Mixed Precision s-step Lanczos and Conjugate

Gradient Algorithms

Erin Carson
Charles University

Platform for Advanced Scientific Computing (PASC) Conference 2021

July 7, 2021
EXASCALE

—
—\{:\\JI—’ SorrTRe

nPHY
PRSRnt S/C‘

FACULTY
s OF MATHEMATICS
: h—

AND PHYSICS

Charles University

We acknowledge funding from Charles Univ. PRIMUS project No. PRIMUS/19/SCl/11, Charles Univ. Research Program No. UNCE/SCI/023, and the Exascale
Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Admin.

Y

WATH 2



Krylov Subspace Methods

Krylov Subspace Method: projection process onto the Krylov subspace
:}CL(A, ro) = Span{TO,AT‘O,AZT‘O, ,Ai_lro}

where A is an n X n matrix and 1y is a length-n vector

In each iteration:
* Add a dimension to the Krylov subspace
— Forms nested sequence of Krylov subspaces

Ki(A,1y) c Ky(A 1) € - €Ki (A 1p)

* Orthogonalize (with respect to some ;)
* Linear systems: Select approximate solution
X; € xg + K;(A, 1)
using r; = b — Ax; L C;




Conjugate Gradient Method

A is symmetric positive definite, C; = K;(4,1y)

i L K;(A,r = X —Xill4 = min X —Z
l l( ) O) ” l”A Z€x0+76i(A,r0)” ”A

= Tnt1 =0
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Connection with Lanczos:

o With vy = 1y/l|roll, i iterations of Lanczos produces n X i matrix V; =
[vq, ..., v;], and i X i tridiagonal matrix T; such that

AV; = ViT; + 81410541 6], T; = Vi AV;

* CG approximation x; is obtained by solving the reduced model

T;y; = llrolleq, x; = xo + Viy;



Classical CG

* HSCG: Hestenes and Stiefel (1952)

* Uses three 2-term recurrences for updating x;, 13, v;

TO — b_Axo, po =T'O
fori = 1:nmax

Xi = Xj—1 T Aj_1Pi-1

1, =Ty — a1 Ap;—4

T
T'i ri

Bi =

Ti—1Ti-1

pi =1 + Bibi-1
end

Iteration Loop

Inner Products

Inner Products
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Communication in Lanczos/CG

— Sparse matrix-vector multiplication (SpMV)
* Must communicate vector entries w/ neighboring
processors (P2P communication)

— Inner products
* global synchronization (MPI _Allreduce)

* all processors must exchange data and wait for all
communication to finish before proceeding

Dependencies between communication-bound kernels
in each iteration limit performance!



TOP500 HPCG Benchmark, June 28, 2021

System Rpeak HPCG HPCG
(Tflops/s) | (Tflops/s) | %peak (Tflops/s)

Supercomputer Fugaku,
RIKEN, Japan

2 Summit, ORNL, USA

Perlmutter, LBNL, USA
4 Sierra, LLNL, USA

5 Selene, NVIDIA, USA

6 JUWELS Booster
Module, FZJ, Germany
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s-step Krylov subspace methods

* |dea: Compute blocks of s iterations at once
» Compute updates in a different basis
« Communicate every s iterations instead of every iteration

* Reduces number of synchronizations per iteration by a factor of s

Compute “basis’ matrix Y such that span(Y) = K1 (A4,p;) + K (A4, 1;) according
to the recurrence AY =Y B

Apiyj = AlYp; = Y(Bp;)
n
0(s)
1 T
(o Tivj) = 'Yy = r/lgr
% — = x [ x [

13



s-step Krylov subspace methods

* |dea: Compute blocks of s iterations at once
» Compute updates in a different basis
« Communicate every s iterations instead of every iteration

* Reduces number of synchronizations per iteration by a factor of s

Compute “basis’ matrix Y such that span(Y) = K1 (A4,p;) + K (A4, 1;) according
to the recurrence AY =Y B

