
Erin C. Carson
Katedra numerické matematiky, Matematicko-fyzikální fakulta, Univerzita Karlova

SNA '19

January 21-25, 2019

High-Performance Variants of
Krylov Subspace Methods: I/II

This research was partially supported by OP RDE project No. CZ.02.2.69/0.0/0.0/16_027/0008495

Lecture Outline

• Parallel computers and performance modeling

• Architecture trends

• Krylov subspace methods

• Properties

• Performance bottlenecks at scale

• High-performance variants of Krylov subspace methods

• Early approaches

• Pipelined methods

• s-step methods

• Practical implementation issues and challenges

2

Computational and Data Science at Scale
• Why are we interested in solving larger and larger problems?

• Enables new frontiers in computational science and engineering

⇒ Finer-grained simulation, over longer time scales, processing huge
amounts of available data

3

Computational and Data Science at Scale
• Why are we interested in solving larger and larger problems?

• Enables new frontiers in computational science and engineering

⇒ Finer-grained simulation, over longer time scales, processing huge
amounts of available data

4

• Atmosphere, Earth, Environment
• Physics - applied, nuclear, particle, fusion, photonics
• Bioscience, Biotechnology, Genetics
• Chemistry, Molecular Sciences
• Geology, Seismology
• Electrical Engineering, Circuit Design, Microelectronics
• Mechanical Engineering - from prosthetics to spacecraft

Computational and Data Science at Scale
• Why are we interested in solving larger and larger problems?

• Enables new frontiers in computational science and engineering

⇒ Finer-grained simulation, over longer time scales, processing huge
amounts of available data

5

• Atmosphere, Earth, Environment
• Physics - applied, nuclear, particle, fusion, photonics
• Bioscience, Biotechnology, Genetics
• Chemistry, Molecular Sciences
• Geology, Seismology
• Electrical Engineering, Circuit Design, Microelectronics
• Mechanical Engineering - from prosthetics to spacecraft

• Also industrial and commercial interests

• "Big Data", databases, data mining
• Artificial Intelligence (AI)
• Medical imaging and diagnosis
• Pharmaceutical design
• Financial and economic modeling
• Advanced graphics and virtual reality
• Oil exploration

Technology Trends: Microprocessor Capacity

2X transistors/Chip Every 1.5 years
“Moore's Law”

Moore’s Law

Microprocessors have become
smaller, denser, and more
powerful.

Gordon Moore (co-founder of Intel)
predicted in 1965 that the transistor
density of semiconductor chips would
double roughly every 18 months.

Slide source: Jack Dongarra

4

Microprocessor Transistors / Clock (1970-2000)

0

1

10

100

1000

10000

100000

1000000

10000000

1970 1975 1980 1985 1990 1995 2000

Transistors (Thousands)

Frequency (MHz)

5Slide source: Kathy Yelick

Historical Impact of Device Shrinkage

• What happens when the feature size (transistor size) shrinks by a factor of x?

6Slide source: Kathy Yelick

Historical Impact of Device Shrinkage

• What happens when the feature size (transistor size) shrinks by a factor of x?

• Clock rate goes up by x because wires are shorter

• actually less than x, because of power consumption

6Slide source: Kathy Yelick

Historical Impact of Device Shrinkage

• What happens when the feature size (transistor size) shrinks by a factor of x?

• Clock rate goes up by x because wires are shorter

• actually less than x, because of power consumption

• Transistors per unit area goes up by x2

6Slide source: Kathy Yelick

Historical Impact of Device Shrinkage

• What happens when the feature size (transistor size) shrinks by a factor of x?

• Clock rate goes up by x because wires are shorter

• actually less than x, because of power consumption

• Transistors per unit area goes up by x2

• Die size has also increased

• typically another factor of ~ x

6Slide source: Kathy Yelick

Historical Impact of Device Shrinkage

• What happens when the feature size (transistor size) shrinks by a factor of x?

• Clock rate goes up by x because wires are shorter

• actually less than x, because of power consumption

• Transistors per unit area goes up by x2

• Die size has also increased

• typically another factor of ~ x

• Raw computing power of the chip goes up by ~ x4 !

• typically x3 is devoted to either on-chip

• parallelism: hidden parallelism such as ILP

• locality: caches

• So most programs x3 times faster, without changing them

6Slide source: Kathy Yelick

Power Density Limits Serial Performance

4004

8008

8080

8085

8086

286
386

486

Pentium®

P6

1

10

100

1000

10000

1970 1980 1990 2000 2010

Year

P
o

w
er

 D
en

si
ty

 (
W

/c
m

2
)

Hot Plate

Nuclear

Reactor

Rocket

Nozzle

Sun’s
SurfaceSource: Patrick Gelsinger,

Shenkar Bokar, Intel

Scaling clock speed (business as usual) will not work

7Slide source: Kathy Yelick

Power Density Limits Serial Performance

4004

8008

8080

8085

8086

286
386

486

Pentium®

P6

1

10

100

1000

10000

1970 1980 1990 2000 2010

Year

P
o

w
er

 D
en

si
ty

 (
W

/c
m

2
)

Hot Plate

Nuclear

Reactor

Rocket

Nozzle

Sun’s
SurfaceSource: Patrick Gelsinger,

Shenkar Bokar, Intel

Scaling clock speed (business as usual) will not work

• Concurrent systems are more
power efficient

– Dynamic power is
proportional to 𝑉2𝑓𝐶

– Increasing frequency (𝑓) also
increases supply voltage (𝑉)
 cubic effect

– Increasing cores increases
capacitance (𝐶) but only
linearly

– Save power by lowering
clock speed

7Slide source: Kathy Yelick

Power Density Limits Serial Performance

4004

8008

8080

8085

8086

286
386

486

Pentium®

P6

1

10

100

1000

10000

1970 1980 1990 2000 2010

Year

P
o

w
er

 D
en

si
ty

 (
W

/c
m

2
)

Hot Plate

Nuclear

Reactor

Rocket

Nozzle

Sun’s
SurfaceSource: Patrick Gelsinger,

Shenkar Bokar, Intel

Scaling clock speed (business as usual) will not work

• High performance serial processors waste power
- Speculation, dynamic dependence checking, etc. burn power
- Implicit parallelism discovery

• More transistors, but not faster serial processors

• Concurrent systems are more
power efficient

– Dynamic power is
proportional to 𝑉2𝑓𝐶

– Increasing frequency (𝑓) also
increases supply voltage (𝑉)
 cubic effect

– Increasing cores increases
capacitance (𝐶) but only
linearly

– Save power by lowering
clock speed

7Slide source: Kathy Yelick

Revolution in Processors

• Chip density is continuing increase ~2x every 2 years

• Clock speed is not

• Number of processor cores may double instead

• Power is under control, no longer growing

1

10

100

1000

10000

100000

1000000

10000000

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (Thousands)

0

1

10

100

1000

10000

100000

1000000

10000000

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (Thousands)

Frequency (MHz)

0

1

10

100

1000

10000

100000

1000000

10000000

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (Thousands)

Frequency (MHz)

Cores

0

1

10

100

1000

10000

100000

1000000

10000000

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (Thousands)

Frequency (MHz)

Power (W)

Cores

8

Parallel Computer Architectures

• Takeaway: all programs that need to run faster will have to become parallel
programs

• Since mid 2000s - not only are fastest computers parallel, but nearly all
computers are parallel

17

Evolution of HPC Nodes

18

https://str.llnl.gov/march-2015/still

Evolution of HPC Nodes

19

https://str.llnl.gov/march-2015/still

Evolution of HPC Nodes

20

https://str.llnl.gov/march-2015/still

Evolution of HPC Nodes

21

https://str.llnl.gov/march-2015/still

Evolution of HPC Nodes

22

https://str.llnl.gov/march-2015/still

Evolution of HPC Nodes

23

https://str.llnl.gov/march-2015/still

HPC Architectures Today
Summit (Oak Ridge National Lab, Tennessee)

• current #1 on the TOP500

24

HPC Architectures Today

25

https://www.olcf.ornl.gov/wp-content/uploads/2018/12/summit_workshop_thompto.pdf

One Processor: 22 SIMD processing cores, on-chip accelerators
• Each core supports 4 hardware threads
• Each core has separate L1 cache; pairs of cores share L2 and L3 cache

26

https://www.olcf.ornl.gov/for-users/system-user-
guides/summit/summit-user-guide/#nvidia-v100-gpus

HPC Architectures Today

One GPU (NVIDIA V100): 80 streaming multiprocessors (SMs), 16 GB of high-
bandwidth memory (HBM2), 6 MB L2 cache shared by SMs

27https://www.olcf.ornl.gov/for-users/system-user-guides/summit/summit-user-guide/#nvidia-v100-gpus

One SM:

32 FP64 (double-precision) cores,
64 FP32 (single-precision) cores,
64 INT32 cores,
8 tensor cores,
128-KB shared memory/L1 cache

HPC Architectures Today

HPC Architectures Today

28https://www.olcf.ornl.gov/for-users/system-user-guides/summit/summit-user-guide

One Socket: 1 CPU, 3 GPUs

HPC Architectures Today

29https://www.olcf.ornl.gov/for-users/system-user-guides/summit/summit-user-guide

One Node: 2 sockets

HPC Architectures Today

30

One Rack: 18 nodes
• Dual-rail EDR InfiniBand network with non-blocking fat-tree topology
• Node bandwidth of 23 GB/s

HPC Architectures Today

31https://en.wikichip.org/wiki/supercomputers/summit

Designing High-Performance Parallel Algorithms

• To design an efficient parallel algorithm, must first model physical costs ---
runtime or energy consumption --- of executing a program on a machine

• Tradeoff:

• More detailed model: more accurate results for a particular machine, but
results may not apply to other machines

• Less detailed model: results applicable to a variety of machines, but may
not be accurate for any

• but abstracting machine details can still give us a general sense of an
efficient implementation

12

Performance Modeling: Latency-Bandwidth Model

A simplified runtime model:

• Time to perform a floating point operation: γ

• Time to move a message of n words: α + βn

• α = latency (seconds), β = 1/bandwidth (seconds/word)

Runtime = γ (# flops) + β (# words) + α (# msgs)

#flops,words,msgs are counted along a critical path in the schedule:

13

Performance Modeling: Latency-Bandwidth Model

𝛾 is per-flop:

• To improve: more parallelism (no longer increase clock
frequency)

14

Performance Modeling: Latency-Bandwidth Model

𝛾 is per-flop:

• To improve: more parallelism (no longer increase clock
frequency)

𝛽 is per-word:

• Models bandwidth: maximum amount of data that can be in-
flight simultaneously

• To improve: add more ports/wires/etc.

14

Performance Modeling: Latency-Bandwidth Model

𝛾 is per-flop:

• To improve: more parallelism (no longer increase clock
frequency)

𝛽 is per-word:

• Models bandwidth: maximum amount of data that can be in-
flight simultaneously

• To improve: add more ports/wires/etc.

𝛼 is per-message and independent of message size

• Models latency: time for data to travel across machine

• Difficult to improve, due to fundamental limits (speed of light,
atomic radius,...)

“Bandwidth is money, but latency is physics”
14

Exascale System Projections

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

Today's Systems
Predicted Exascale

Systems*
Factor

Improvement

System Peak 1016 flops/s 1018 flops/s 100

Node Memory
Bandwidth

102 GB/s 103 GB/s 10

Interconnect
Bandwidth

101 GB/s 102 GB/s 10

Memory Latency 10−7 s 5 ⋅ 10−8 s 2

Interconnect Latency 10−6 s 5 ⋅ 10−7 s 2

15

CPU
Cache

CPU
DRAM

DRAM

CPU
DRAM

CPU
DRAM

CPU
DRAM

Exascale System Projections

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

Today's Systems
Predicted Exascale

Systems*
Factor

Improvement

System Peak 1016 flops/s 1018 flops/s 100

Node Memory
Bandwidth

102 GB/s 103 GB/s 10

Interconnect
Bandwidth

101 GB/s 102 GB/s 10

Memory Latency 10−7 s 5 ⋅ 10−8 s 2

Interconnect Latency 10−6 s 5 ⋅ 10−7 s 2

15

Exascale System Projections

• Gaps will only grow larger

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

• Reducing time spent moving data/waiting for data will be essential for
applications at exascale!

