High-Performance Variants of

Krylov Subspace Methods: 1/

Erin C. Carson

Katedra numerické matematiky, Matematicko-fyzikalni fakulta, Univerzita Karlova

SNA '19
January 21-25, 2019

This research was partially supported by OP RDE project No. CZ.02.2.69/0.0/0.0/16 _027/0008495

o EUROPEAN UNION
> ’; European Structural and Investment Funds
* *

Operational Programme Research,
Development and Education Y e T 1O,

* 4 x

| ecture Outline

* Parallel computers and performance modeling

e Architecture trends

* Krylov subspace methods
* Properties

* Performance bottlenecks at scale

* High-performance variants of Krylov subspace methods
 Early approaches
* Pipelined methods

* s-step methods

* Practical implementation issues and challenges

Computational and Data Science at Scale

* Why are we interested in solving larger and larger problems?

* Enables new frontiers in computational science and engineering

= Finer-grained simulation, over longer time scales, processing huge
amounts of available data

Computational and Data Science at Scale

* Why are we interested in solving larger and larger problems?

* Enables new frontiers in computational science and engineering

= Finer-grained simulation, over longer time scales, processing huge
amounts of available data

* Atmosphere, Earth, Environment

* Physics - applied, nuclear, particle, fusion, photonics

* Bioscience, Biotechnology, Genetics

* Chemistry, Molecular Sciences

* Geology, Seismology

* Electrical Engineering, Circuit Design, Microelectronics
* Mechanical Engineering - from prosthetics to spacecraft

Computational and Data Science at Scale

* Why are we interested in solving larger and larger problems?

* Enables new frontiers in computational science and engineering

= Finer-grained simulation, over longer time scales, processing huge
amounts of available data

* Atmosphere, Earth, Environment

* Physics - applied, nuclear, particle, fusion, photonics

* Bioscience, Biotechnology, Genetics

* Chemistry, Molecular Sciences

* Geology, Seismology

* Electrical Engineering, Circuit Design, Microelectronics
* Mechanical Engineering - from prosthetics to spacecraft

e Also industrial and commercial interests

» '"Big Data", databases, data mining

* Artificial Intelligence (Al)

* Medical imaging and diagnosis

* Pharmaceutical design

* Financial and economic modeling

» Advanced graphics and virtual reality

* Qil exploration 5

Technology Trends: Microprocessor Capacity

1975 @80 1985 1990 1995

-]

10M Micra 500
{ransistors) o s00n mips)

™ & Pantium® 25

0B Prooassor
100K ' BOAAE 1.0
® BO2BEA
10K BORE R
*E-ilil-ﬂ.lll

.1 ITII:!'I'l n-m

2X transistors/Chip Every 1.5 years
“Moore's Law”

Microprocessors have become
smaller, denser, and more
powerful.

Gordon Moore (co-founder of Intel)
predicted in 1965 that the transistor
density of semiconductor chips would
double roughly every 18 months.

Slide source: Jack Dongarra

Microprocessor Transistors / Clock (1970-2000)

10000000

1000000

100000 +—

10000 -

1000

¢ Transistors (Thousands)

= Frequency (MHz)

100

10

1990 1995 2000

Slide source: Kathy Yelick

Historical Impact of Device Shrinkage

» What happens when the feature size (transistor size) shrinks by a factor of x?

Slide source: Kathy Yelick 6

Historical Impact of Device Shrinkage

» What happens when the feature size (transistor size) shrinks by a factor of x?

* Clock rate goes up by x because wires are shorter
 actually less than x, because of power consumption

Slide source: Kathy Yelick 6

Historical Impact of Device Shrinkage

» What happens when the feature size (transistor size) shrinks by a factor of x?

* Clock rate goes up by x because wires are shorter
* actually less than x, because of power consumption

* Transistors per unit area goes up by x’

Slide source: Kathy Yelick 6

Historical Impact of Device Shrinkage

What happens when the feature size (transistor size) shrinks by a factor of x?

Clock rate goes up by x because wires are shorter
* actually less than x, because of power consumption

Transistors per unit area goes up by x°

Die size has also increased
* typically another factor of ~ x

Slide source: Kathy Yelick 6

Historical Impact of Device Shrinkage

» What happens when the feature size (transistor size) shrinks by a factor of x?

Clock rate goes up by x because wires are shorter
* actually less than x, because of power consumption

Transistors per unit area goes up by x°

Die size has also increased
* typically another factor of ~ x

Raw computing power of the chip goes up by ~ x*|
* typically x®is devoted to either on-chip
* parallelism: hidden parallelism such as ILP
* locality: caches

So most programs x° times faster, without changing them

Slide source: Kathy Yelick 6

Power Density Limits Serial Performance

Scaling clock speed (business as usual) will not work
10000

Source: Patrick Gelsinger,
Shenkar Bokar, Intel®

Nuclear .