Apiyj = AlYp; Y(Bp;)

n
0(s)

T ! !
(Ti4jp Tiej) = 1 ; rj@




S_Step CG e.g.,[Van Rosendale, 1983],[Chronopoulos & Gear, 1989],[Toledo,1995]

o = b —Axo,po =T
for k = 0:nmax/s

Compute Y and By, such that AYy = YpBy and
span(Yx) = K1 (A, psi) + K (4, 751)

_ T
Gk = Y Y
I O I A
Xo = U, Ty = €542, P0 = €1
forj=1:s
T
_ =Gkt
Ask+j-1 =

p}zlngkp}_l

ro__ /
Xj = Xj_1 t Asg4j-1Pj—1

! !

_ !
T =Tj—q — Asp+j—1BrkPj-1
T !
Bsk+j = r7{ Ly
! !
e Tji=19kTj-1

ro__ !
P;j =71 + Bsk+jPj-1

end

[Xs(k+1)—Xsko Ts(k+1) Psk+1)] = Yk [%s, 75, Ds]

end

Outer Loop

Compute basis
O(s) SPMVs

O(s?) Inner
Products (one
synchronization)

Inner Loop

Local Vector
Updates (no
comm.)

End Inner Loop

Inner Outer Loop

times
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Numerical Example

s-step CG with monomial basis (Y = [p;, Ap;, ..., A°p;, 13, AT,

[ = Zilla/l|lz = zo]| 4

100 o —HSCG 7]

; s-step CG, s = 2| 1

s-step CG, s = 3| -

s-step CG, s =4 ;

10-5 “\\‘ -

-10 ~— |
10 \_

1 0-15 ] 1 1 1
0 1000 2000 3000 4000 5000

Iteration 7

A: bcsstk03 from SuiteSparse,
b: equal components in the eigenbasis of 4,||b]| = 1
N = 112,x(A) ~ 6.8e6

...As_lT'i])



Lanczos Convergence Analysis [Paige, 1976]

Finite precision Lanczos process: (A isn X n with at most N nonzeros per row)

vam + ﬂm+1ﬁm+1er7;z + 5Vm

N
§<
Il

—&1 182

U = [01, 0 O], 8V = [601,.,60,],  Tu=|2 © 7

fori € {1,...,m},
16D;ll, < €10
Bir1|0 Vi1 | < 2600
|ﬁ;'r+1ﬁi+1 —1 | < &/2
|,3Ai2+1 + &iz + ,312 - ||Aﬁz||%| < 4i(3gy + £;)0?

where o = ||4]|,, and
0o = [||Alll,

Classical Lanczos (Paige, 1976):
gy = 0(en)
g1 = 0(eN0)

10



Lanczos Convergence Analysis [Paige, 1976]

Finite precision Lanczos process: (A isn X n with at most N nonzeros per row)

—&1 IBZ

b2

fori € {1,..,m},
1671l < &,0

2. oD where ¢ = ||A]|,, and
,Bi+1|17i Vi1 | < 2&90 1All2,

AT  ~ Oo = |||A
X |vf+1vi+1 —1 | < &/2 Al
B2 + &7 + B — 1149,113] < 4i(3e, + £1)0?
Classical Lanczos (Paige, 1976): s-step Lanczos (C., 2015):
&y = 0(en) go = 0(enl?)
g1 = 0(eN0) g, = 0(eNolIN)



Paige's Results for Classical Lanczos (1980)

Using bounds on local rounding errors in Lanczos, showed that

1.

The computed eigenvalues always lie between the extreme eigenvalues of
A to within a small multiple of machine precision.

At least one small interval containing an eigenvalue of A is found by the
nth iteration.

The algorithm behaves numerically like Lanczos with full
reorthogonalization until a very close eigenvalue approximation is found.

The loss of orthogonality among basis vectors follows a rigorous pattern
and implies that some computed eigenvalues have converged.

