficient in Practice?

• In practice, evaluating tradeoffs between 𝒔 and 𝒄 is nontrivial

• Larger 𝑠 means faster speed per iteration, but can potentially
decrease convergence rate in finite precision

• Larger 𝑐 gives better theoretical convergence rate, but can
potentially decrease speed per iteration

• Performance modeling for a specific problem, method, and machine
must take both

1. How time per iteration changes with 𝑠 and 𝑐

2. How the number of iterations required for convergence changes
with 𝑠 and 𝑐, and

into account.

• We will demonstrate the tradeoffs involved for our model problem
(2D Laplacian) on two large distributed memory machine models

15

Peta: 𝛾 = 2 ∙ 10−11(s/flop), 𝛼 = 10−5(s), 𝛽 = 2 ∙ 10−9(s/word)
Grid: 𝛾 = 10−12(s/flop), 𝛼 = 10−1(s), 𝛽 = 25 ∙ 10−9(s/word)

Plot of modeled speedup per iteration relative to CG for 2 machines, for 2D Laplacian
with 𝑁 = 262,144, 𝑝 = 512 where

Time = 𝛾(arithmetic operations) + 𝛽(words moved) + 𝛼(messages sent)

CA Speedup per Iteration

16

𝑐 (# deflation vectors)

𝑠

Grid

𝑐 (# deflation vectors)

𝑠

Peta

Convergence for Model Problem

17

Monomial Basis,
𝑠 = 4

Matrix: 2D Laplacian(512), 𝑁 = 262,144. Right hand side set such that true solution has
entries 𝑥𝑖 = 1/ 𝑛. Deflated CG algorithm (DCG) from (Saad et al., 2000).

𝜌0(𝐴) = 1,
𝜌𝑗 𝐴 = 𝐴 ⋅ 𝜌𝑗−1(𝐴)

Monomial Basis,
𝑠 = 8

Monomial Basis,
𝑠 = 10

Total Speedup, Monomial Basis

18

Total speedup = (speedup per iteration) × (number of iterations(Monomial))

𝑐 (# deflation vectors)

𝑠

Peta

𝑐 (# deflation vectors)

𝑠

Grid

• Since CA-CG method suffers delayed convergence with monomial basis, higher 𝑠 doesn’t
always give better performance (convergence fails for 𝑠 > 10).

• On Peta, since relative latency is not as bad as on Grid, speedups decrease for large 𝑐 values.

Convergence for Model Problem

19

Matrix: 2D Laplacian(512), N = 262,144. Right hand side set such that true solution has
entries 𝑥𝑖 = 1/ 𝑛. Deflated CG algorithm (DCG) from (Saad, et al., 2000).

A better choice of basis leads to stability for higher 𝑠 values:

𝜌0(𝐴) = 1,

𝜌𝑗 𝐴 = 𝐴 − 𝜃𝑗𝐼 𝜌𝑗−1(𝐴)

where 𝜃𝑗 are Leja-ordered

points on ℱ(𝐴)

*For details on better bases
for Krylov subspaces, see, e.g.,
Phillipe and Reichel, 2012.

Newton Basis,
𝑠 = 20

Total Speedup

20

Total speedup = (speedup per iteration) × (number of iterations(Newton))

𝑐 (# deflation vectors)

𝑠

Peta

𝑐 (# deflation vectors)
𝑠

Grid

• Peta: Speedup decreases with increasing 𝑐; CA deflation doesn’t lead to significant
overall performance improvements over CA-CG

• Grid: since O(𝑠) speedup from CA techniques remains constant for increasing 𝑐, CA
deflation increases overall speedup for all 𝑠 values!

Conclusions and Future Work
• Summary

• Proof-of-concept that deflation techniques can be implemented in CA-CG in a
way that still avoids communication

• Asymptotic bounds confirm that Deflated CA-CG maintains the
𝑂(𝑠) reduction in latency over CG and Deflated CG

• Performance modeling demonstrates nontrivial tradeoffs between speed per
iteration and convergence rate for different methods

• Future Work

• Extending other deflation techniques to CA methods

• Solving (slowly-changing) series of linear systems (recycling Krylov
subspaces)

• Reorthogonalization to fix instability in Deflated CA-CG (𝑟 ⊥ 𝑊 fails in
finite precision, set 𝑟 = (𝐼 − 𝑊 𝑊𝑇𝑊 −1𝑊𝑇)𝑟) (Saad et al., 2000)

• Equivalent ‘augmented’ formulations (Gaul et al., 2013)

• Claim: CA deflation can be applied to other deflated Krylov methods

• GMRES, MINRES, BICG(STAB), QMR, Arnoldi, Lanczos, etc., see, e.g.,
(Gutknecht, 2012)

21

Thank you!