Reactor

Hot Plate =

10 hopg— A

(NA
£
&)

B
>

5=
7]
c
<))

(=]
S
<))
2
(o]

a

Pentium®

Slide source: Kathy Yelick 7

Power Density Limits Serial Performance

Scaling clock speed (business as usual) will not work

Concurrent systems are more 10000

power efﬁcient Source: Patrick Gelsinger,
Shenkar Bokar, Intel®

— Dynamic power is
proportional to VZfC
— Increasing frequency (f) also

increases supply voltage (V)
—> cubic effect

— Increasing cores increases

capacitance (C) but only
linearly

v
9
Nuclear —p

Reactor (X

Hot Plate =

7D

Pentium®

Power Density (W/cm?)

— Save power by lowering
clock speed

Slide source: Kathy Yelick 7

Power Density Limits Serial Performance

Scaling clock speed (business as usual) will not work

* Concurrent systems are more 10000

power efﬁcient Source: Patrick Gelsinger,
Shenkar Bokar, Intel®

— Dynamic power is
proportional to VZfC
— Increasing frequency (f) also

increases supply voltage (V)
—> cubic effect

— Increasing cores increases
capacitance (C) but only
linearly

v
9
Nuclear —p

Reactor (X

Hot Plate =

v g»

Pentium®

Power Density (W/cm?)

— Save power by lowering
clock speed

e High performance serial processors waste power
- Speculation, dynamic dependence checking, etc. burn power
- Implicit parallelism discovery
e More transistors, but not faster serial processors
Slide source: Kathy Yelick ~ /

Revolution in Processors

10000000
]
1000000 .
¢ Transistors (Thousands)
100000 1 = Frequency (MHz)
A Power (W)
10000 - * Cores
1000
100 s L - o)
m 4 l : 4 A A -
u 3 A, 24 4
10 1 X 7 5 ° 0
LN ARy A A A
L 3 ~ [N
Il P
0 T T T T T T T
1970 1975 1980 1985 1990 1995 2000 2005 2010

Chip density is continuing increase ~2x every 2 years

Clock speed is not

Number of processor cores may double instead

Power is under control, no longer growing

Parallel Computer Architectures

» Takeaway: a// programs that need to run faster will have to become parallel
programs

» Since mid 2000s - not only are fastest computers parallel, but nearly a//
computers are parallel

17

Evolution of HPC Nodes

a I https://str.linl.gov/march-2015/still

mmm Central processing unit (CPU)
mEmm Multicore CPU

mm Memory (MEM)

mm Cache

= Graphic processing unit {GPLU)

. J

1595
Single CPU per nodes
with main memory

18

Evolution of HPC Nodes

mmm Central processing unit (CPU)
mEmm Multicore CPU

mm Memory (MEM)

mm Cache

= Graphic processing unit {GPLU)

1595
Single CPU per nodes
with main memory

e

A

20002010

lMultiple CPUs per node

sharing main memory

https://str.linl.gov/march-2015/still

19

Evolution of HPC Nodes

I https://str.linl.gov/march-2015/still

mmm Central processing unit (CPU)
mEmm Multicore CPU

mm Memory (MEM)

mm Cache

= Graphic processing unit {GPLU)

A A vy
1985 2000-2010
Single CPU per nodes lMultiple CPUs per node
with main memory sharing main memory
= Mew programming models -
4 ™
MEM
MEM
- J
2000—-2010
Accelerators usher in 20

era of heterogeneity

Evolution of HPC Nodes

mmm Central processing unit (CPU)

Bl Multicere CPU
mm Memory (MEM)
mm Cache

= Graphic processing unit {GPLU)

.

iy

Ny

.

1=

MEM

1595
Single CPU per nodes
with main memory

Mew programming models

A

20002010
Accelerators usherin
era of heterogeneity

~,

S/

AN vy

2000-2010
lMultiple CPUs per node
sharing main memory

https://str.linl.gov/march-2015/still

2014
Accelerators share common
wiew of memory with CPU

21

Evolution of HPC Nodes

) https://str.linl.gov/march-2015/still

mmm Central processing unit (CPU)
mEmm Multicore CPU

mm Memory (MEM)

mm Cache

= Graphic processing unit {GPLU)

. AN /
1595 2000-2010
Single CPU per nodes lMultiple CPUs per node
with main memory sharing main memory
= Mew programming models -
4 ™ N .Fm. MEM ™
MEM E
MEM H
. /N /N /
20002010 2014 2015
Accelerators usherin Accelerators share common Simple low-power cores and 29

era of heterogeneity wiew of memory with CPU non-uniform memory access

Evolution of HPC Nodes

) https://str.linl.gov/march-2015/still

mmm Central processing unit (CPU)
mEmm Multicore CPU

mm Memory (MEM)

mm Cache

= Graphic processing unit {GPLU)