Today's Systems
Predicted Exascale

Systems*
Factor

Improvement

System Peak 1016 flops/s 1018 flops/s 100

Node Memory
Bandwidth

102 GB/s 103 GB/s 10

Interconnect
Bandwidth

101 GB/s 102 GB/s 10

Memory Latency 10−7 s 5 ⋅ 10−8 s 2

Interconnect Latency 10−6 s 5 ⋅ 10−7 s 2

• Movement of data (communication) is much more expensive than floating
point operations (computation), in terms of both time and energy

15

Exascale Computing: The Modern Space Race

• "Exascale": 1018 floating point operations per second

• with maximum energy consumption around 20-40 MWatts

16

Nothing tends so much to the
advancement of knowledge as the
application of a new instrument.

- Sir Humphry Davy

• Advancing knowledge, addressing social
challenges, improving quality of life,
influencing policy, economic
competitiveness

• Large investment in HPC worldwide

Exascale Computing: The Modern Space Race

• "Exascale": 1018 floating point operations per second

• with maximum energy consumption around 20-40 MWatts

16

• Technical challenges at all levels

Nothing tends so much to the
advancement of knowledge as the
application of a new instrument.

- Sir Humphry Davy

• Advancing knowledge, addressing social
challenges, improving quality of life,
influencing policy, economic
competitiveness

hardware to algorithms to applications

• Large investment in HPC worldwide

Exascale Computing: The Modern Space Race

• "Exascale": 1018 floating point operations per second

• with maximum energy consumption around 20-40 MWatts

16

• Technical challenges at all levels

Nothing tends so much to the
advancement of knowledge as the
application of a new instrument.

- Sir Humphry Davy

• Advancing knowledge, addressing social
challenges, improving quality of life,
influencing policy, economic
competitiveness

hardware to algorithms to applications

• Large investment in HPC worldwide

An Exaflop of what?

• When will victory be declared?

• When a supercomputer reaches exaflop performance on the LINPACK
benchmark (TOP500)

• Solving dense 𝐴𝑥 = 𝑏 using Gaussian elimination with partial pivoting

17

An Exaflop of what?

• When will victory be declared?

• When a supercomputer reaches exaflop performance on the LINPACK
benchmark (TOP500)

• Solving dense 𝐴𝑥 = 𝑏 using Gaussian elimination with partial pivoting

• Summit supercomputer has already exceeded exaflop performance for a certain
genomics code (https://www.olcf.ornl.gov/2018/06/08/genomics-code-exceeds-
exaops-on-summit-supercomputer/)

17

https://www.olcf.ornl.gov/2018/06/08/genomics-code-exceeds-exaops-on-summit-supercomputer/

An Exaflop of what?

• When will victory be declared?

• When a supercomputer reaches exaflop performance on the LINPACK
benchmark (TOP500)

• Solving dense 𝐴𝑥 = 𝑏 using Gaussian elimination with partial pivoting

• Summit supercomputer has already exceeded exaflop performance for a certain
genomics code (https://www.olcf.ornl.gov/2018/06/08/genomics-code-exceeds-
exaops-on-summit-supercomputer/)

• Does that mean we are done?

17

https://www.olcf.ornl.gov/2018/06/08/genomics-code-exceeds-exaops-on-summit-supercomputer/

An Exaflop of what?

• When will victory be declared?

• When a supercomputer reaches exaflop performance on the LINPACK
benchmark (TOP500)

• Solving dense 𝐴𝑥 = 𝑏 using Gaussian elimination with partial pivoting

• Summit supercomputer has already exceeded exaflop performance for a certain
genomics code (https://www.olcf.ornl.gov/2018/06/08/genomics-code-exceeds-
exaops-on-summit-supercomputer/)

• Does that mean we are done?

• LINPACK benchmark is typically a compute-bound problem ("BLAS-3")

• Not a good indication of performance for a large number of scientific applications!

• Lots of remaining work even after exascale performance is achieved

• Has led to incorporation of other benchmarks into the TOP500 ranking

• e.g., HPCG: Solving sparse 𝐴𝑥 = 𝑏 iteratively using the conjugate gradient
method

17

https://www.olcf.ornl.gov/2018/06/08/genomics-code-exceeds-exaops-on-summit-supercomputer/

Krylov subspace methods

• In each iteration,

• Add a dimension to the Krylov subspace

– Forms nested sequence of Krylov subspaces

𝒦1 𝐴, 𝑟0 ⊂ 𝒦2 𝐴, 𝑟0 ⊂ ⋯ ⊂ 𝒦𝑖(𝐴, 𝑟0)

• Orthogonalize (with respect to some 𝒞𝑖)

• Select approximate solution 𝑥𝑖 ∈ 𝑥0 +𝒦𝑖(𝐴, 𝑟0)

using 𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖 ⊥ 𝒞𝑖

• Ex: Lanczos/Conjugate Gradient (CG), Arnoldi/Generalized Minimum Residual
(GMRES), Biconjugate Gradient (BICG), BICGSTAB, GKL, LSQR, etc.

• Krylov Subspace Method is a projection process onto the Krylov subspace

𝒦𝑖 𝐴, 𝑟0 = span 𝑟0, 𝐴𝑟0, 𝐴
2𝑟0, … , 𝐴𝑖−1𝑟0

where 𝐴 is an 𝑁 × 𝑁 matrix and 𝑟0 = 𝑏 − 𝐴𝑥0 is a length-𝑁 vector

𝒞

𝑟new

𝐴𝛿

𝑟0

0

• Linear systems 𝐴𝑥 = 𝑏, eigenvalue problems, singular value problems, least squares, etc.
• Best for: 𝐴 large & very sparse, stored implicitly, or only approximation needed

18

Krylov Subspace Methods in the Wild

Climate Modeling

Computational Cosmology
(Dark Matter Simulation,
Almgren et al., LBNL)

Medical Treatment

Computer Vision
(Contour Detection, Berkeley

Computer Vision Group)

Power Grid Modeling

Chemical Engineering
(Low-Emission Combustion
Simulation, CCSE, LBNL)

Financial Portfolio
Optimization

Latent Semantic Analysis

20

The conjugate gradient method

𝐴 is symmetric positive definite, 𝒞𝑖 = 𝒦𝑖(𝐴, 𝑟0)

21

The conjugate gradient method

𝐴 is symmetric positive definite, 𝒞𝑖 = 𝒦𝑖(𝐴, 𝑟0)

𝑟𝑖 ⊥ 𝒦𝑖 𝐴, 𝑟0 ⟺ 𝑥 − 𝑥𝑖 𝐴 = min
𝑧∈𝑥0+𝒦𝑖(𝐴,𝑟0)

𝑥 − 𝑧 𝐴

21

The conjugate gradient method

𝐴 is symmetric positive definite, 𝒞𝑖 = 𝒦𝑖(𝐴, 𝑟0)

𝑟𝑖 ⊥ 𝒦𝑖 𝐴, 𝑟0 ⟺ 𝑥 − 𝑥𝑖 𝐴 = min
𝑧∈𝑥0+𝒦𝑖(𝐴,𝑟0)

𝑥 − 𝑧 𝐴

⟹ 𝑟𝑁+1 = 0

21

The conjugate gradient method

𝐴 is symmetric positive definite, 𝒞𝑖 = 𝒦𝑖(𝐴, 𝑟0)

𝑟𝑖 ⊥ 𝒦𝑖 𝐴, 𝑟0 ⟺ 𝑥 − 𝑥𝑖 𝐴 = min
𝑧∈𝑥0+𝒦𝑖(𝐴,𝑟0)

𝑥 − 𝑧 𝐴

⟹ 𝑟𝑁+1 = 0

Connection with Lanczos

• With 𝑣1 = 𝑟0/ 𝑟0 , 𝑖 iterations of Lanczos produces 𝑁 × 𝑖 matrix 𝑉𝑖 =
𝑣1, … , 𝑣𝑖 , and 𝑖 × 𝑖 tridiagonal matrix 𝑇𝑖 such that

𝐴𝑉𝑖 = 𝑉𝑖𝑇𝑖 + 𝛿𝑖+1𝑣𝑖+1𝑒𝑖
𝑇 , 𝑇𝑖 = 𝑉𝑖

∗𝐴𝑉𝑖

• CG approximation 𝑥𝑖 is obtained by solving the reduced model

𝑇𝑖𝑦𝑖 = 𝑟0 𝑒1, 𝑥𝑖 = 𝑥0 + 𝑉𝑖𝑦𝑖

21

The conjugate gradient method

𝐴 is symmetric positive definite, 𝒞𝑖 = 𝒦𝑖(𝐴, 𝑟0)

𝑟𝑖 ⊥ 𝒦𝑖 𝐴, 𝑟0 ⟺ 𝑥 − 𝑥𝑖 𝐴 = min
𝑧∈𝑥0+𝒦𝑖(𝐴,𝑟0)

𝑥 − 𝑧 𝐴

⟹ 𝑟𝑁+1 = 0

Connection with Lanczos

• With 𝑣1 = 𝑟0/ 𝑟0 , 𝑖 iterations of Lanczos produces 𝑁 × 𝑖 matrix 𝑉𝑖 =
𝑣1, … , 𝑣𝑖 , and 𝑖 × 𝑖 tridiagonal matrix 𝑇𝑖 such that

𝐴𝑉𝑖 = 𝑉𝑖𝑇𝑖 + 𝛿𝑖+1𝑣𝑖+1𝑒𝑖
𝑇 , 𝑇𝑖 = 𝑉𝑖

∗𝐴𝑉𝑖

• CG approximation 𝑥𝑖 is obtained by solving the reduced model

𝑇𝑖𝑦𝑖 = 𝑟0 𝑒1, 𝑥𝑖 = 𝑥0 + 𝑉𝑖𝑦𝑖

• Connections with orthogonal polynomials, Stieltjes problem of moments, Gauss-
Cristoffel quadrature, others (see 2013 book of Liesen and Strakoš)

21

The conjugate gradient method

𝐴 is symmetric positive definite, 𝒞𝑖 = 𝒦𝑖(𝐴, 𝑟0)

𝑟𝑖 ⊥ 𝒦𝑖 𝐴, 𝑟0 ⟺ 𝑥 − 𝑥𝑖 𝐴 = min
𝑧∈𝑥0+𝒦𝑖(𝐴,𝑟0)

𝑥 − 𝑧 𝐴

⟹ 𝑟𝑁+1 = 0

Connection with Lanczos

• With 𝑣1 = 𝑟0/ 𝑟0 , 𝑖 iterations of Lanczos produces 𝑁 × 𝑖 matrix 𝑉𝑖 =
𝑣1, … , 𝑣𝑖 , and 𝑖 × 𝑖 tridiagonal matrix 𝑇𝑖 such that

𝐴𝑉𝑖 = 𝑉𝑖𝑇𝑖 + 𝛿𝑖+1𝑣𝑖+1𝑒𝑖
𝑇 , 𝑇𝑖 = 𝑉𝑖

∗𝐴𝑉𝑖

• CG approximation 𝑥𝑖 is obtained by solving the reduced model

𝑇𝑖𝑦𝑖 = 𝑟0 𝑒1, 𝑥𝑖 = 𝑥0 + 𝑉𝑖𝑦𝑖

• Connections with orthogonal polynomials, Stieltjes problem of moments, Gauss-
Cristoffel quadrature, others (see 2013 book of Liesen and Strakoš)