Erin Carson: ecc2z@cs.berkeley.edu
Nick Knight: knight@cs.berkeley.edu

Extra Slides

CA-CG Derivation Overview

In iteration 𝑠𝑘 + 𝑗, for 𝑠 > 0, 0 ≤ 𝑗 ≤ 𝑠, we exploit the relation

𝑝𝑠𝑘+𝑗 , 𝑟𝑠𝑘+𝑗 ∈ 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 + 𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝑥𝑠𝑘+𝑗 − 𝑥𝑠𝑘 ∈ 𝒦𝑠 𝐴, 𝑝𝑠𝑘 + 𝒦𝑠−1 𝐴, 𝑟𝑠𝑘

Let 𝑉𝑘 be a matrix whose columns span 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 + 𝒦𝑠 𝐴, 𝑟𝑠𝑘 .

Then for iterations 𝑠𝑘 + 1 through 𝑠𝑘 + 𝑠, we can implicitly update
the length n vectors 𝑝𝑠𝑘+𝑗 , 𝑟𝑠𝑘+𝑗, and 𝑥𝑠𝑘+𝑗 − 𝑥𝑠𝑘 by updating their
coordinates (length 2𝑠 + 1 vectors) in basis 𝑉𝑘.

𝑝𝑠𝑘+𝑗 = 𝑉𝑘𝑝𝑘,𝑗
′ 𝑟𝑠𝑘+𝑗 = 𝑉𝑘𝑟𝑘,𝑗

′ 𝑥𝑠𝑘+𝑗 − 𝑥𝑠𝑘 = 𝑉𝑘𝑥𝑘,𝑗
′

24

CA-CG Derivation Overview

25

In iteration 𝑠𝑘 + 𝑗, for 𝑠 > 0, 0 ≤ 𝑗 ≤ 𝑠, we exploit the relation

𝑝𝑠𝑘+𝑗, 𝑟𝑠𝑘+𝑗 ∈ 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 + 𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝑥𝑠𝑘+𝑗 − 𝑥𝑠𝑘 ∈ 𝒦𝑠 𝐴, 𝑝𝑠𝑘 + 𝒦𝑠−1 𝐴, 𝑟𝑠𝑘

If we compute basis 𝑉𝑘 for 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 + 𝒦𝑠 𝐴, 𝑟𝑠𝑘 and compute Gram
matrix 𝐺𝑘 = 𝑉𝑘

𝑇𝑉𝑘, then for iterations 0 ≤ 𝑗 < 𝑠 we can implicitly update the
length n vectors 𝑝𝑠𝑘+𝑗, 𝑟𝑠𝑘+𝑗, and 𝑥𝑠𝑘+𝑗 − 𝑥𝑠𝑘 by updating their coordinates
(length 2𝑠 + 1 vectors) in basis 𝑉𝑘.

𝑝𝑠𝑘+𝑗 = 𝑉𝑘𝑝𝑘,𝑗
′ 𝑟𝑠𝑘+𝑗 = 𝑉𝑘𝑟𝑘,𝑗

′ 𝑥𝑠𝑘+𝑗 − 𝑥𝑠𝑘 = 𝑉𝑘𝑥𝑘,𝑗
′

The product 𝐴𝑝𝑠𝑘+𝑗 can be represented implicitly in basis 𝑉𝑘 by 𝐵𝑘𝑝𝑘,𝑗
′ , since

𝐴𝑝𝑠𝑘+𝑗 = 𝐴𝑉𝑘𝑝𝑘,𝑗
′ = 𝑉𝑘𝐵𝑘𝑝𝑘,𝑗

′ ,

and we can write dot products as

𝑟𝑠𝑘+𝑗
𝑇 𝑟𝑠𝑘+𝑗 = 𝑟𝑘,𝑗

′𝑇 𝐺𝑘𝑟𝑘,𝑗
′ 𝑝𝑠𝑘+𝑗

𝑇 𝐴𝑝𝑠𝑘+𝑗 = 𝑝𝑘,𝑗
′𝑇 𝐺𝑘𝐵𝑘𝑝𝑘,𝑗

′

𝐵𝑘 and 𝐺𝑘 are small 𝑂 𝑠 × 𝑂(𝑠) matrices
that fits in fast/local memory; Multiplication

by 𝐵𝑘 and 𝐺𝑘 require no communication!