. AN /
1595 2000-2010
Single CPU per nodes lMultiple CPUs per node
with main memory sharing main memory
= Mew programming models -
4 ™y N .Fm. MEM ™ ™
- E = : : :
MEM H
. /N /N /N /
20002010 2014 2015 20172019
Accelerators usherin Accelerators share common Simple low-power cores and Processor in memorny 23

era of heterogeneity wiew of memory with CPU non-uniform memory access

HPC Architectures Today

Summit (Oak Ridge National Lab, Tennessee)
* current #1 on the TOP500

24

HPC Architectures Today

One Processor: 22 SIMD processing cores, on-chip accelerators
* Each core supports 4 hardware threads
» Each core has separate L1 cache; pairs of cores share L2 and L3 cache

4 POWER9 N\

On-Chip
Accelerators

Memory O CAPl NV Accel | SMP

\| DDR4 | PCle Gen4 - 25Gb/s | 16Gbis

(2]
p-d
]{

g {
]
POWER®

o bl
o

https:/ /www.olcf.ornl.gov/wp-content/uploads/2018/12/summit_ workshop thompto.pdf

25

HPC Architectures Today

One GPU (NVIDIA V100): 80 streaming multiprocessors (SMs), 16 GB of high-
bandwidth memory (HBM?2), 6 MB L2 cache shared by SMs

https://www.olcf.ornl.gov /for-users/system-user-
guides/summit/summit-user-guide /#nvidia-v100-gpus

26

HPC Architectures Today

One SM:

32 FP64 (double-precision) cores,
64 FP32 (single-precision) cores,
64 INT32 cores,

8 tensor cores,

128-KB shared memory/L1 cache

https://www.olcf.ornl.gov /for-users/system-user-guides/summit /summit-user-guide /#nvidia-v100-gpus

FP64

FP64

FP64

FP64

FP64

FP64

FP64

FP64

LD/ LD/
ST ST

L1 Instruction Cache

L0 Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-hit)

INT |[FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

LD/ LD/
5T ST ST

TENSOR TENSOR
CORE CORE

LD/ LD/
§T ST SFU

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT

INT

INT

INT

INT

INT

INT

INT

LD/
sT

INT |[FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

LD/ LD/
ST ST ST

TENSOR TENSOR
CORE CORE

LD/ LD/
sT ST SFU

12BKB L1 Data Cache / Shared Memory

Tex

FPG4

FP64

FP64

FP64

FP64

FP64

FP64

FP64

LD/ LD/
sT ST

LO Instruction Cache
Warp Scheduler (32 threadiclk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

LD/ LD/
ST 5T

TENSOR
CORE

LD/ LD/
ST ST

LO Instruction Cache
Warp Scheduler (32 threadiclk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT

INT

INT

INT

INT

INT

INT

INT

LD/
5T

Tex

ST

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

LD/ LD/
sT ST

TENSOR
CORE

LD/ LD/
ST ST

TENSOR
CORE

TENSOR
CORE

27

HPC Architectures Today

One Socket: 1 CPU, 3 GPUs

256 GB
(DDR4)
$ 135085

CPUO
T
ren | [sman | [swom |
[Zewm | e | [eewn |
[0zt | [vowess | [e |
| sps19) | [v@ean | | 13275 |
[sw@o2y | | 12¢esn | [1ecere |
[eezn | [Ree | [oeowm |

7 1 N

GPUO GPU 1 || GPU2

668 |
(H8n2)

NVLink2 ” (50 GB/s) : (900 GBis)

https://www.olcf.ornl.gov/for-users/system-user-guides/summit/summit-user-guide 28

HPC Architectures Today

One Node: 2 sockets Summit Node
(2) IBM Power9 + (6) NVIDIA Volta V100

256 GB 256 GB
(DDR4) (DDR4)
$ 13508 + 1350G8BIs

CPUO CPU1
[ooa | [7@ean | [1sess) | [22@88n | [20116119 | [36(144-147) |
[1en | [s@ess | [seoes | [230299 | 300120423 | [a7 14815) |
X T T 64 GBis [Catmem | [Sroaean | (et |
oz] 0@ | [1767)] | <)y | [Z=000103) | [025130 | 3005079 |
[40619 | [1@ean | [18275 | | 28¢108-107) | | 33(132.135) | | 40(160-163) |
[s@o2y | | 12ussny | | 1w@er | [[27008111) | | 34(136139) | | 41 (164-167) |
[[seean | [13@2sn | [200089 | [0 | [0 | [4206817y) |

Z 1 N 7 1T N

GPU O || GPU1 GPU 2

GPU3 |gu| GPU4 || GPUS

-
v

16 GB

(HBM2)