11



Results for s-step Lanczos

* Do Paige’s results, e.g.,
loss of orthogonality — eigenvalue convergence
hold for s-step Lanczos?
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Results for s-step Lanczos

* Do Paige’s results, e.g.,
loss of orthogonality — eigenvalue convergence
hold for s-step Lanczos?

* The answer is YES! ...but
* Only if:
+ £ = 2e(n+11s+15) % < —

. i.e.’ _

12



Results for s-step Lanczos

* Do Paige’s results, e.g.,
loss of orthogonality — eigenvalue convergence
hold for s-step Lanczos?

e The answer is YES! ...but

 With the caveat:

* Paige's results say: orthogonality is not lost until an eigenvalue
has stabilized to within O(¢) of an eigenvalue of A

* For s-step Lanczos: orthogonality is not lost until an eigenvalue
has stabilized to within 0(el'?) within an eigenvalue of A
* So the result is weaker: an eigenvalue is considered to be

“stabilized” within a larger radius for the s-step case, and thus
orthogonality is lost sooner

* This explains the worse convergence behavior! .



The case for mixed precision

* The term I' enters the bounds due to computation in the computed s-step
basis

* SpMVs cause I' terms in the bounds

* Inner products (computed using the Gram matrix) cause I'* terms in
the bounds

13



The case for mixed precision

* The term I' enters the bounds due to computation in the computed s-step
basis

* SpMVs cause I' terms in the bounds

* Inner products (computed using the Gram matrix) cause I'* terms in
the bounds

* ldea: use higher precision in computing and applying the Gram matrix

» Computation only happens once every s iterations (doubles the size of
the Allreduce)

» Applying to vector happens every iteration, but the matrix is very small
(s X s, fits in cache)

13



Mixed Precision Lanczos Analysis

Finite precision Lanczos process: (A isn X n with at most N nonzeros per row)

A~

AV, = Vme + ﬂm+1ﬁm+1er7;z + 5I7m A
@, f

b2

fori € {1,...,m},
16D;ll, < €10
Bir1|0 Vi1 | < 2600
|9;'T+19i+1 —1 | < &/2
|,[§i2+1 + &iz + 'glz - ||A91||%| < 4i(3gy + &)0”

where o = ||4]|,, and
0o = [||Alll,

Classical Lanczos s-step Lanczos
(Paige, 1976): (C., 2015):

_ 2
g0 = 0(en) go = 0(enl'?)
g, = 0(eN6) g, = 0(eNorT)



Mixed Precision Lanczos Analysis

Finite precision Lanczos process: (A isn X n with at most N nonzeros per row)

—&1 IBZ

b2

fori € {1,...,m},
16D;ll, < €10
Bir1|0 Vi1 | < 2600
|9;'T+19i+1 —1 | < &/2
|,[§i2+1 + &iz + Blz - ||A91||%| < 4i(3gy + &)0”

where o = ||4]|,, and
0o = [||Alll,

/Mixed precision s- \

Classical Lanczos s-step Lanczos
) _ step Lanczos
(Paige, 1976): (C,2012) (C. & Gergelits, 2021):
g0 = 0(en) go = 0(enl'?) 3
&1 = 0(eN6) & = 0(eNOT) g0 = 0(el)

ey,



Mixed precision s-step Lanczos analysis

Classical Lanczos: orthogonality is not lost until an eigenvalue has stabilized to within
O(¢€) of an eigenvalue of A

Uniform precision s-step Lanczos: orthogonality is not lost until an eigenvalue has
stabilized to within O(&l'?) of an eigenvalue of A

Results hold if T < 0 (\/i_)

ne

Mixed precision s-step Lanczos: orthogonality is not lost until an eigenvalue has
stabilized to within O(&l’) of an eigenvalue of A

Results hold if T < 0( )