CA-CG Derivation Overview

The product 𝐴𝑝𝑠𝑘+𝑗 can be represented implicitly in basis 𝑉𝑘 by
𝐵𝑘𝑝𝑘,𝑗

′ , since

𝐴𝑝𝑠𝑘+𝑗 = 𝐴𝑉𝑘𝑝𝑘,𝑗
′ = 𝑉𝑘𝐵𝑘𝑝𝑘,𝑗

′

If we compute 𝐺𝑘 = 𝑉𝑘
𝑇𝑉𝑘, we can write dot products as

𝑟𝑠𝑘+𝑗
𝑇 𝑟𝑠𝑘+𝑗 = 𝑟𝑘,𝑗

′𝑇 𝐺𝑘𝑟𝑘,𝑗
′ 𝑝𝑠𝑘+𝑗

𝑇 𝐴𝑝𝑠𝑘+𝑗 = 𝑝𝑘,𝑗
′𝑇 𝐺𝑘𝐵𝑘𝑝𝑘,𝑗

′

26

Related Work: 𝑠-step methods

Authors KSM Basis Precond? Mtx Pwrs? TSQR?

Van Rosendale,
1983

CG Monomial Polynomial No No

Leland, 1989 CG Monomial Polynomial No No

Walker, 1988 GMRES Monomial None No No

Chronopoulos and
Gear, 1989

CG Monomial None No No

Chronopoulos and
Kim, 1990

Orthomin,
GMRES

Monomial None No No

Chronopoulos,
1991

MINRES Monomial None No No

Kim and
Chronopoulos,

1991

Symm.
Lanczos,
Arnoldi

Monomial None No No

de Sturler, 1991 GMRES Chebyshev None No No

Authors KSM Basis Precond? Mtx Pwrs? TSQR?

Joubert and
Carey, 1992

GMRES Chebyshev No Yes* No

Chronopoulos and
Kim, 1992

Nonsymm.
Lanczos

Monomial No No No

Bai, Hu, and
Reichel, 1991

GMRES Newton No No No

Erhel, 1995 GMRES Newton No No No

de Sturler and van
der Vorst, 1995

GMRES Chebyshev General No No

Toledo, 1995 CG Monomial Polynomial Yes* No

Chronopoulos and
Swanson, 1996

CGR,
Orthomin

Monomial No No No

Chronopoulos and
Kinkaid, 2001

Orthodir Monomial No No No

Related Work: 𝑠-step methods

Convergence in Finite Precision

• CA-KSMs are mathematically equivalent to classical KSMs

• But have different behavior in finite precision!
• Roundoff error causes delay of convergence
• Bounds on magnitude of roundoff error increase with 𝑠

• In solving practical problems, roundoff error can limit performance
• If # iterations increases more than time per iteration decreases

due to CA techniques, no speedup expected!

• To perform a practical performance comparison amongst CG,
Deflated CG, CA-CG and Deflated CA-CG, we must combine speedup
per iteration with the total number of iterations for each method