NVLink2 4mmmp (50 GBIs) 4 (900 GBIs)

https://www.olcf.ornl.gov/for-users/system-user-guides/summit/summit-user-guide 29

>
Q]
-
O
_I
0y
0
~
=
4
O
0,
iy
-
O
~—
<
O
al
L

18 nodes
Dual-rail EDR InfiniBand network with non-blocking fat-tree topology

Node bandwidth of 23 GB/s

One Rack

gmumwmm E

|

. HAEEE /|

[

- nmmmmmmm
i

|

RERERRD

&mumwmm

|

i

/
e

‘3-1 ;

]

=

=

. HUREEEN
n's iR
L

|

. HiiES

l N

/
=]

\

l

/
S o

il
|
=

ﬂ[—

J
J

. HUREEEN
u-HIN
L

. HUREEEN
n iR
L

|

 MHNEEEE

, TRRRRER
._wmmummmm

EME EME T

. Wi [
il .Ji% y_\ L L

N L

T

w3 %mg sl mmmm IW i
EME EME ‘|

| HiES e T

=

f

30

HPC Architectures Today

Compute (256) || Storage (40)
Switch (18) D Infrastructure (4

https://en.wikichip.org/wiki/supercomputers/summit 31

Designing High-Performance Parallel Algorithms

* To design an efficient parallel algorithm, must first model physical costs ---
runtime or energy consumption --- of executing a program on a machine

* Tradeoff:

* More detailed model: more accurate results for a particular machine, but
results may not apply to other machines

* Less detailed model: results applicable to a variety of machines, but may
not be accurate for any

* but abstracting machine details can still give us a general sense of an
efficient implementation

12

Performance Modeling: Latency-Bandwidth Model

A simplified runtime model:

* Time to perform a floating point operation: vy
* Time to move a message of n words: o + Bn
* o = latency (seconds), B = 1/bandwidth (seconds/word)

Runtime = y (# flops) + B (# words) + o (# msgs)

#flops,words,msgs are counted along a critical path in the schedule:

Critical Path = 4 Days

13

Performance Modeling: Latency-Bandwidth Model

v is per-flop:
* To improve: more parallelism (no longer increase clock
frequency)

14

Performance Modeling: Latency-Bandwidth Model

v is per-flop:
* To improve: more parallelism (no longer increase clock
frequency)

f is per-word:
* Models bandwidth: maximum amount of data that can be in-
flight simultaneously

* To improve: add more ports/wires/etc.

14

Performance Modeling: Latency-Bandwidth Model

v is per-flop:
* To improve: more parallelism (no longer increase clock
frequency)

f is per-word:
* Models bandwidth: maximum amount of data that can be in-
flight simultaneously

* To improve: add more ports/wires/etc.

a is per-message and independent of message size
* Models latency: time for data to travel across machine

* Difficult to improve, due to fundamental limits (speed of light,
atomic radius,...)

“Bandwidth is money, but latency is physics” ”

Exascale System Projections

Today's Systems Predicted Exascale

Systems*
System Peak 10 flops/s 108 flops/s

Node Memory 2 S

Bandwidth 10“ GB/s 10° GB/s
Interconnect 1 2

Bandwidth 10" GB/s 104 GB/s

Memory Latency 10=7 s 5.10°8 s

Interconnect Latency 10=6 s 5.10"7 ¢

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

cPU cru 4mmmp cru
Cache DRAM DRAM
DRAM CPU CPU

DRAM DRAM 15

Exascale System Projections

Todav's Svstems Predicted Exascale Factor
Y=oy Systems* Improvement
System Peak 10 flops/s 108 flops/s 100
Node Memory 2 3
Bandwidth 10 GB/s 10° GB/s 10
Interconnect 1 2
Bandwidth 10+ GB/s 10 GB/s 10
Memory Latency 10~7 s 5.10" 8¢ 2
Interconnect Latency 10~ s 5.10"7 s \ 2 /

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

15

Exascale System Projections

, Predicted Exascale Factor
Today's Systems 5
Systems Improvement
System Peak 10 flops/s 108 flops/s 100
Node Memory 2 3
Bandwidth 10“ GB/s 10° GB/s 10
Interconnect 1 2
Bandwidth 10 GB/s 104 GB/s 10
Memory Latency 10~7 s 5.10" 8¢ 2
Interconnect Latency 10~ s 5.10"7 s \ 2 /

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

* Movement of data (communication) is much more expensive than floating
point operations (computation), in terms of both time and energy

* Gaps will only grow larger

* Reducing time spent moving data/waiting for data will be essential for

applications at exascale! 15

Exascale Computing: The Modern Space Race

« "Exascale": 1018 floating point operations per second
* with maximum energy consumption around 20-40 MWatts

» Advancing knowledge, addressing social
challenges, improving quality of life,
influencing policy, economic
competitiveness

Nothing tends so much to the
advancement of knowledge as the
application of a new instrument.