⇒ CG (and other Krylov subspace methods) are highly nonlinear

• Good for convergence, bad for ease of finite precision analysis 21

Implementation of CG

• Standard implementation due to Hestenes and Stiefel (1952) (HSCG)

• Uses three 2-term recurrences for updating 𝑥𝑖 , 𝑟𝑖 , 𝑝𝑖

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
end

22

Implementation of CG

• Standard implementation due to Hestenes and Stiefel (1952) (HSCG)

• Uses three 2-term recurrences for updating 𝑥𝑖 , 𝑟𝑖 , 𝑝𝑖

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
end

minimizes 𝑥 − 𝑥𝑖 𝐴 along line
𝑧 𝛼 = 𝑥𝑖−1 + 𝛼𝑝𝑖−1

22

Implementation of CG

• Standard implementation due to Hestenes and Stiefel (1952) (HSCG)

• Uses three 2-term recurrences for updating 𝑥𝑖 , 𝑟𝑖 , 𝑝𝑖

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
end

minimizes 𝑥 − 𝑥𝑖 𝐴 along line
𝑧 𝛼 = 𝑥𝑖−1 + 𝛼𝑝𝑖−1

𝑥0 +𝒦𝑖 𝐴, 𝑟0 = 𝑥0 + span{𝑝0, … 𝑝𝑖−1}

If

𝑝𝑖 ⊥𝐴 𝑝𝑗 for 𝑖 ≠ 𝑗,

1-dimensional minimizations in each
iteration give 𝑖-dimensional
minimization over the whole subspace

22

Conjugate Gradient on the World's Fastest Computer

23

Site: Oak Ridge National Laboratory

Manufacturer: IBM

Cores: 2,282,544

Memory: 2,801,664 GB

Processor: IBM POWER9 22C 3.07GHz

Interconnect: Dual-rail Mellanox EDR Infiniband

Performance

Theoretical peak: 187,659 TFlops/s

LINPACK benchmark: 122,300 Tflops/s

HPCG benchmark: 2,926 Tflops/s

Summit - IBM Power System AC922

current #1
on top500

Conjugate Gradient on the World's Fastest Computer

23

Site: Oak Ridge National Laboratory

Manufacturer: IBM

Cores: 2,282,544

Memory: 2,801,664 GB

Processor: IBM POWER9 22C 3.07GHz

Interconnect: Dual-rail Mellanox EDR Infiniband

Performance

Theoretical peak: 187,659 TFlops/s

LINPACK benchmark: 122,300 Tflops/s

HPCG benchmark: 2,926 Tflops/s

Summit - IBM Power System AC922

Site: Oak Ridge National Laboratory

Manufacturer: IBM

Cores: 2,282,544

Memory: 2,801,664 GB

Processor: IBM POWER9 22C 3.07GHz

Interconnect: Dual-rail Mellanox EDR Infiniband

Performance

Theoretical peak: 187,659 TFlops/s

LINPACK benchmark: 122,300 Tflops/s

HPCG benchmark: 2,926 Tflops/s

current #1
on top500

LINPACK benchmark
(dense 𝐴𝑥 = 𝑏, direct)

65% efficiency

Conjugate Gradient on the World's Fastest Computer

23

Summit - IBM Power System AC922

Site: Oak Ridge National Laboratory

Manufacturer: IBM

Cores: 2,282,544

Memory: 2,801,664 GB

Processor: IBM POWER9 22C 3.07GHz

Interconnect: Dual-rail Mellanox EDR Infiniband

Performance

Theoretical peak: 187,659 TFlops/s

LINPACK benchmark: 122,300 Tflops/s

HPCG benchmark: 2,926 Tflops/s

current #1
on top500

LINPACK benchmark
(dense 𝐴𝑥 = 𝑏, direct)

65% efficiency

Conjugate Gradient on the World's Fastest Computer

23

Summit - IBM Power System AC922

HPCG benchmark
(sparse 𝐴𝑥 = 𝑏, iterative)

1.5% efficiency

The Conjugate Gradient (CG) Method

Iteration Loop

Sparse Matrix
× Vector

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
end

24

The Conjugate Gradient (CG) Method

Iteration Loop

Sparse Matrix
× Vector

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
end

24

The Conjugate Gradient (CG) Method

Iteration Loop

Sparse Matrix
× Vector

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
end

24

The Conjugate Gradient (CG) Method

Iteration Loop

Sparse Matrix
× Vector

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
end

24

The Conjugate Gradient (CG) Method

Iteration Loop

Sparse Matrix
× Vector

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
end

24

The Conjugate Gradient (CG) Method

Iteration Loop

Sparse Matrix
× Vector

Inner Products

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0
for 𝑖 = 1:nmax

𝛼𝑖−1 =
𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖−1
𝑇 𝐴𝑝𝑖−1

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴𝑝𝑖−1

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
end

24

×

Cost Per Iteration

25

 Sparse matrix-vector multiplication (SpMV)
• 𝑂(nnz) flops
• Must communicate vector entries w/neighboring

processors (nearest neighbor MPI collective)
• Must read A/vector from slow memory

 Inner products
• 𝑂(𝑁) flops
• global synchronization (MPI_Allreduce)

• all processors must exchange data and wait for
all communication to finish before proceeding

• Multiple reads/writes to slow memory

 Sparse matrix-vector multiplication (SpMV)
• 𝑂(nnz) flops
• Must communicate vector entries w/neighboring

processors (nearest neighbor MPI collective)
• Must read A/vector from slow memory

×

Cost Per Iteration

25

×

Low computation/communication ratio

⇒ Performance is communication-bound

SpMV

orthogonalize

Cost Per Iteration

25

×

 Inner products
• 𝑂(𝑁) flops
• global synchronization (MPI_Allreduce)

• all processors must exchange data and wait for
all communication to finish before proceeding

• Multiple reads/writes to slow memory

×

 Sparse matrix-vector multiplication (SpMV)
• 𝑂(nnz) flops
• Must communicate vector entries w/neighboring

processors (nearest neighbor MPI collective)
• Must read A/vector from slow memory

26Image source: Sam Williams

General Strategy GuideRoofline Model (Williams, Waterman,
Patterson, 2009)

• Provides estimates of performance for
various applications (based on arithmetic
intensity) for given machine

• attainable flop/s = min(peak flop/s, peak
bandwidth × arithmetic intensity)

• "ceilings" give peak bandwidth or peak
flops in absence of possible optimizations

Peak Flop/s

No FMA

A
tt

ai
n

ab
le

 F
lo

p
/s

Arithmetic Intensity (Flop:Byte)

Roofline Model Example

27Image source: Sam Williams

General Strategy Guide

Peak Flop/s

No FMA

A
tt

ai
n

ab
le

 F
lo

p
/s

Arithmetic Intensity (Flop:Byte)

Roofline Model Example

Generally three approaches to improving
performance:

• Maximize in-core performance (e.g.
get compiler to vectorize)

Roofline Model (Williams, Waterman,
Patterson, 2009)

• Provides estimates of performance for
various applications (based on arithmetic
intensity) for given machine

• attainable flop/s = min(peak flop/s, peak
bandwidth × arithmetic intensity)

• "ceilings" give peak bandwidth or peak
flops in absence of possible optimizations

27Image source: Sam Williams

General Strategy Guide

Peak Flop/s

No FMA

A
tt

ai
n

ab
le

 F
lo

p
/s

Arithmetic Intensity (Flop:Byte)

Generally three approaches to improving
performance:

• Maximize in-core performance (e.g.
get compiler to vectorize)

• Maximize memory bandwidth (e.g.
NUMA-aware allocation)

Roofline Model (Williams, Waterman,
Patterson, 2009)

• Provides estimates of performance for
various applications (based on arithmetic
intensity) for given machine

• attainable flop/s = min(peak flop/s, peak
bandwidth × arithmetic intensity)

• "ceilings" give peak bandwidth or peak
flops in absence of possible optimizations

Roofline Model Example

27Image source: Sam Williams

General Strategy Guide

Generally three approaches to improving
performance:

• Maximize in-core performance (e.g.
get compiler to vectorize)

• Maximize memory bandwidth (e.g.
NUMA-aware allocation)

• Minimize data movement (increase AI)

Peak Flop/s

No FMA

A
tt

ai
n

ab
le

 F
lo

p
/s

Arithmetic Intensity (Flop:Byte)

Roofline Model (Williams, Waterman,
Patterson, 2009)

• Provides estimates of performance for
various applications (based on arithmetic
intensity) for given machine

• attainable flop/s = min(peak flop/s, peak
bandwidth × arithmetic intensity)

• "ceilings" give peak bandwidth or peak
flops in absence of possible optimizations

Roofline Model Example

27Image source: Sam Williams

Synchronization-reducing variants

Motivated many approaches to reducing synchronization (increasing ratio of
computation to communication) in CG:

28

Synchronization-reducing variants

Motivated many approaches to reducing synchronization (increasing ratio of
computation to communication) in CG:

• Early work: CG with a single synchronization point per iteration

• 3-term recurrence CG

• Using modified computation of recurrence coefficients

• Using auxiliary vectors

10

Synchronization-reducing variants

Motivated many approaches to reducing synchronization (increasing ratio of
computation to communication) in CG:

• Early work: CG with a single synchronization point per iteration

• 3-term recurrence CG

• Using modified computation of recurrence coefficients

• Using auxiliary vectors

• Pipelined Krylov subspace methods

• Uses modified coefficients and auxiliary vectors to reduce synchronization points
to 1 per iteration

• Modifications also allow decoupling of SpMV and inner products - enables
overlapping (MPI non-blocking collectives)

10

Synchronization-reducing variants

Motivated many approaches to reducing synchronization (increasing ratio of
computation to communication) in CG:

• Early work: CG with a single synchronization point per iteration

• 3-term recurrence CG

• Using modified computation of recurrence coefficients

• Using auxiliary vectors

• Pipelined Krylov subspace methods

• Uses modified coefficients and auxiliary vectors to reduce synchronization points
to 1 per iteration

• Modifications also allow decoupling of SpMV and inner products - enables
overlapping (MPI non-blocking collectives)

• s-step Krylov subspace methods

• Compute iterations in blocks of s using a different Krylov subspace basis

• Enables one synchronization per s iterations
28

High Performance Krylov Subspace Methods

• To improve performance of Krylov subspace methods, we must reduce the cost of
data movement

• Communication "hiding" approaches

• Use non-blocking MPI communication

• Do useful computation while waiting for communication (overlapping)

• "Pipelined" Krylov subspace methods

• Historical background, derivation

• Performance results

• Recent work on "deep pipelined" methods

• Communication "avoiding" approaches

• Mathematically unroll iteration loop, allows all communication for multiple
iterations to be done in one step

• "s-step" Krylov subspace methods

• Historical background, derivation

• Implementation details (matrix powers kernel, TSQR)

• Performance results

• Other approaches: enlarged KSMs, combination of pipelined and s-step approaches

80

Early approaches to reducing synchronization

• Goal: Reduce the 2 synchronization points per iteration in (HS)CG
to 1 synchronization point per iteration

29

Early approaches to reducing synchronization

• Goal: Reduce the 2 synchronization points per iteration in (HS)CG
to 1 synchronization point per iteration

• Compute 𝛽𝑖 from 𝛼𝑖−1 and 𝐴𝑝𝑖−1 using relation

𝑟𝑖
2 = 𝛼𝑖−1

2 𝐴𝑝𝑖−1
2 − 𝑟𝑖−1

2

• Can then also merge the updates of 𝑥𝑖, 𝑟𝑖, and 𝑝𝑖
• Developed independently by Johnson (1983, 1984), van