29

Detailed Complexity Analysis: CG

𝐹𝑙𝑜𝑝𝑠𝐶𝐺 = 2𝑠 −
2𝑠

𝑝
+

19𝑛𝑠

𝑝

𝑊𝑜𝑟𝑑𝑠𝐶𝐺 = 2𝑠 −
2𝑠

𝑝
+ 4𝑠 𝑛 𝑝

𝑀𝑒𝑠𝑠𝐶𝐺 = 4𝑠 + 2𝑠𝑙𝑜𝑔2𝑝

30

𝐹𝑙𝑜𝑝𝑠𝐶𝐴𝐶𝐺

= 49𝑠 − 2𝑠2/𝑝 + 36𝑠2 𝑛 𝑝 + 25𝑛/𝑝 − 3𝑠/𝑝 + 72𝑠 𝑛 𝑝

− 1/𝑝 + 74𝑠2 + 36𝑠3 + 36 𝑛 𝑝 + 36𝑛𝑠/𝑝 + 4𝑛𝑠2/𝑝 + 12

𝑊𝑜𝑟𝑑𝑠𝐶𝐴𝐶𝐺

= 11𝑠 − 2𝑠2/𝑝 − 3𝑠/𝑝 + 8𝑠 𝑛 𝑝 − 1/𝑝 + 6𝑠2 + 8 𝑛 𝑝
+ 5

𝑀𝑒𝑠𝑠𝐶𝐴𝐶𝐺 = log2 𝑝 + 8

31

Detailed Complexity Analysis: CA-CG

𝐹𝑙𝑜𝑝𝑠𝐷𝐶𝐺 = 2𝑠 + 2𝑐2𝑠 − 2𝑠/𝑝 − 𝑐𝑠/𝑝 + 29𝑛𝑠/𝑝 + 4𝑐𝑛𝑠)/𝑝

𝑊𝑜𝑟𝑑𝑠𝐷𝐶𝐺 = 2𝑠 + 𝑐𝑠 − 2𝑠/𝑝 + 8𝑠 𝑛 𝑝 − 𝑐𝑠/𝑝

𝑀𝑒𝑠𝑠𝐷𝐶𝐺 = 8𝑠 + 3𝑠𝑙𝑜𝑔2𝑝

32

Detailed Complexity Analysis: DCG

𝐹𝑙𝑜𝑝𝑠𝐷𝐶𝐴𝐶𝐺 = 240𝑠 − 2𝑠2/𝑝 + 36𝑠2 𝑛 𝑝 + 5𝑐𝑠 + 60𝑐𝑠2 +

2𝑐2𝑠 + 32𝑐𝑠3 + 65𝑛/𝑝 − 7𝑠/𝑝 + 144𝑠 𝑛 𝑝 − 6/𝑝 +

184𝑠2 + 44𝑠3 + 2𝑐2𝑠2 + 8𝑐2𝑠3 + 144 𝑛 𝑝 − 3𝑐𝑠/𝑝 +
44𝑛𝑠/𝑝 − 2𝑐𝑠2/𝑝 + 4𝑛𝑠2/𝑝 + 12𝑐𝑛𝑠/𝑝 + 4𝑐𝑛𝑠2/𝑝 + 96

𝑊𝑜𝑟𝑑𝑠𝐷𝐶𝐴𝐶𝐺

= 23𝑠 − 2𝑠2/𝑝 + 3𝑐𝑠 + 2𝑐𝑠2 − 7𝑠/𝑝 + 8𝑠 𝑛 𝑝 − 6/𝑝

+ 6𝑠2 + 16 𝑛 𝑝 − 3𝑐𝑠/𝑝 − 2𝑐𝑠2/𝑝 + 22

𝑀𝑒𝑠𝑠𝐷𝐶𝐴𝐶𝐺 = log2 𝑝 + 8

33

Detailed Complexity Analysis: DCACG

Better Polynomial Bases

34

In general, columns 𝑣𝑖+1 of 𝑉 computed by the 3-term recurrence

𝑣𝑖+1 = 𝐴 − 𝛼𝑖𝐼 𝑣𝑖 − 𝛽𝑖𝑣𝑖−1 𝛾𝑖

Scaled Monomial: For scalars 𝜎𝑖 𝑖=1
𝑠 ,

 𝛼𝑖 = 0, 𝛽𝑖 = 0, 𝛾𝑖 = 𝜎𝑖

Newton: For Leja-ordered Ritz values 𝜃𝑖 𝑖=1
𝑠 and scalars 𝜎𝑖 𝑖=1

𝑠

 𝛼𝑖 = 𝜃𝑖, 𝛽𝑖 = 0, 𝛾𝑖 = 𝜎𝑖

Chebyshev: Given bounding ellipse for spectrum with foci at

𝑑 ± 𝑐, the scaled and shifted polynomials are

 𝜏𝑖 𝑧 = 𝜏𝑖((𝑑 − 𝑧)/𝑐)/𝜎𝑖,

 𝛼𝑖 = 𝑑, 𝛽𝑖 = −
c𝜎𝑖

2𝜎𝑖+1
, 𝛾𝑖 = −

𝑐𝜎𝑖+1

2𝜎𝑖

Leja Ordering

Let 𝕊 be a compact set in ℂ. (Note that here 𝕊 is set of approx. Ritz
values). Then a Leja ordering can be computed by