- Sir Humphry Davy

* Large investment in HPC worldwide

’i L 2 ' *z
g' M
N e
USA — Aurora at Europe China Japan - Post-K
Argonne 2022 2019-2020 computer
2021 2021

16

Exascale Computing: The Modern Space Race

« "Exascale": 1018 floating point operations per second
* with maximum energy consumption around 20-40 MWatts

» Advancing knowledge, addressing social
challenges, improving quality of life,
influencing policy, economic
competitiveness

Nothing tends so much to the
advancement of knowledge as the
application of a new instrument.

- Sir Humphry Davy

* Large investment in HPC worldwide

"i = ' ol
g: M
USA — Aurora at Europe China Japan - Post-K
Argonne 2022 2019-2020 computer
2021 2021

* Technical challenges at all levels
hardware to algorithms to applications

16

Exascale Computing: The Modern Space Race

« "Exascale": 1018 floating point operations per second
* with maximum energy consumption around 20-40 MWatts

» Advancing knowledge, addressing social
challenges, improving quality of life,
influencing policy, economic
competitiveness

Nothing tends so much to the
advancement of knowledge as the
application of a new instrument.

- Sir Humphry Davy

* Large investment in HPC worldwide

"i = ' ol
g' M
N e
USA — Aurora at Europe China Japan - Post-K
Argonne 2022 2019-2020 computer
2021 2021

* Technical challenges at all levels

hardware to (algorithms to applications

\\~_7] - ¢’, 16

An Exaflop of what?

* When will victory be declared?

* When a supercomputer reaches exaflop performance on the LINPACK
benchmark (TOP500)

* Solving dense Ax = b using Gaussian elimination with partial pivoting

17

An Exaflop of what?

* When will victory be declared?

* When a supercomputer reaches exaflop performance on the LINPACK
benchmark (TOP500)

* Solving dense Ax = b using Gaussian elimination with partial pivoting

* Summit supercomputer has already exceeded exaflop performance for a certain
genomics code (https://www.olcf.ornl.gov/2018/06/08/genomics-code-exceeds-
exaops-on-summit-supercomputer/)

17

https://www.olcf.ornl.gov/2018/06/08/genomics-code-exceeds-exaops-on-summit-supercomputer/

An Exaflop of what?

* When will victory be declared?

* When a supercomputer reaches exaflop performance on the LINPACK
benchmark (TOP500)

* Solving dense Ax = b using Gaussian elimination with partial pivoting

* Summit supercomputer has already exceeded exaflop performance for a certain
genomics code (https://www.olcf.ornl.gov/2018/06/08/genomics-code-exceeds-
exaops-on-summit-supercomputer/)

* Does that mean we are done?

17

https://www.olcf.ornl.gov/2018/06/08/genomics-code-exceeds-exaops-on-summit-supercomputer/

An Exaflop of what?

* When will victory be declared?

* When a supercomputer reaches exaflop performance on the LINPACK
benchmark (TOP500)

* Solving dense Ax = b using Gaussian elimination with partial pivoting

* Summit supercomputer has already exceeded exaflop performance for a certain
genomics code (https://www.olcf.ornl.gov/2018/06/08/genomics-code-exceeds-
exaops-on-summit-supercomputer/)

* Does that mean we are done?
* LINPACK benchmark is typically a compute-bound problem ("BLAS-3")

* Not a good indication of performance for a large number of scientific applications!
* Lots of remaining work even after exascale performance is achieved
* Has led to incorporation of other benchmarks into the TOP500 ranking

* e.g., HPCG: Solving sparse Ax = b iteratively using the conjugate gradient
method

17

https://www.olcf.ornl.gov/2018/06/08/genomics-code-exceeds-exaops-on-summit-supercomputer/

Krylov subspace methods

Linear systems Ax = b, eigenvalue problems, singular value problems, least squares, etc.
Best for: A large & very sparse, stored implicitly, or only approximation needed

Krylov Subspace Method is a projection process onto the Krylov subspace
:]Ci(A, ro) = span{T‘O,AT‘O,AZTO, ...,Ai_lro}

where A is an N X N matrix and ry = b — Ax, is a length-N vector

In each iteration,
* Add a dimension to the Krylov subspace
— Forms nested sequence of Krylov subspaces

Ki(A,1y) cKy(A 1) € €Ki (A1)

 Orthogonalize (with respect to some C;)

* Select approximate solution x; € x¢ + K;(A4,1p)
using r; = b — Ax; L C;

« Ex: Lanczos/Conjugate Gradient (CG), Arnoldi/Generalized Minimum Residual
(GMRES), Biconjugate Gradient (BICG), BICGSTAB, GKL, LSQR, etc. 18