1
ne

= For mixed precision case, expect orthogonality (and thus convergence behavior) to
be somewhere between classical and (fixed precision) s-step Lanczos

= Expect mixed precision algorithm can handle more ill-conditioned bases versus
uniform precision algorithm

15



Diagonal test problem,

Starting vector v, has entries 1/4/n

1020

1010 -
100 -
10_10 -

10-20
0

Normality, s = 5, monomial basis

1020

measured, uniform
- - - - bound, uniform |
' measured, mixed 10
C - - - - bound, mixed | 10

T

n=100,4, = 1073, 1, = 102
L=+ (=) A — 20.65"7, i=2,..

Loss of orthogonality, s = 5, monomial basis

- e e e e = e ===

20 40 60 80 100
Iteration

20 40 60 80 100

lteration
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nos4 from SuiteSparse, starting vector v; has entries 1/4/n

1010

10—10 L

10—20

Normality, s = 5, monomial basis

measured, uniform
- - - - bound, uniform
measured, mixed

---- bound, mixed
L'y

_______________

___________

_——-

_______

- m mm =

___________________

20 40 60
Iteration

80

100

1010

Loss of orthogonality, s = 5, monomial basis

___________

_______________

*************

0 20

40 60
Iteration

80

100
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nos4 from SuiteSparse, starting vector v; has entries 1/4/n

Normality, s = 10, monomial basis

1010

measured, uniform
- - - - bound, uniform
measured, mixed

---- bound, mixed
L'y

_________

60 80
Iteration

100

1010

Loss of orthogonality, s = 10, monomial basis

-

e e e e o e e o o o e e

40 60 80 100
Iteration
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nos4 from SuiteSparse, starting vector v; has entries 1/4/n

1010

100 -

Normality, s = 10, Chebyshev basis

_/—/_,_/ - - - - bound, uniform

measured, uniform

measured, mixed
- --- bound, mixed

_________

40 60
Iteration

20

80 100

1010

100 -

0 20

Loss of orthogonality, s = 10, Chebyshev basis

_________

40 60 80

lteration

100



Extension to s-step CG

» s-step CG based on underlying s-step Lanczos procedure

* Expectation is that better Ritz value accuracy and orthogonality in s-step
Lanczos will lead to better convergence behavior of mixed precision s-step

CG

* But: extended precision computations in Gram matrix computations will not
improve attainable accuracy (this is primarily determined by precision in
matrix-vector products)

* Greenbaum (1989): finite precision classical CG behaves like exact CG
applied to a larger matrix whose eigenvalues are in tight clusters around the
eigenvalues of A.

» Can we extend this analysis?

e Prediction: Cluster radius will contain a T'? term for the uniform
precision case, I' term for the mixed precision case

20



Diagonal test problem,

10°

10°

10710 L

10‘15 L

10°

n = 100,14, = 1073, 1, = 102

A=A+ (;;_11) (A, — 1)0.65", i=2,..n—1

RHS: equal components in the eigenbasis of A, unit 2-norm

Relative Error, s = 2, monomial basis

——CG double
—s-step CG, double
—s-step CG, double/quad|

100 200 300 400 500 600
lteration

Relative Error, s = 8, monomial basis

100 200 300 400 500 600
Iteration

10°

10°

107‘]0 L

10'15 -

10°

10°

107

10-10 L

10-15 L

Relative Error, s = 6, monomial basis

200 400 600 800
lteration

Relative Error, s = 10, monomial basis

100 200 300 400 500 600
Iteration
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nos4 from SuiteSparse
RHS: equal components in the eigenbasis of A, unit 2-norm

10°

10-10 L

107°

10—10 L

10-15

Relative Error, s = 4, monomial basis

— CG double
—s-step CG, double
—s-step CG, double/quad

50 100 150 200 250 300

lteration

Relative Error, s = 4, Chebyshev basis

50 100 150 200 250
lteration

Relative Error, s = 10, monomial basis

10°

10'10 -

10-15

100 200 300 400 500
lteration

10—10 L

Relative Error, s = 10, Chebyshev basis

100 200 300 400 500
lteration
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lundb from SuiteSparse
RHS: equal components in the eigenbasis of A, unit 2-norm