Rosendale (1983, 1984), Saad (1985)

• Many other similar approaches

15

Early approaches to reducing synchronization

• Goal: Reduce the 2 synchronization points per iteration in (HS)CG
to 1 synchronization point per iteration

• Compute 𝛽𝑖 from 𝛼𝑖−1 and 𝐴𝑝𝑖−1 using relation

𝑟𝑖
2 = 𝛼𝑖−1

2 𝐴𝑝𝑖−1
2 − 𝑟𝑖−1

2

• Can then also merge the updates of 𝑥𝑖, 𝑟𝑖, and 𝑝𝑖
• Developed independently by Johnson (1983, 1984), van

Rosendale (1983, 1984), Saad (1985)

• Many other similar approaches

• Could also compute 𝛼𝑖−1 from 𝛽𝑖−1:

𝛼𝑖−1 =
𝑟𝑖−1
𝑇 𝐴𝑟𝑖−1

𝑟𝑖−1
𝑇 𝑟𝑖−1

−
𝛽𝑖−1
𝛼𝑖−2

−1

29

CG with two three-term recurrences (STCG)
• HSCG recurrences can be written as

𝐴𝑃𝑖 = 𝑅𝑖+1𝐿𝑖 , 𝑅𝑖 = 𝑃𝑖𝑈𝑖
we can combine these to obtain a 3-term recurrence for the residuals (STCG):

𝐴𝑅𝑖 = 𝑅𝑖+1𝑇𝑖 , 𝑇𝑖 = 𝐿𝑖𝑈𝑖

18

CG with two three-term recurrences (STCG)
• HSCG recurrences can be written as

𝐴𝑃𝑖 = 𝑅𝑖+1𝐿𝑖 , 𝑅𝑖 = 𝑃𝑖𝑈𝑖
we can combine these to obtain a 3-term recurrence for the residuals (STCG):

𝐴𝑅𝑖 = 𝑅𝑖+1𝑇𝑖 , 𝑇𝑖 = 𝐿𝑖𝑈𝑖

• First developed by Stiefel (1952/53), also Rutishauser (1959) and Hageman and Young
(1981)

• Motivated by relation to three-term recurrences for orthogonal polynomials

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0= 𝑟0, 𝑥−1= 𝑥0, 𝑟−1= 𝑟0, 𝑒−1= 0
for 𝑖 = 1:nmax

𝑞𝑖−1 =
(𝑟𝑖−1,𝐴𝑟𝑖−1)

(𝑟𝑖−1,𝑟𝑖−1)
− 𝑒𝑖−2

𝑥𝑖 = 𝑥𝑖−1 +
1

𝑞𝑖−1
𝑟𝑖−1 + 𝑒𝑖−2(𝑥𝑖−1 − 𝑥𝑖−2)

𝑟𝑖 = 𝑟𝑖−1 +
1

𝑞𝑖−1
−𝐴𝑟𝑖−1 + 𝑒𝑖−2(𝑟𝑖−1 − 𝑟𝑖−2)

𝑒𝑖−1 = 𝑞𝑖−1
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

end

30

CG with two three-term recurrences (STCG)
• HSCG recurrences can be written as

𝐴𝑃𝑖 = 𝑅𝑖+1𝐿𝑖 , 𝑅𝑖 = 𝑃𝑖𝑈𝑖
we can combine these to obtain a 3-term recurrence for the residuals (STCG):

𝐴𝑅𝑖 = 𝑅𝑖+1𝑇𝑖 , 𝑇𝑖 = 𝐿𝑖𝑈𝑖

Can be accomplished with
a single synchronization
point on parallel
computers (Strakoš 1985,
1987)

• First developed by Stiefel (1952/53), also Rutishauser (1959) and Hageman and Young
(1981)

• Motivated by relation to three-term recurrences for orthogonal polynomials

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0= 𝑟0, 𝑥−1= 𝑥0, 𝑟−1= 𝑟0, 𝑒−1= 0
for 𝑖 = 1:nmax

𝑞𝑖−1 =
(𝑟𝑖−1,𝐴𝑟𝑖−1)

(𝑟𝑖−1,𝑟𝑖−1)
− 𝑒𝑖−2

𝑥𝑖 = 𝑥𝑖−1 +
1

𝑞𝑖−1
𝑟𝑖−1 + 𝑒𝑖−2(𝑥𝑖−1 − 𝑥𝑖−2)

𝑟𝑖 = 𝑟𝑖−1 +
1

𝑞𝑖−1
−𝐴𝑟𝑖−1 + 𝑒𝑖−2(𝑟𝑖−1 − 𝑟𝑖−2)

𝑒𝑖−1 = 𝑞𝑖−1
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

end

18

CG with two three-term recurrences (STCG)
• HSCG recurrences can be written as

𝐴𝑃𝑖 = 𝑅𝑖+1𝐿𝑖 , 𝑅𝑖 = 𝑃𝑖𝑈𝑖
we can combine these to obtain a 3-term recurrence for the residuals (STCG):

𝐴𝑅𝑖 = 𝑅𝑖+1𝑇𝑖 , 𝑇𝑖 = 𝐿𝑖𝑈𝑖

Can be accomplished with
a single synchronization
point on parallel
computers (Strakoš 1985,
1987)

• Similar approach (computing 𝛼𝑖 using 𝛽𝑖−1) used by D'Azevedo, Eijkhout, Romaine
(1992, 1993)

• First developed by Stiefel (1952/53), also Rutishauser (1959) and Hageman and Young
(1981)

• Motivated by relation to three-term recurrences for orthogonal polynomials

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0= 𝑟0, 𝑥−1= 𝑥0, 𝑟−1= 𝑟0, 𝑒−1= 0
for 𝑖 = 1:nmax

𝑞𝑖−1 =
(𝑟𝑖−1,𝐴𝑟𝑖−1)

(𝑟𝑖−1,𝑟𝑖−1)
− 𝑒𝑖−2

𝑥𝑖 = 𝑥𝑖−1 +
1

𝑞𝑖−1
𝑟𝑖−1 + 𝑒𝑖−2(𝑥𝑖−1 − 𝑥𝑖−2)

𝑟𝑖 = 𝑟𝑖−1 +
1

𝑞𝑖−1
−𝐴𝑟𝑖−1 + 𝑒𝑖−2(𝑟𝑖−1 − 𝑟𝑖−2)

𝑒𝑖−1 = 𝑞𝑖−1
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

end

30

Chronopoulos and Gear's CG (ChG CG)

• Chronopoulos and Gear (1989)

• Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

• Reduces synchronizations/iteration to 1 by changing computation of 𝛼𝑖 and
using an auxiliary recurrence for 𝐴𝑝𝑖

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0= 𝑟0,

𝑠0 = 𝐴𝑝0, 𝛼0= (𝑟0, 𝑟0)/(𝑝0, 𝑠0)

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1
𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1
𝑤𝑖 = 𝐴𝑟𝑖

𝛽𝑖 =
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

𝛼𝑖 =
(𝑟𝑖,𝑟𝑖)

𝑤𝑖,𝑟𝑖 −(𝛽𝑖 𝛼𝑖−1)(𝑟𝑖,𝑟𝑖)

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

end 21

Chronopoulos and Gear's CG (ChG CG)

• Chronopoulos and Gear (1989)

• Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

• Reduces synchronizations/iteration to 1 by changing computation of 𝛼𝑖 and
using an auxiliary recurrence for 𝐴𝑝𝑖

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0= 𝑟0,

𝑠0 = 𝐴𝑝0, 𝛼0= (𝑟0, 𝑟0)/(𝑝0, 𝑠0)

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1
𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1
𝑤𝑖 = 𝐴𝑟𝑖

𝛽𝑖 =
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

𝛼𝑖 =
(𝑟𝑖,𝑟𝑖)

𝑤𝑖,𝑟𝑖 −(𝛽𝑖 𝛼𝑖−1)(𝑟𝑖,𝑟𝑖)

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

end 21

Chronopoulos and Gear's CG (ChG CG)

• Chronopoulos and Gear (1989)

• Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

• Reduces synchronizations/iteration to 1 by changing computation of 𝛼𝑖 and
using an auxiliary recurrence for 𝐴𝑝𝑖

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0= 𝑟0,

𝑠0 = 𝐴𝑝0, 𝛼0= (𝑟0, 𝑟0)/(𝑝0, 𝑠0)

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1
𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1
𝑤𝑖 = 𝐴𝑟𝑖

𝛽𝑖 =
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

𝛼𝑖 =
(𝑟𝑖,𝑟𝑖)

𝑤𝑖,𝑟𝑖 −(𝛽𝑖 𝛼𝑖−1)(𝑟𝑖,𝑟𝑖)

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

end 21

Chronopoulos and Gear's CG (ChG CG)

• Chronopoulos and Gear (1989)

• Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

• Reduces synchronizations/iteration to 1 by changing computation of 𝛼𝑖 and
using an auxiliary recurrence for 𝐴𝑝𝑖

Iteration Loop

SpMV

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0= 𝑟0,

𝑠0 = 𝐴𝑝0, 𝛼0= (𝑟0, 𝑟0)/(𝑝0, 𝑠0)

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1
𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1
𝑤𝑖 = 𝐴𝑟𝑖

𝛽𝑖 =
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

𝛼𝑖 =
(𝑟𝑖,𝑟𝑖)

𝑤𝑖,𝑟𝑖 −(𝛽𝑖 𝛼𝑖−1)(𝑟𝑖,𝑟𝑖)

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

end 21

Chronopoulos and Gear's CG (ChG CG)

• Chronopoulos and Gear (1989)

• Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

• Reduces synchronizations/iteration to 1 by changing computation of 𝛼𝑖 and
using an auxiliary recurrence for 𝐴𝑝𝑖

Iteration Loop

SpMV

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0= 𝑟0,

𝑠0 = 𝐴𝑝0, 𝛼0= (𝑟0, 𝑟0)/(𝑝0, 𝑠0)

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1
𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1
𝑤𝑖 = 𝐴𝑟𝑖

𝛽𝑖 =
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

𝛼𝑖 =
(𝑟𝑖,𝑟𝑖)

𝑤𝑖,𝑟𝑖 −(𝛽𝑖 𝛼𝑖−1)(𝑟𝑖,𝑟𝑖)

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

end 21

Chronopoulos and Gear's CG (ChG CG)

• Chronopoulos and Gear (1989)

• Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

• Reduces synchronizations/iteration to 1 by changing computation of 𝛼𝑖 and
using an auxiliary recurrence for 𝐴𝑝𝑖

Iteration Loop

SpMV

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0= 𝑟0,

𝑠0 = 𝐴𝑝0, 𝛼0= (𝑟0, 𝑟0)/(𝑝0, 𝑠0)

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1
𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1
𝑤𝑖 = 𝐴𝑟𝑖

𝛽𝑖 =
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

𝛼𝑖 =
(𝑟𝑖,𝑟𝑖)

𝑤𝑖,𝑟𝑖 −(𝛽𝑖 𝛼𝑖−1)(𝑟𝑖,𝑟𝑖)

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

end 21

Chronopoulos and Gear's CG (ChG CG)

• Chronopoulos and Gear (1989)

• Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

• Reduces synchronizations/iteration to 1 by changing computation of 𝛼𝑖 and
using an auxiliary recurrence for 𝐴𝑝𝑖

Iteration Loop

SpMV

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0= 𝑟0,

𝑠0 = 𝐴𝑝0, 𝛼0= (𝑟0, 𝑟0)/(𝑝0, 𝑠0)

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1
𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1
𝑤𝑖 = 𝐴𝑟𝑖

𝛽𝑖 =
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

𝛼𝑖 =
(𝑟𝑖,𝑟𝑖)