Krylov Subspace Methods in the Wild

sors o [10%Pasm Computer Vision

o—mwamm\:moa

0 5
X(100 km)

Climate Modeling

Financial Portfolio
Optimization

Computational Cosmology Latent Semantic Analysis

EXXXT

20

The conjugate gradient method

A is symmetric positive definite, C; = K;(4,1y)

21

The conjugate gradient method

A is symmetric positive definite, C; = K;(4,1y)

i L K;(A,r = x —xill4a = min X —Z
l l() 0) ” l”A ZEx0+7Ci(A,r0)” ”A

21

The conjugate gradient method

A is symmetric positive definite, C; = K;(4,1y)

i L K;(A,r = x —xill4a = min X —Z
l l() 0) ” l”A ZEx0+7Ci(A,r0)” ”A

= Iy41 =0

21

The conjugate gradient method

A is symmetric positive definite, C; = K;(4,1y)

i L K;(A,r = x —xill4a = min X —Z
l l() 0) ” l”A ZEx0+7Ci(A,r0)” ”A

= In+1 =0

Connection with Lanczos

» With v; = 1y/||roll, i iterations of Lanczos produces N X i matrix V; =
[v4,...,v;], and i X i tridiagonal matrix T; such that

AV; = ViT; + 8i41Vi41€] T; = Vi AV;

* CG approximation x; is obtained by solving the reduced model
Ty = llrolles, x; = xo + Viy;

21

The conjugate gradient method

A is symmetric positive definite, C; = K;(4,1y)

i L K;(A,r = x —xill4a = min X —Z
L l() O) ” l”A ZEx0+iKi(A,r0)” ”A

= ITy+1 =0

Connection with Lanczos

» With v; = 1y/||roll, i iterations of Lanczos produces N X i matrix V; =
[v{, ..., v;], and i X i tridiagonal matrix T; such that

AV; = ViT; + 8i41Vi41€] T; = Vi AV;

* CG approximation x; is obtained by solving the reduced model
Ty = llrolles, x; = xo + Viy;

» Connections with orthogonal polynomials, Stieltjes problem of moments, Gauss-
Cristoffel quadrature, others (see 2013 book of Liesen and Strakos)

21

The conjugate gradient method

A is symmetric positive definite, C; = K;(4,1y)

i L K;(A,r = x —xill4a = min X —Z
L l() O) ” l”A ZEx0+iKi(A,r0)” ”A

= ITy+1 =0

Connection with Lanczos

» With v; = 1y/||roll, i iterations of Lanczos produces N X i matrix V; =
[v{, ..., v;], and i X i tridiagonal matrix T; such that

AV; = ViT; + 8i41Vi41€] T; = Vi AV;

* CG approximation x; is obtained by solving the reduced model
Ty = llrolles, x; = xo + Viy;

» Connections with orthogonal polynomials, Stieltjes problem of moments, Gauss-
Cristoffel quadrature, others (see 2013 book of Liesen and Strakos)

= CG (and other Krylov subspace methods) are highly nonlinear
* Good for convergence, bad for ease of finite precision analysis 21

Implementation of CG

 Standard implementation due to Hestenes and Stiefel (1952) (HSCG)

* Uses three 2-term recurrences for updating x;, 1;, p;

7"0 =b_A.x0, po =7‘0

fori = 1:nmax
T
_ TriqTi—1
pl—j_ Pi-1

Xi = Xj—1 + & _1Pi—1

r; =Ti—1 — A1 Ap;_4

T
T'i ri

Bi =

ri_1Ti-1

pi =1 + BiPi—1

end

22

Implementation of CG

 Standard implementation due to Hestenes and Stiefel (1952) (HSCG)

* Uses three 2-term recurrences for updating x;, 1;, p;

o =b — Axy, Do =Ty minimizes ||x — x;|| 4 along line
for i = 1:nmax / z(a) = xj_1 + api_y
T
_ Ti—a1Ti—a /
pl—l pl—l

Xi = Xj—1 + & _1Pi—1

r; =Ti—1 — A1 Ap;_4

T
T'i ri

Bi =

Ti—1Ti-1

pi =1 + BiPi—1

end

22

Implementation of CG

 Standard implementation due to Hestenes and Stiefel (1952) (HSCG)

* Uses three 2-term recurrences for updating Xi, 1, Pi

o =b — Axy, Do =Ty minimizes ||x — x;|| 4 along line
for i = 1:nmax 7 z(a) = x;—-1 + ap;—4
T
a: 4 = Ti—1Ti-1 /
t=1 p’ir_1Api—1 If