𝜃1 = argmax𝑧∈𝕊 𝑧

𝜃𝑖+1 = argmax𝑧∈𝕊

𝑘=0

𝑖

𝑧 − 𝑧𝑘

Leja (1957)

Many references for using different polynomials for Krylov subspace
calculation:

See, e.g., Philippe and Reichel (2012), Bai et al. (1994), Joubert and
Carey (1992), de Sturler and van der Vorst (1994, 1995), Erhel (1995).

35

Residual Replacement Strategy

• Van der Vorst and Ye (1999) : Residual replacement used in combination
with group-update to improve the maximum attainable accuracy

• Given computable upper bound for deviation of residuals,
replacement steps chosen to satisfy two constraints:

1. Deviation must not grow so large that attainable accuracy is
limited

2. Replacement must not perturb Lanczos recurrence relation for
computed residuals such that convergence deteriorates

• When the computed residual converges to level 𝑂(𝜀) 𝐴 𝑥 strategy
reduces true residual, to level 𝑂(𝜀) 𝐴 𝑥

• We devise an analogous strategy for CA-CG and CA-BICG

• Our strategy does not asymptotically increase communication or
computation!

36

37

• Matrix: consph (FEM), SPD, 𝑁 =
8.3𝐸4, 𝑁𝑍 = 6𝐸6, 𝜅 𝐴 ≈ 9.7𝐸3.

• In all tests #replacements ≤ 5.
• Orders of magnitude improvement

in accuracy for little additional cost!

• But doesn’t fix slow convergence
due to ill-conditioned basis.

Total Speedup, Monomial Basis

38

Total speedup = (speedup per iteration) × (number of iterations(Monomial))

𝑐 (# deflation vectors)

𝑠

Peta

𝑐 (# deflation vectors)
𝑠

Grid

Since the CA-CG method without deflation suffers delayed convergence, deflation results in
performance improvements on both machines (note that delayed convergence also means that
higher s doesn’t always give better performance for monomial). On Peta, since relative latency
is not as bad as on Grid, speedups start to decrease for large c values.

Plot of modeled speedup per iteration relative to CG for 2 machines, for 2D Laplacian
with 𝑛 = 262,144, 𝑝 = 512 where

Time = max(𝛾(arithmetic operations), 𝛽(words moved) + 𝛼(messages sent))

Peta: 𝛾 = 2 ∙ 10−11(s/flop), 𝛼 = 10−5(s), 𝛽 = 2 ∙ 10−9(words/s)
Grid: 𝛾 = 10−12(s/flop), 𝛼 = 10−1(s), 𝛽 = 25 ∙ 10−9(words/s)

Overlapping Communication and Computation

39

𝑐 (# deflation vectors)

𝑠

Grid

𝑐 (# deflation vectors)

𝑠

Peta

Total Speedup with Overlap (Newton)

40

Total speedup = (speedup per iteration) × (number of iterations(Newton))

𝑐 (# deflation vectors)

𝑠

Peta

𝑐 (# deflation vectors)
𝑠

Grid

Peta: Overlapping communication and computation decreases cost of increasing c, so
deflation results in performance improvement
Grid: Overlapping communication and computation doesn’t change anything, since
extremely communication bound

Total Speedup with Overlap (Monomial)

41

Total speedup = (speedup per iteration) × (number of iterations(Monomial))

𝑐 (# deflation vectors)

𝑠

Peta

𝑐 (# deflation vectors)
𝑠

Grid

Peta: Overlapping communication and computation decreases cost of increasing 𝑐;
deflation results in speedup (but since convergence decreases s, best speedup at 𝑠=8.
Grid: Overlapping communication and computation doesn’t change anything, since
extremely communication bound

The Matrix Powers Kernel

• Compute dependencies up front for computing 𝐴𝑣, 𝐴2𝑣, … , 𝐴𝑠𝑣

• 𝑠 steps of the transitive closure of 𝐴

• Only need to read 𝐴 once assuming 𝐴 is well-partitioned

42

Figures: [MHDY09]

se
q

u
en

ti
al

p
ar

al
le

l