𝑤𝑖,𝑟𝑖 −(𝛽𝑖 𝛼𝑖−1)(𝑟𝑖,𝑟𝑖)

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

end 21

Chronopoulos and Gear's CG (ChG CG)

• Chronopoulos and Gear (1989)

• Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

• Reduces synchronizations/iteration to 1 by changing computation of 𝛼𝑖 and
using an auxiliary recurrence for 𝐴𝑝𝑖

Iteration Loop

SpMV

Vector Updates

Inner Products

Vector Updates

End Loop

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0= 𝑟0,

𝑠0 = 𝐴𝑝0, 𝛼0= (𝑟0, 𝑟0)/(𝑝0, 𝑠0)

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1
𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1
𝑤𝑖 = 𝐴𝑟𝑖

𝛽𝑖 =
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

𝛼𝑖 =
(𝑟𝑖,𝑟𝑖)

𝑤𝑖,𝑟𝑖 −(𝛽𝑖 𝛼𝑖−1)(𝑟𝑖,𝑟𝑖)

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1
𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

end 31

Pipelined CG (GVCG)

• Pipelined CG of Ghysels and Vanroose (2014)

• Similar to Chronopoulos and Gear approach

• Uses auxiliary vector 𝑠𝑖 ≡ 𝐴𝑝𝑖 and same formula for 𝛼𝑖

22

Pipelined CG (GVCG)

• Pipelined CG of Ghysels and Vanroose (2014)

• Similar to Chronopoulos and Gear approach

• Uses auxiliary vector 𝑠𝑖 ≡ 𝐴𝑝𝑖 and same formula for 𝛼𝑖

• Also uses auxiliary vectors for 𝐴𝑟𝑖 and 𝐴2𝑟𝑖 to remove sequential
dependency between SpMV and inner products

22

Pipelined CG (GVCG)

• Pipelined CG of Ghysels and Vanroose (2014)

• Similar to Chronopoulos and Gear approach

• Uses auxiliary vector 𝑠𝑖 ≡ 𝐴𝑝𝑖 and same formula for 𝛼𝑖

• Also uses auxiliary vectors for 𝐴𝑟𝑖 and 𝐴2𝑟𝑖 to remove sequential
dependency between SpMV and inner products

• Allows the use of nonblocking (asynchronous) MPI communication to
overlap SpMV and inner products

• Hides the latency of global communications

32

GVCG (Ghysels and Vanroose 2014)

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− 𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end
23

GVCG (Ghysels and Vanroose 2014)

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− 𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end
23

GVCG (Ghysels and Vanroose 2014)

Iteration Loop

Inner
Products

SpMV

Vector Updates

End Loop

O
ve

rl
ap

Vector Updates

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− 𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end
23

GVCG (Ghysels and Vanroose 2014)

Iteration Loop

Inner
Products

SpMV

Vector Updates

End Loop

O
ve

rl
ap

Vector Updates

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− 𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end
23

GVCG (Ghysels and Vanroose 2014)

Iteration Loop

Inner
Products

SpMV

Vector Updates

End Loop

O
ve

rl
ap

Vector Updates

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− 𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end
23

GVCG (Ghysels and Vanroose 2014)

Iteration Loop

Inner
Products

SpMV

Vector Updates

End Loop

O
ve

rl
ap

Vector Updates

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− 𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end
23

GVCG (Ghysels and Vanroose 2014)

Iteration Loop

Inner
Products

SpMV

Vector Updates

End Loop

O
ve

rl
ap

Vector Updates

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

𝑠0 = 𝐴𝑝0, 𝑤0 = 𝐴𝑟0, 𝑧0 = 𝐴𝑤0,
𝛼0 = 𝑟0

𝑇𝑟0/𝑝0
𝑇𝑠0

for 𝑖 = 1:nmax

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝑤𝑖 = 𝑤𝑖−1 − 𝛼𝑖−1𝑧𝑖−1

𝑞𝑖 = 𝐴𝑤𝑖

𝛽𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑟𝑖−1
𝑇 𝑟𝑖−1

𝛼𝑖 =
𝑟𝑖
𝑇𝑟𝑖

𝑤𝑖
𝑇𝑟𝑖− 𝛽𝑖 𝛼𝑖−1 𝑟𝑖

𝑇𝑟𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖𝑠𝑖−1

𝑧𝑖 = 𝑞𝑖 + 𝛽𝑖𝑧𝑖−1

end
33

Precond

MPI Non-Blocking Communication

• "Non-blocking" or "asynchronous" collectives available since MPI 3

34

MPI_Iallreduce(...,MPI_Request,...)

// ...other work (SpMV, precond., etc)

MPI_Wait(...,MPI_Request)

call to MPI_Iallreducecall to MPI_Wait

PETSc provides a construct for asynchronous dot-
products:
VecDotBegin (...,&dot);

PetscCommSplitReductionBegin (comm);

// ...other work

VecDotEnd (...,&dot); P. Ghysels, et al. SIAM J. Scientific Computing,
35(1):C48C71, (2013).

Deep Pipelining

• Motivation: want to have perfect overlap of computation of inner products
and SpMVs/preconditioner application

• But this depends on the machine, matrix, etc.

• If inner products take much longer than 1 SpMV, do ℓ SpMVs instead

• ⇒ "deep" pipelined method with pipeline length ℓ

• ℓ should be chosen to be the number of SpMV/precond. operations
that can be done in the time it takes for one Allreduce

• Deep pipelined GMRES variant [Ghysels, Ashby, Meerbergen, Vanroose,
SIAM J. Sci. Comput, 35(1), 2013]

• Deep pipelined CG variant [Cornelis, Cools, Vanroose, arXiv:1801.04728,
2018]

35

Available Software

• Implementations in PETSc:

• KSPPGMRES: pipelined GMRES

• KSPPIPECG: pipelined CG

• KSPPIPECR: pipelined CR

• KSPGROPPCG: Gropp asynchronous variant

• KSPPIPEBCGS: pipelined BiCGSTAB

• KSPPIPELCG: deep pipelined CG

36

Performance of (Deep) Pipelined CG

37(Cornelis, Cools, Vanroose, arXiv: 1801.04728, 2018)

48 compute nodes, each with two 14-core Intel E5-2680v4,
Broadwell generation CPUs; EDR InfiniBand

20 compute nodes, each with two 6-
core Intel Xeon X5660 Nehalem
2:80 GHz processors each (12 cores
per node); 4QDR InfiniBand

s-step Krylov subspace methods

• Idea: Compute blocks of 𝑠 iterations at once

• Compute updates in a different basis

• Communicate every 𝑠 iterations instead of every iteration

• Reduces number of synchronizations per iteration by a factor of s

38

s-step Krylov subspace methods

• Idea: Compute blocks of 𝑠 iterations at once

• Compute updates in a different basis

• Communicate every 𝑠 iterations instead of every iteration

• Reduces number of synchronizations per iteration by a factor of s

• An idea rediscovered many times…

28

s-step Krylov subspace methods

• Idea: Compute blocks of 𝑠 iterations at once

• Compute updates in a different basis

• Communicate every 𝑠 iterations instead of every iteration

• Reduces number of synchronizations per iteration by a factor of s

• An idea rediscovered many times…
• First related work: s-dimensional steepest descent, least squares

• Khabaza (‘63), Forsythe (‘68), Marchuk and Kuznecov (‘68)

28

s-step Krylov subspace methods

• Idea: Compute blocks of 𝑠 iterations at once

• Compute updates in a different basis

• Communicate every 𝑠 iterations instead of every iteration

• Reduces number of synchronizations per iteration by a factor of s

• An idea rediscovered many times…
• First related work: s-dimensional steepest descent, least squares

• Khabaza (‘63), Forsythe (‘68), Marchuk and Kuznecov (‘68)
• Flurry of work on s-step Krylov methods in ‘80s/early ‘90s: see, e.g., Van

Rosendale (1983); Chronopoulos and Gear (1989)

28

s-step Krylov subspace methods

• Idea: Compute blocks of 𝑠 iterations at once

• Compute updates in a different basis

• Communicate every 𝑠 iterations instead of every iteration

• Reduces number of synchronizations per iteration by a factor of s

• An idea rediscovered many times…
• First related work: s-dimensional steepest descent, least squares

• Khabaza (‘63), Forsythe (‘68), Marchuk and Kuznecov (‘68)
• Flurry of work on s-step Krylov methods in ‘80s/early ‘90s: see, e.g., Van

Rosendale (1983); Chronopoulos and Gear (1989)

• Resurgence of interest in recent years due to growing problem sizes;
growing relative cost of communication

38

History of 𝑠-step Krylov Subspace Methods

39

1983

Van
Rosendale:

CG

1988

Walker:
GMRES

Chronopoulos
and Gear: CG

1990 1991 1992

First termed
“s-step

methods”

de Sturler:
GMRES

1989

Bai, Hu, and Reichel:
GMRES

Chronopoulos
and Kim:

Nonsymm.
Lanczos

Joubert and
Carey: GMRES

Erhel:
GMRES

Toledo: CG

de Sturler and
van der Vorst:

GMRES

1995 2001

Chronopoulos
and Kinkaid:

Orthodir

Chronopoulos and
Kim: Orthomin,

GMRES Chronopoulos:
MINRES, GCR,

Orthomin

Kim and
Chronopoulos:
Arndoli, Symm.

Lanczos

Leland:
CG

Key observation: After iteration 𝑖, for 𝑗 ∈ {0, . . , 𝑠},

𝑥𝑖+𝑗 − 𝑥𝑖 , 𝑟𝑖+𝑗 , 𝑝𝑖+𝑗 ∈ 𝒦𝑠+1 𝐴, 𝑝𝑖 +𝒦𝑠 𝐴, 𝑟𝑖

s-step CG

29

Key observation: After iteration 𝑖, for 𝑗 ∈ {0, . . , 𝑠},

𝑥𝑖+𝑗 − 𝑥𝑖 , 𝑟𝑖+𝑗 , 𝑝𝑖+𝑗 ∈ 𝒦𝑠+1 𝐴, 𝑝𝑖 +𝒦𝑠 𝐴, 𝑟𝑖

s-step CG

s steps of s-step CG:

29

Key observation: After iteration 𝑖, for 𝑗 ∈ {0, . . , 𝑠},

𝑥𝑖+𝑗 − 𝑥𝑖 , 𝑟𝑖+𝑗 , 𝑝𝑖+𝑗 ∈ 𝒦𝑠+1 𝐴, 𝑝𝑖 +𝒦𝑠 𝐴, 𝑟𝑖

s-step CG

s steps of s-step CG:

Expand solution space 𝒔 dimensions at once

Compute “basis” matrix 𝒴 such that span 𝒴 = 𝒦𝑠+1 𝐴, 𝑝𝑖 +𝒦𝑠 𝐴, 𝑟𝑖 according to

the recurrence 𝐴𝒴 = 𝒴 ℬ

29

Key observation: After iteration 𝑖, for 𝑗 ∈ {0, . . , 𝑠},

𝑥𝑖+𝑗 − 𝑥𝑖 , 𝑟𝑖+𝑗 , 𝑝𝑖+𝑗 ∈ 𝒦𝑠+1 𝐴, 𝑝𝑖 +𝒦𝑠 𝐴, 𝑟𝑖

s-step CG

s steps of s-step CG:

Expand solution space 𝒔 dimensions at once

Compute “basis” matrix 𝒴 such that span 𝒴 = 𝒦𝑠+1 𝐴, 𝑝𝑖 +𝒦𝑠 𝐴, 𝑟𝑖 according to

the recurrence 𝐴𝒴 = 𝒴 ℬ

Compute inner products between basis vectors in one synchronization
𝒢 = 𝒴𝑇𝒴

29

Key observation: After iteration 𝑖, for 𝑗 ∈ {0, . . , 𝑠},

𝑥𝑖+𝑗 − 𝑥𝑖 , 𝑟𝑖+𝑗 , 𝑝𝑖+𝑗 ∈ 𝒦𝑠+1 𝐴, 𝑝𝑖 +𝒦𝑠 𝐴, 𝑟𝑖

s-step CG

s steps of s-step CG:

Expand solution space 𝒔 dimensions at once

Compute “basis” matrix 𝒴 such that span 𝒴 = 𝒦𝑠+1 𝐴, 𝑝𝑖 +𝒦𝑠 𝐴, 𝑟𝑖 according to

the recurrence 𝐴𝒴 = 𝒴 ℬ

Compute inner products between basis vectors in one synchronization
𝒢 = 𝒴𝑇𝒴

Compute s iterations of vector updates
Perform 𝑠 iterations of vector updates by updating coordinates in basis 𝒴:

𝑥𝑖+𝑗 − 𝑥𝑖 = 𝒴𝑥𝑗
′, 𝑟𝑖+𝑗 = 𝒴𝑟𝑗

′, 𝑝𝑖+𝑗 = 𝒴𝑝𝑗
′

41

s-step CG

For s iterations of updates, inner products and SpMVs (in basis 𝒴) can be
computed by independently by each processor without communication:

30

𝐴𝑝𝑖+𝑗

×𝑛

𝑛

s-step CG

For s iterations of updates, inner products and SpMVs (in basis 𝒴) can be
computed by independently by each processor without communication:

30

𝐴𝑝𝑖+𝑗

×𝑛

𝑛

𝐴𝒴𝑝𝑗
′

=

s-step CG

For s iterations of updates, inner products and SpMVs (in basis 𝒴) can be
computed by independently by each processor without communication:

30

→

𝒴(ℬ𝑝𝑗
′)

𝑂(𝑠)

𝑂(𝑠)

×

𝐴𝑝𝑖+𝑗

×𝑛

𝑛

𝐴𝒴𝑝𝑗
′

= =

s-step CG

For s iterations of updates, inner products and SpMVs (in basis 𝒴) can be
computed by independently by each processor without communication:

30

→

𝒴(ℬ𝑝𝑗
′)

𝑂(𝑠)

𝑂(𝑠)

×

(𝑟𝑖+𝑗 , 𝑟𝑖+𝑗)

𝐴𝑝𝑖+𝑗

×

×𝑛

𝑛

𝐴𝒴𝑝𝑗
′

= =

s-step CG

For s iterations of updates, inner products and SpMVs (in basis 𝒴) can be
computed by independently by each processor without communication:

30

→

𝒴(ℬ𝑝𝑗
′)

𝑂(𝑠)

𝑂(𝑠)

×

(𝑟𝑖+𝑗 , 𝑟𝑖+𝑗)

𝐴𝑝𝑖+𝑗

×

×𝑛

𝑛

𝐴𝒴𝑝𝑗
′

= =

= 𝑟𝑗
′𝑇𝒴𝑇𝒴𝑟𝑗

′

s-step CG

For s iterations of updates, inner products and SpMVs (in basis 𝒴) can be
computed by independently by each processor without communication:

30

→

→

𝒴(ℬ𝑝𝑗
′)

𝑂(𝑠)

𝑂(𝑠)

×

𝑟𝑗
′𝑇𝒢𝑟𝑗

′

× ×

(𝑟𝑖+𝑗 , 𝑟𝑖+𝑗)

𝐴𝑝𝑖+𝑗

×

×𝑛

𝑛

𝐴𝒴𝑝𝑗
′

= =

= 𝑟𝑗
′𝑇𝒴𝑇𝒴𝑟𝑗

′ =

s-step CG

For s iterations of updates, inner products and SpMVs (in basis 𝒴) can be
computed by independently by each processor without communication:

42

s-step CG

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 +𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗
′𝑇𝒢𝑘𝑟𝑗

′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
31

s-step CG

Outer Loop

Compute basis
O(s) SPMVs

O(𝑠2) Inner
Products (one

synchronization)

Inner Loop

Local Vector
Updates (no

comm.)

End Inner Loop

Inner Outer Loop

s
times

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 +𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗
′𝑇𝒢𝑘𝑟𝑗

′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
31

s-step CG

Outer Loop

Compute basis
O(s) SPMVs

O(𝑠2) Inner
Products (one

synchronization)

Inner Loop

Local Vector
Updates (no

comm.)

End Inner Loop

Inner Outer Loop

s
times

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 +𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗
′𝑇𝒢𝑘𝑟𝑗

′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
31

s-step CG

Outer Loop

Compute basis
O(s) SPMVs

O(𝑠2) Inner
Products (one

synchronization)

Inner Loop

Local Vector
Updates (no

comm.)

End Inner Loop

Inner Outer Loop

s
times

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 +𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗
′𝑇𝒢𝑘𝑟𝑗

′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
31

s-step CG

Outer Loop

Compute basis
O(s) SPMVs

O(𝑠2) Inner
Products (one

synchronization)

Inner Loop

Local Vector
Updates (no

comm.)

End Inner Loop

Inner Outer Loop

s
times

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 +𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗
′𝑇𝒢𝑘𝑟𝑗

′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
43

Sparse Matrix Computations

• Sparse Matrix x Vector (SpMV) (𝑦 = 𝐴𝑥)

• Very communication-bound; no reuse

• Lower bound depends on sparsity
structure, algorithm used (1D
rowwise/colwise, 2D, etc.)

• Communication cost depends on partition

• Hypergraph models capture
communication dependencies
(Catalyurek, Aykanat, 1999)

• minimize hypergraph cut = minimize
words moved

44

Sparse Matrix Computations

• Sparse Matrix x Vector (SpMV) (𝑦 = 𝐴𝑥)

• Very communication-bound; no reuse

• Lower bound depends on sparsity
structure, algorithm used (1D
rowwise/colwise, 2D, etc.)

• Communication cost depends on partition

• Hypergraph models capture
communication dependencies
(Catalyurek, Aykanat, 1999)

• minimize hypergraph cut = minimize
words moved

44

• Repeated SpMVs (𝑌 = [𝐴𝑥, 𝐴2𝑥, … , 𝐴𝑘𝑥])

• Naive approach: k repeated SpMVs

• Communication-avoiding approach: "matrix powers kernel"

• see, e.g., (Demmel, Hoemmen, Mohiyuddin, Yelick, 2008)

Example: Tridiagonal matrix

SpMV Dependency Graph

𝐺 = (𝑉, 𝐸) where 𝑉 = 𝑦0, … , 𝑦𝑛−1 ∪ {𝑥0, … , 𝑥𝑛−1} and 𝑦𝑖 , 𝑥𝑗 ∈ 𝐸 if 𝐴𝑖𝑗 ≠ 0

45

Example: Tridiagonal matrix

SpMV Dependency Graph

𝐺 = (𝑉, 𝐸) where 𝑉 = 𝑦0, … , 𝑦𝑛−1 ∪ {𝑥0, … , 𝑥𝑛−1} and 𝑦𝑖 , 𝑥𝑗 ∈ 𝐸 if 𝐴𝑖𝑗 ≠ 0

45

Avoids communication:

• In serial, by exploiting temporal locality:

• Reading 𝐴, reading vectors

• In parallel, by doing only 1 ‘expand’ phase
(instead of 𝑠).

• Requires sufficiently low ‘surface-to-volume’
ratio

Tridiagonal Example:

The Matrix Powers Kernel (Demmel et al., 2007)

Sequential

Parallel

A3v
A2v
Av
v

A3v
A2v
Av
v

46

Avoids communication:

• In serial, by exploiting temporal locality:

• Reading 𝐴, reading vectors

• In parallel, by doing only 1 ‘expand’ phase
(instead of 𝑠).

• Requires sufficiently low ‘surface-to-volume’
ratio

Tridiagonal Example:

The Matrix Powers Kernel (Demmel et al., 2007)

Sequential

Parallel

A3v
A2v
Av
v

A3v
A2v
Av
v

black = local elements
red = 1-level dependencies
green = 2-level dependencies
blue = 3-level dependencies

Also works for
general graphs!

46

Example: tridiagonal matrix, s = 3, n = 40, p = 4

Parallel Matrix Powers Kernel

47

𝑥

𝐴𝑥

𝐴2𝑥

𝐴3𝑥

0 10 20 30processor 1 processor 2 processor 3 processor 4

Example: tridiagonal matrix, s = 3, n = 40, p = 4

Parallel Matrix Powers Kernel

47

𝑥

𝐴𝑥

𝐴2𝑥

𝐴3𝑥

0 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 4

Example: tridiagonal matrix, s = 3, n = 40, p = 4

Parallel Matrix Powers Kernel

47

𝑥

𝐴𝑥

𝐴2𝑥

𝐴3𝑥

0 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 4

Example: tridiagonal matrix, s = 3, n = 40, p = 4

Parallel Matrix Powers Kernel

47

𝑥

𝐴𝑥

𝐴2𝑥

𝐴3𝑥

0 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 4

Example: tridiagonal matrix, s = 3, n = 40, p = 4

Parallel Matrix Powers Kernel

47

𝑥

𝐴𝑥

𝐴2𝑥

𝐴3𝑥

0 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 4

Example: tridiagonal matrix, s = 3, n = 40, p = 4

Parallel Matrix Powers Kernel

47

𝑥

𝐴𝑥

𝐴2𝑥

𝐴3𝑥

0 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 4

Example: tridiagonal matrix, s = 3, n = 40, p = 4

Parallel Matrix Powers Kernel

47

𝑥

𝐴𝑥

𝐴2𝑥

𝐴3𝑥

0 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 4

Example: tridiagonal matrix, s = 3, n = 40, p = 4

Parallel Matrix Powers Kernel

47

𝑥

𝐴𝑥

𝐴2𝑥

𝐴3𝑥

0 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 4

Example: tridiagonal matrix, s = 3, n = 40, p = 4

Parallel Matrix Powers Kernel

47

𝑥

𝐴𝑥

𝐴2𝑥

𝐴3𝑥

0 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 4

Example: tridiagonal matrix, s = 3, n = 40, p = 4

Naïve algorithm:
s messages per neighbor

Parallel Matrix Powers Kernel

47

𝑥

𝐴𝑥

𝐴2𝑥

𝐴3𝑥

0 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 4

Example: tridiagonal matrix, s = 3, n = 40, p = 4

Naïve algorithm:
s messages per neighbor

Parallel Matrix Powers Kernel

47

𝑥

𝐴𝑥

𝐴2𝑥

𝐴3𝑥

𝑥

𝐴𝑥

𝐴2𝑥

𝐴3𝑥

0 10 20 30processor 1 processor 2 processor 3 processor 4

0 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 4

Example: tridiagonal matrix, s = 3, n = 40, p = 4

Naïve algorithm:
s messages per neighbor

Parallel Matrix Powers Kernel

47

𝑥

𝐴𝑥

𝐴2𝑥

𝐴3𝑥

𝑥

𝐴𝑥

𝐴2𝑥

𝐴3𝑥

0 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 4

0 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 4

Example: tridiagonal matrix, s = 3, n = 40, p = 4

Naïve algorithm:
s messages per neighbor

Parallel Matrix Powers Kernel

47

𝑥

𝐴𝑥

𝐴2𝑥

𝐴3𝑥

𝑥

𝐴𝑥

𝐴2𝑥

𝐴3𝑥

0 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 4

0 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 4

Example: tridiagonal matrix, s = 3, n = 40, p = 4

Naïve algorithm:
s messages per neighbor

Parallel Matrix Powers Kernel

47

𝑥

𝐴𝑥

𝐴2𝑥

𝐴3𝑥

𝑥

𝐴𝑥

𝐴2𝑥

𝐴3𝑥

0 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 4

0 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 4

Example: tridiagonal matrix, s = 3, n = 40, p = 4

Naïve algorithm:
s messages per neighbor

Parallel Matrix Powers Kernel

47

𝑥

𝐴𝑥

𝐴2𝑥

𝐴3𝑥

𝑥

𝐴𝑥

𝐴2𝑥

𝐴3𝑥

0 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 4

0 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 4

Example: tridiagonal matrix, s = 3, n = 40, p = 4

Naïve algorithm:
s messages per neighbor

Parallel Matrix Powers Kernel

47

𝑥

𝐴𝑥

𝐴2𝑥

𝐴3𝑥

𝑥

𝐴𝑥

𝐴2𝑥

𝐴3𝑥

0 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 4

0 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 4

Example: tridiagonal matrix, s = 3, n = 40, p = 4

Naïve algorithm:
s messages per neighbor

Parallel Matrix Powers Kernel

47

𝑥

𝐴𝑥

𝐴2𝑥

𝐴3𝑥

𝑥

𝐴𝑥

𝐴2𝑥

𝐴3𝑥

0 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 4

0 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 40 10 20 30processor 1 processor 2 processor 3 processor 4