. p; Ly p; fori +j,
Xi = Xj—1 + j_1Pi—1 e

r;=Ti_1 — a;_1Ap;_1 .1—d|m.en5|o.na| .ml.nlmlz.?ntlons in each
. iteration give i-dimensional
B; = T Ti minimization over the whole subspace
i =T ..
Ti—1Ti-1

xo + K;(A,1y) = xo + span{py, ... p;j_1}
pi =71; + Bibi-1

end

22

Conjugate Gradient on the World's Fastest Computer

Summit - IBM Power System AC922

Site: Oak Ridge National Laboratory
Manufacturer: IBM

Cores: 2,282,544

Memory: 2,801,664 GB

Processor: IBM POWER9 22C 3.07GHz
Interconnect: Dual-rail Mellanox EDR Infiniband
Performance

Theoretical peak:

187,659 TFlops/s

LINPACK benchmark:

122,300 Tflops/s

HPCG benchmark:

2,926 Tflops/s

23

Conjugate Gradient on the World's Fastest Computer

Summit - IBM Power System AC922

Site: Oak Ridge National Laboratory
Manufacturer: IBM

Cores: 2,282,544

Memory: 2,801,664 GB

Processor: IBM POWER9 22C 3.07GHz
Interconnect: Dual-rail Mellanox EDR Infiniband
Performance

Theoretical peak:

187,659 TFlops/s

LINPACK benchmark:

122,300 Tflops/s

HPCG benchmark:

2,926 Tflops/s

—

current #1
on top500

23

Conjugate Gradient on the World's Fastest Computer

Summit - IBM Power System AC922

Site: Oak Ridge National Laboratory
Manufacturer: IBM

Cores: 2,282,544

Memory: 2,801,664 GB

Processor: IBM POWER9 22C 3.07GHz
Interconnect: Dual-rail Mellanox EDR Infiniband
Performance

7

Theoretical peak:

187,659 TFlops/s

LINPACK benchmark

;022,300 Tflops/s &~

HPCG benchmark:

2,926 Tflops/s

- current #1

on top500

LINPACK benchmark
(dense Ax = b, direct)
65% efficiency

23

Conjugate Gradient on the World's Fastest Computer

Summit - IBM Power System AC922

- current #1

on top500

LINPACK benchmark

(dense Ax = b, direct)
65% efficiency

Site: Oak Ridge National Laboratory
Manufacturer: IBM

Cores: 2,282,544

Memory: 2,801,664 GB

Processor: IBM POWER9 22C 3.07GHz
Interconnect: Dual-rail Mellanox EDR Infiniband
Performance

7

Theoretical peak:

187,659 TFlops/s /

LINPACK benchmark

HPCG benchmark:

: 22,300 Tflops/s
2,926 Tflops/s

| HPCG benchmark

(sparse Ax = b, iterative)