10°

10-10 L

10'10 L

10-15

Relative Error, s = 6, monomial basis

—CG double
—s-step CG, double
—s-step CG, double/quad

200 400 600 800 1000
lteration

Relative Error, s = 6, Chebyshev basis

200 400 600 800 1000
lteration

Relative Error, s = 10, monomial basis

10°

10-10 L

200 400 600 800
lteration

Relative Error, s = 10, Chebyshev basis

1000

1071°
0

200 400 600 800
lteration

1000
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What is the overhead?

« 3D Laplace matrix with n = 1003
* 500 iterations of s-step CG with s = 50on a NVIDIA V100 GPU

* Single/double: Uses KokkosBlas::DotBasedGemm for Gram matrix, computes C = aATB + BC
* Do not compute multiplication with a (= 1)
* Only compute upper triangular part of C since symmetric
* Input cast to double before being passed in

0al B orthogonalization
' total
035
03r
L past
)
E 021 0.177 0.178
015
01r
m -.
0
Al Al
.\0@3 oﬁﬁ\e
€ o
o 0
o &
(filx‘i-e'

25



What is the overhead?

« 3D Laplace matrix with n = 1003

* 500 iterations of s-step CG with s = 50on a NVIDIA V100 GPU

* Single/double: Uses KokkosBlas::DotBasedGemm for Gram matrix, computes C = aATB + BC
* Do not compute multiplication with a (= 1)

* Only compute upper triangular part of C since symmetric

* Input cast to double before being passed in

* Double/double-double: Software
implementation of double-double
(each multiply-add operation requires
16 double-precision operations)

* Since Kokkos does not support
double-double arithmetic, the
implementation uses a custom
reducer for mixed-precision inner
products on a GPU

* For small double-double
computations with the Gram
matrix, we use multiprecision

BLAS on the host CPU

B orthogonalization
total

=
I
T

0.35

=
%]
T

0.05




Strong Scaling

* Same problem

* Strong scaling up to 18 GPUs on Summit (6 GPUs per node)
* Using double/double-double

Strong Scaling

0.4 ) Overhead of Mixed Precision
—*—CG —S—s=1
®\ —CG—uniform s-step, s = 1 —H—-s=2
| - €3 - mixed s-step, s = 1 08r s=5|1
0.3 n }D —H—uniform s-step, s = 2| ]
L -3 - mixed s-step, s =2 -
- uniform s-step, s =5 g 06
~ mixed s-step, s =5 =
© 0.2 o)
£ S
— (@] 04 L
0.1
02
o—— : : ‘ 0——— : : :
123 6 12 18 123 6 12 18
# GPUs # GPUs

* Overhead of using software-implemented precision decreases as we scale up
the hardware

* Likely because latency becomes more dominant

26



Conclusions

Big picture idea: Selective use of higher precision can improve numerical
behavior (and time to solution) with minimal overhead

For s-step Lanczos and CG:

Overhead is negligible when restricting to precisions available in hardware
_|_

Convergence rate improved

Likely to see improved time-to-solution in many scenarios

27



Ongoing Work

» Performance results are preliminary — a thorough performance study is
needed!

* Extending the analysis of Greenbaum for s-step CG

» Benefits to extended precision for other s-step Krylov subspace methods?

* Benefit to mixed precision in pipelined variants?

* Combine mixed precision with residual replacement to also improve
accuracy?

28



Thank you!

carson@karlin.mff.cuni.cz

www.karlin.mff.cuni.cz/~carson/

arXiv preprint: https://arxiv.org/abs/2103.09210
MATLAB codes: https://github.com/eccarson/mixedsstep
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