Example: tridiagonal matrix, s = 3, n = 40, p = 4

Naïve algorithm:
s messages per neighbor

Matrix powers
optimization:

1 message per neighbor

Parallel Matrix Powers Kernel

47

𝑥

𝐴𝑥

𝐴2𝑥

𝐴3𝑥

𝑥

𝐴𝑥

𝐴2𝑥

𝐴3𝑥

Complexity comparison

Example of parallel (per processor) complexity for 𝑠 iterations of CG vs. s-step
CG for a 2D 9-point stencil:

(Assuming each of 𝑝 processors owns 𝑁/𝑝 rows of the matrix and 𝑠 ≤ 𝑁/𝑝)

All values in the table meant in the Big-O sense (i.e., lower order terms
and constants not included)

Flops Words Moved Messages

SpMV Orth. SpMV Orth. SpMV Orth.

Classical
CG

𝑠𝑁

𝑝

𝑠𝑁

𝑝
𝑠 𝑁 𝑝 𝑠 log2 𝑝 𝑠 𝑠 log2 𝑝

s-step CG
𝑠𝑁

𝑝

𝑠2𝑁

𝑝
𝑠 𝑁 𝑝 𝑠2 log2 𝑝 1 log2 𝑝

48

Complexity comparison

Example of parallel (per processor) complexity for 𝑠 iterations of CG vs. s-step
CG for a 2D 9-point stencil:

(Assuming each of 𝑝 processors owns 𝑁/𝑝 rows of the matrix and 𝑠 ≤ 𝑁/𝑝)

All values in the table meant in the Big-O sense (i.e., lower order terms
and constants not included)

Flops Words Moved Messages

SpMV Orth. SpMV Orth. SpMV Orth.

Classical
CG

𝑠𝑁

𝑝

𝑠𝑁

𝑝
𝑠 𝑁 𝑝 𝑠 log2 𝑝 𝑠 𝑠 log2 𝑝

s-step CG
𝑠𝑁

𝑝

𝑠2𝑁

𝑝
𝑠 𝑁 𝑝 𝑠2 log2 𝑝 1 log2 𝑝

48

Complexity comparison

Example of parallel (per processor) complexity for 𝑠 iterations of CG vs. s-step
CG for a 2D 9-point stencil:

(Assuming each of 𝑝 processors owns 𝑁/𝑝 rows of the matrix and 𝑠 ≤ 𝑁/𝑝)

All values in the table meant in the Big-O sense (i.e., lower order terms
and constants not included)

Flops Words Moved Messages

SpMV Orth. SpMV Orth. SpMV Orth.

Classical
CG

𝑠𝑁

𝑝

𝑠𝑁

𝑝
𝑠 𝑁 𝑝 𝑠 log2 𝑝 𝑠 𝑠 log2 𝑝

s-step CG
𝑠𝑁

𝑝

𝑠2𝑁

𝑝
𝑠 𝑁 𝑝 𝑠2 log2 𝑝 1 log2 𝑝

48

s-step GMRES

49

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑣0 = 𝑟0/‖𝑟0‖
for 𝑖 = 1: 𝑘

𝑤 = 𝐴𝑣𝑖−1
Orthogonalize 𝑤 against [𝑣0, … , 𝑣𝑖−1]
Update vector 𝑣𝑖, matrix 𝐻

end
Use 𝐻, [𝑣0, … , 𝑣𝑘] to construct the solution

Classical GMRES

e.g., Modified Gram-Schmidt

s-step GMRES

49

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑣0 = 𝑟0/‖𝑟0‖
for 𝑖 = 1: 𝑘

𝑤 = 𝐴𝑣𝑖−1
Orthogonalize 𝑤 against [𝑣0, … , 𝑣𝑖−1]
Update vector 𝑣𝑖, matrix 𝐻

end
Use 𝐻, [𝑣0, … , 𝑣𝑘] to construct the solution

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑣0 = 𝑟0/‖𝑟0‖
for 𝑖 = 0: 𝑠: 𝑘 − 𝑠

Compute 𝑊 such that span([𝑣𝑖 ,𝑊]) = 𝒦𝑠+1 𝐴, 𝑣𝑖
Make 𝑊 orthogonal against [𝑣0, … , 𝑣𝑖]
Make 𝑊 orthogonal
Update [𝑣𝑖+1, … , 𝑣𝑖+𝑠], matrix 𝐻

end
Use 𝐻, [𝑣0, … , 𝑣𝑘] to construct the solution

Classical GMRES

s-step GMRES

e.g., Modified Gram-Schmidt

"matrix powers kernel"

Block Gram-Schmidt

"Tall-Skinny QR"

Tall-Skinny QR (TSQR)

• TSQR: QR factorization of a tall
skinny matrix using Householder
transformations

• QR decomposition of m x b matrix W,
m >> b

• P processors, block row layout

50

Tall-Skinny QR (TSQR)

• TSQR: QR factorization of a tall
skinny matrix using Householder
transformations

• QR decomposition of m x b matrix W,
m >> b

• P processors, block row layout

• Classic Parallel Algorithm

• Compute Householder vector for
each column

• Number of messages ∝ b log P

50

Tall-Skinny QR (TSQR)

• TSQR: QR factorization of a tall
skinny matrix using Householder
transformations

• QR decomposition of m x b matrix W,
m >> b

• P processors, block row layout

• Classic Parallel Algorithm

• Compute Householder vector for
each column

• Number of messages ∝ b log P

• Communication Avoiding Algorithm

• Reduction operation, with QR as
operator

• Number of messages ∝ log P

50

Tall-Skinny QR (TSQR)

• TSQR: QR factorization of a tall
skinny matrix using Householder
transformations

• QR decomposition of m x b matrix W,
m >> b

• P processors, block row layout

• Classic Parallel Algorithm

• Compute Householder vector for
each column

• Number of messages ∝ b log P

• Communication Avoiding Algorithm

• Reduction operation, with QR as
operator

• Number of messages ∝ log P

50

𝑊 =

𝑊0

𝑊1

𝑊2

𝑊3

𝑅00
𝑅10
𝑅20
𝑅30

𝑅01

𝑅11

𝑅02

Parallel

𝑊 =

𝑊0

𝑊1

𝑊2

𝑊3

𝑅00
𝑅01

𝑅02
𝑅03

Sequential

𝑊 =

𝑊0

𝑊1

𝑊2

𝑊3

𝑅00
𝑅01

𝑅01

𝑅11
𝑅02

𝑅11
𝑅03

Dual Core

Tall-Skinny QR (TSQR)

• TSQR: QR factorization of a tall
skinny matrix using Householder
transformations

• QR decomposition of m x b matrix W,
m >> b

• P processors, block row layout

• Classic Parallel Algorithm

• Compute Householder vector for
each column

• Number of messages ∝ b log P

• Communication Avoiding Algorithm

• Reduction operation, with QR as
operator

• Number of messages ∝ log P

50

𝑊 =

𝑊0

𝑊1

𝑊2

𝑊3

𝑅00
𝑅10
𝑅20
𝑅30

𝑅01

𝑅11

𝑅02

Parallel

𝑊 =

𝑊0

𝑊1

𝑊2

𝑊3

𝑅00
𝑅01

𝑅02
𝑅03

Sequential

𝑊 =

𝑊0

𝑊1

𝑊2

𝑊3

𝑅00
𝑅01

𝑅01

𝑅11
𝑅02

𝑅11
𝑅03

Dual Core

TSQR implementations in Intel MKL library,
GNU Scientific Library, ScaLAPACK, Spark

Performance Results

51

(Mohiyuddin et al, 2009)

Performance and Applications

52

• Performance studies

• s-step GMRES on hybrid CPU/GPU
arch. (Yamazaki et al., 2014)

• comparison of s-step and pipelined
GMRES (Yamazaki et al., 2017)

Performance and Applications

• Example applications: s-step BICGSTAB used in

• combustion, cosmology [Williams, C., et al., IPDPS, 2014]

• geoscience dynamics [Anciaux-Sedrakian et al., 2016]

• far-field scattering [Zhang et al., 2016]

• wafer defect detection [Zhang et al., 2016]

52

• Performance studies

• s-step GMRES on hybrid CPU/GPU
arch. (Yamazaki et al., 2014)

• comparison of s-step and pipelined
GMRES (Yamazaki et al., 2017)

Performance and Applications

• Example applications: s-step BICGSTAB used in

• combustion, cosmology [Williams, C., et al., IPDPS, 2014]

• geoscience dynamics [Anciaux-Sedrakian et al., 2016]

• far-field scattering [Zhang et al., 2016]

• wafer defect detection [Zhang et al., 2016]

52

up to 4.2x on 24K
cores on Cray XE6

• Performance studies

• s-step GMRES on hybrid CPU/GPU
arch. (Yamazaki et al., 2014)

• comparison of s-step and pipelined
GMRES (Yamazaki et al., 2017)

Alternative Approaches

• Enlarged Krylov subspace methods (Grigori, Moufawad, Nataf, 2016)

• Split vector into t parts based on domain decomposition of A; enlarge
Krylov subspace by t dimensions each iteration

• Faster convergence, more parallelizable

• Combined s-step pipelined methods

• (ℓ, 𝑠)-GMRES (Yamazaki, Hoemmen, Luszczek, Dongarra, 2017)

• Hybrid approach which combines ideas of s-step and pipelined methods;
reduces number of global synchronizations and also overlaps them with
other work

54

Practical Implementation Challenges

• How to pick parameters? (pipeline depth in pipelined method; s in s-step
method)

• Choice must take into account matrix structure, machine, partition, as
well as numerical properties (more on this next time!)

• Preconditioning

• Must consider overlap in pipelined methods (if enough to overlap with)

• For s-step, can diminish potential gain from matrix powers kernel if
preconditioner is dense (but still win from savings in Allreduce)

55

Choosing s

• How do we expect communication costs to change as s
increases?

• Initially decrease, but at some point, start increasing

• Point depends on sparsity structure of matrix,
partition of matrix, and latency/bandwidth
parameters of the machine

• Bandwidth cost can start to dominate

• For s large enough, the extra entries we need go past
our neighbors boundaries

• more messages required -> increased latency
cost

57

ti
m

e
p

er
 it

er
at

io
n

s

Choosing s

• How do we expect communication costs to change as s
increases?

• Initially decrease, but at some point, start increasing

• Point depends on sparsity structure of matrix,
partition of matrix, and latency/bandwidth
parameters of the machine

• Bandwidth cost can start to dominate

• For s large enough, the extra entries we need go past
our neighbors boundaries

• more messages required -> increased latency
cost

• For GMRES, best s for matrix powers may not be best
s for TSQR kernel

• Choice of s requires co-tuning

57

ti
m

e
p

er
 it

er
at

io
n

s

175

Lower Bound Tradeoffs for Matrix Powers

58

• Solomonik, C., Knight, Demmel (2014): Lower bounds on tradeoffs
between three basic costs of a parallel algorithm: synchronization, data
movement, and computational cost.

• By considering critical path, tradeoffs give lower bounds on the
execution time which are dependent on the problem size but
independent of the number of processors (assuming homogeneity)

Lower Bound Tradeoffs for Matrix Powers

58

• Solomonik, C., Knight, Demmel (2014): Lower bounds on tradeoffs
between three basic costs of a parallel algorithm: synchronization, data
movement, and computational cost.

• By considering critical path, tradeoffs give lower bounds on the
execution time which are dependent on the problem size but
independent of the number of processors (assuming homogeneity)

• Theorem: Any parallel execution of an 𝑠-dimensional Krylov basis
computation for a 2𝑚 + 1 𝑑-point stencil on a 𝑑-dimensional regular
mesh requires

Ω(𝑚𝑑𝑏𝑑𝑠) flops, Ω(𝑚𝑑𝑏𝑑−1𝑠) words, Ω 𝑠 𝑏 messages,

for some 𝑏 ∈ {1,… , 𝑠}

Lower Bound Tradeoffs for Matrix Powers

58

• Matrix powers kernel attains this lower bound when 𝑛𝑑 𝑝 ≥ 𝑚𝑑𝑏𝑑

where 𝑛𝑑 is # mesh points

• Solomonik, C., Knight, Demmel (2014): Lower bounds on tradeoffs
between three basic costs of a parallel algorithm: synchronization, data
movement, and computational cost.

• By considering critical path, tradeoffs give lower bounds on the
execution time which are dependent on the problem size but
independent of the number of processors (assuming homogeneity)

• Theorem: Any parallel execution of an 𝑠-dimensional Krylov basis
computation for a 2𝑚 + 1 𝑑-point stencil on a 𝑑-dimensional regular
mesh requires

Ω(𝑚𝑑𝑏𝑑𝑠) flops, Ω(𝑚𝑑𝑏𝑑−1𝑠) words, Ω 𝑠 𝑏 messages,

for some 𝑏 ∈ {1,… , 𝑠}

Performance Modeling to Estimate Parameters

58

• Goal: estimate best blocking factor 𝑏 for matrix powers
computation

Performance Modeling to Estimate Parameters

58

• Goal: estimate best blocking factor 𝑏 for matrix powers
computation

• Cost model:

Time = 𝛾 × flops + 𝛽 × words moved + 𝛼 × # messages

Performance Modeling to Estimate Parameters

58

• Goal: estimate best blocking factor 𝑏 for matrix powers
computation

• Cost model:

Time = 𝛾 × flops + 𝛽 × words moved + 𝛼 × # messages

• Choose 𝑏 to minimize

Time ~ 𝛾 𝑚𝑑𝑏𝑑𝑠 + 𝛽𝑚𝑑𝑏𝑑−1𝑠 + 𝛼 𝑠 𝑏

Performance Modeling to Estimate Parameters

58

• Goal: estimate best blocking factor 𝑏 for matrix powers
computation

• Cost model:

Time = 𝛾 × flops + 𝛽 × words moved + 𝛼 × # messages

• Choose 𝑏 to minimize

Time ~ 𝛾 𝑚𝑑𝑏𝑑𝑠 + 𝛽𝑚𝑑𝑏𝑑−1𝑠 + 𝛼 𝑠 𝑏

• Latency/BW tradeoff point : 𝑏 ~
𝛼 1 𝑑

𝑚𝛽1/𝑑

Performance Modeling to Estimate Parameters

58

• Goal: estimate best blocking factor 𝑏 for matrix powers
computation

• Starting place for parameter selection – to get close to optimal
answer, would need more accurate model of time, costs including
constants

• Cost model:

Time = 𝛾 × flops + 𝛽 × words moved + 𝛼 × # messages

• Choose 𝑏 to minimize

Time ~ 𝛾 𝑚𝑑𝑏𝑑𝑠 + 𝛽𝑚𝑑𝑏𝑑−1𝑠 + 𝛼 𝑠 𝑏

• Latency/BW tradeoff point : 𝑏 ~
𝛼 1 𝑑

𝑚𝛽1/𝑑

Matrix Partitioning

59

• For computing matrix powers (i.e., constructing the basis matrix in s-step
methods, we really want to partition the structure of 𝐴𝑠 rather than 𝐴
• Analogous to single SpMV, can construct a hypergraph model such

that the minimum cut gives a partition with minimum communication
volume

• Load balancing
• The parallel matrix powers kernel involves redundantly computing

entries of the vectors on different processors
• Entries which need to be redundantly computed determined by

partition

Hypergraph Partitioning for Matrix Powers

• “s-level” row- and column-nets encode the structure of 𝐴𝑠

row-nets represent
domain of dependence

column-nets represent
domain of influence

Parallel communication for
𝑦 = 𝐴𝑠𝑥,

given 1D rowwise layout of 𝐴𝑠

Parallel communication for
𝑉 = [𝑥, 𝐴𝑥, 𝐴2𝑥,… , 𝐴𝑠𝑥],
given a sparse tiling of 𝐴 =

(assuming no
cancellation and

nonzero diagonal)

Hypergraph Partitioning for Matrix Powers

• “s-level” row- and column-nets encode the structure of 𝐴𝑠

• But expensive to compute (s × Boolean sparse matrix-matrix multiplies)
• Only worth it if 𝐴 has particularly irregular sparsity structure (e.g., number of nonzeros

per column in 𝐴𝑖 grows at various rates) and same matrix will be reused
• Potential use of randomized algorithms to estimate nnz/column in 𝐴𝑖

row-nets represent
domain of dependence

column-nets represent
domain of influence

Parallel communication for
𝑦 = 𝐴𝑠𝑥,

given 1D rowwise layout of 𝐴𝑠

Parallel communication for
𝑉 = [𝑥, 𝐴𝑥, 𝐴2𝑥,… , 𝐴𝑠𝑥],
given a sparse tiling of 𝐴 =

(assuming no
cancellation and

nonzero diagonal)

Preconditioning for s-step variants

• Preconditioners improve spectrum of system to improve convergence
rate

• E.g., instead of 𝐴𝑥 = 𝑏, solve 𝑀−1𝐴𝑥 = 𝑀−1𝑏, where 𝑀−1 ≈ 𝐴−1

• Essential in practice

187

Preconditioning for s-step variants

• Preconditioners improve spectrum of system to improve convergence
rate

• E.g., instead of 𝐴𝑥 = 𝑏, solve 𝑀−1𝐴𝑥 = 𝑀−1𝑏, where 𝑀−1 ≈ 𝐴−1

• Essential in practice

• In s-step variants, general preconditioning is a challenge

• Except for very simple cases, ability to exploit temporal locality (in
matrix powers computation) across iterations is diminished by
preconditioning

• Still potential gain from blocking inner products/avoiding
global synchronization

• If possible to avoid communication at all, usually necessitates
significant modifications to the algorithm

188

Preconditioning for s-step variants

• Preconditioners improve spectrum of system to improve convergence
rate

• E.g., instead of 𝐴𝑥 = 𝑏, solve 𝑀−1𝐴𝑥 = 𝑀−1𝑏, where 𝑀−1 ≈ 𝐴−1

• Essential in practice

• In s-step variants, general preconditioning is a challenge

• Except for very simple cases, ability to exploit temporal locality (in
matrix powers computation) across iterations is diminished by
preconditioning

• Still potential gain from blocking inner products/avoiding
global synchronization

• If possible to avoid communication at all, usually necessitates
significant modifications to the algorithm

• Tradeoff: speed up convergence, but increase time per iteration due to
communication!

• For each specific app, must evaluate tradeoff between
preconditioner quality and sparsity of the system

189

Preconditioning for s-step KSMs

• Much recent/ongoing work in developing communication-avoiding
preconditioned methods

• Many approaches shown to be compatible

• Diagonal

• Sparse Approx. Inverse (SPAI) – for s-step BICGSTAB by Mehri
(2014)

• HSS preconditioning (Hoemmen, 2010); for banded matrices (Knight,
C., Demmel, 2014); same general technique for any system that can
be written as sparse + low-rank

• Deflation for s-step CG (C., Knight, Demmel, 2014), for s-step
GMRES (Yamazaki et al., 2014)

• CA-ILU(0) – Moufawad and Grigori (2013)

• Domain decomposition – avoid introducing additional communication
by “underlapping” subdomains (Yamazaki et al., 2014)

60

"Underlapping" Domain Decomposition

62

(Yamazaki et al., 2014)

• Variant of an additive Schwarz preconditioner, modified to ensure consistent interfaces
between the subdomains without additional communication beyond what is required by
sparsity structure of A

In order to "localize" effects of preconditioner,
• form "interior" by removing s-level "underlap"
• apply "local" preconditioner on "interior"

• ILU(k), SAI(k), Jacobi, GaussSeidel, etc. on "interior"
• apply diagonal Jacobi on "underlap"

"Underlapping" Domain Decomposition

62

(Yamazaki et al., 2014)

• Variant of an additive Schwarz preconditioner, modified to ensure consistent interfaces
between the subdomains without additional communication beyond what is required by
sparsity structure of A

In order to "localize" effects of preconditioner,
• form "interior" by removing s-level "underlap"
• apply "local" preconditioner on "interior"

• ILU(k), SAI(k), Jacobi, GaussSeidel, etc. on "interior"
• apply diagonal Jacobi on "underlap"

The effects of finite precision

Well-known that roundoff error has two
effects:

1. Delay of convergence
• No longer have exact Krylov

subspace
• Can lose numerical rank deficiency
• Residuals no longer orthogonal -

Minimization of 𝑥 − 𝑥𝑖 𝐴 no
longer exact

2. Loss of attainable accuracy
• Rounding errors cause true

residual 𝑏 − 𝐴𝑥𝑖 and updated
residual 𝑟𝑖 deviate!

𝐴: bcsstk03 from SuiteSparse,
𝑏: equal components in the eigenbasis of 𝐴, 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 7e6

Much work on these results for CG; See Meurant and Strakoš (2006) for a thorough
summary of early developments in finite precision analysis of Lanczos and CG

10

CG (double)

The effects of finite precision

Well-known that roundoff error has two
effects:

1. Delay of convergence
• No longer have exact Krylov

subspace
• Can lose numerical rank deficiency
• Residuals no longer orthogonal -

Minimization of 𝑥 − 𝑥𝑖 𝐴 no
longer exact

2. Loss of attainable accuracy
• Rounding errors cause true

residual 𝑏 − 𝐴𝑥𝑖 and updated
residual 𝑟𝑖 deviate!

𝐴: bcsstk03 from SuiteSparse,
𝑏: equal components in the eigenbasis of 𝐴, 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 7e6

Much work on these results for CG; See Meurant and Strakoš (2006) for a thorough
summary of early developments in finite precision analysis of Lanczos and CG

10

CG (double)
exact CG

Conjugate Gradient method for solving Ax = b
double precision (𝜀 = 2−53)

𝑥𝑖 − 𝑥 𝐴 = 𝑥𝑖 − 𝑥 𝑇𝐴(𝑥𝑖 − 𝑥)

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖𝑝𝑖
𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖𝐴𝑝𝑖
𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖

195

Conjugate Gradient method for solving Ax = b
double precision (𝜀 = 2−53)

𝑥𝑖 − 𝑥 𝐴 = 𝑥𝑖 − 𝑥 𝑇𝐴(𝑥𝑖 − 𝑥)

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖𝑝𝑖
𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖𝐴𝑝𝑖
𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖

3