1.5% efficiency

23

The Conjugate Gradient (CG) Method

— _ lteration Loo
ro =b—Axy, Py =71, P

for i = 1:nmax Sparse Matrix
T
ol X Vector
pl—l Pi-1

Inner Products
Xi =Xj—1 + Ai_1Pi-1

r; =Ti—1 — A1 Ap;_4

T
T'i ri

Bi = -7

Ti1Ti-1

pi =71 + BiPi—1

Inner Products

end

End Loop

24

The Conjugate Gradient (CG) Method

— _ lteration Loo
ro =b—Axy, Py =71, P

for i = 1:nmax Sparse Matrix
T
ol X Vector
ai—l - T AD;
pl—l Pi-1

Inner Products
Xi =Xj—1 + Ai_1Pi-1

r; =Ti—1 — A1 Ap;_4

T
T'i ri

Bi = -7

Ti1Ti-1

pi =71 + BiPi—1

Inner Products

end

End Loop

24

The Conjugate Gradient (CG) Method

— _ lteration Loo
ro =b—Axy, Py =71, P

for i = 1:nmax

T
Ti_1Ti-1

M1 T T Ap,

Xi =Xj—1 T QAj_1Pi-1

Sparse Matrix
X Vector

Inner Products

r; =Ti—1 — A1 Ap;_4

T
T'i ri

Bi = -7

Ti1Ti-1

pi =71 + BiPi—1

Inner Products

end

End Loop

24

The Conjugate Gradient (CG) Method

— _ lteration Loo
ro =b—Axy, Py =71, P

for i = 1:nmax

T
Ti_1Ti-1

M1 T T Ap,

Xi =Xj—1 T Aj_1Pi-1

Sparse Matrix
X Vector

Inner Products

r; =Ti—1 — Aj_1Ap;—4

T
T'i ri

Bi = -7

Ti1Ti-1

pi =71 + BiPi—1

Inner Products

end

End Loop

24

The Conjugate Gradient (CG) Method

for i

end

TO =b_Ax0, po =T'O

= 1:nmax

T
_ TiqTi—1

M1 T T ap,

Xi =Xj—1 T Aj_1Pi-1

r; =Ti—1 — Aj_1Ap;—4

T
T'l' ri

Bi = 1

Ti—1Ti-1

pi =71 + BiPi—1

Iteration Loop

Sparse Matrix
X Vector

Inner Products

Inner Products

End Loop

24

The Conjugate Gradient (CG) Method

for i

end

TO =b_Ax0, po =T'O

= 1:nmax

T
_ TiqTi—1

M1 T T ap,

Xi =Xj—1 T Aj_1Pi-1

r; =Ti—1 — Aj_1Ap;—4

T
T'l' ri

Bi = 1

Ti—1Ti-1

p; =T + BiPi—1

Iteration Loop

Sparse Matrix
X Vector

Inner Products

Inner Products

End Loop

24

Cost Per lteration

— Sparse matrix-vector multiplication (SpMV) i
* 0(nnz) flops » a

* Must communicate vector entries w/neighboring
processors (nearest neighbor MPI collective)
* Must read A/vector from slow memory

25

Cost Per lteration

— Sparse matrix-vector multiplication (SpMV))
* 0(nnz) flops
. . . . —— X
* Must communicate vector entries w/neighboring
processors (nearest neighbor MPI collective)
* Must read A/vector from slow memory

— Inner products
* O(N) flops
* global synchronization (MPI _Allreduce) — &
* all processors must exchange data and wait for a
all communication to finish before proceeding
* Multiple reads/writes to slow memory

25

Cost Per lteration

— Sparse matrix-vector multiplication (SpMV))
* 0(nnz) flops
. . . . —— X
* Must communicate vector entries w/neighboring
processors (nearest neighbor MPI collective)
* Must read A/vector from slow memory

— Inner products
* O(N) flops
* global synchronization (MPI _Allreduce) — &
* all processors must exchange data and wait for a
all communication to finish before proceeding
* Multiple reads/writes to slow memory

SpMV
Low computation/communication ratio
e

orthogonali = Performance is communication-bound

25

0.1-1.0 flops per byte Typically < 2 flops per byte O(10) flops per byte
A A A,

SpMV

BLAS1,2 Particle

Stencils (PDEs) Methods
FFTs, Dense
Lattice Boltzmann Spectral Methods Linear Algebra
AN Methods A AN W {E } .
Al A A
Q1) O(log(N)) O(N)

Image source: Sam Williams 26

Roofline Model Example

Roofline Model (Williams, Waterman,
Patterson, 2009)

* Provides estimates of performance for
various applications (based on arithmetic
intensity) for given machine 1

* attainable flop/s = min(peak flop/s, peak
bandwidth X arithmetic intensity)

» "ceilings" give peak bandwidth or peak
flops in absence of possible optimizations

Peak Flop/s

Attainable Flop/s

>

Arithmetic Intensity (Flop:Byte)

Image source: Sam Williams 27

Roofline Model Example

Roofline Model (Williams, Waterman,
Patterson, 2009)

* Provides estimates of performance for
various applications (based on arithmetic
intensity) for given machine

* attainable flop/s = min(peak flop/s, peak
bandwidth X arithmetic intensity)

» "ceilings" give peak bandwidth or peak
flops in absence of possible optimizations

Generally three approaches to improving
performance:

* Maximize in-core performance (e.g.
get compiler to vectorize)

Attainable Flop/s

Peak Flop/s

>
Arithmetic Intensity (Flop:Byte)

Image source: Sam Williams 27

Roofline Model Example

Roofline Model (Williams, Waterman,
Patterson, 2009)

* Provides estimates of performance for
various applications (based on arithmetic
intensity) for given machine

* attainable flop/s = min(peak flop/s, peak
bandwidth X arithmetic intensity)

» "ceilings" give peak bandwidth or peak
flops in absence of possible optimizations

Generally three approaches to improving
performance:

* Maximize in-core performance (e.g.
get compiler to vectorize)

* Maximize memory bandwidth (e.g.
NUMA-aware allocation)

Attainable Flop/s

Peak Flop/s

>
Arithmetic Intensity (Flop:Byte)

Image source: Sam Williams 27

Roofline Model Example

Roofline Model (Williams, Waterman,
Patterson, 2009)

* Provides estimates of performance for
various applications (based on arithmetic
intensity) for given machine 1

* attainable flop/s = min(peak flop/s, peak
bandwidth X arithmetic intensity)

» "ceilings" give peak bandwidth or peak
flops in absence of possible optimizations

Peak Flop/s

Attainable Flop/s

Generally three approaches to improving
performance:

* Maximize in-core performance (e.g. :
get compiler to vectorize) Arithmetic Intensity (Flop:Byte)

>

* Maximize memory bandwidth (e.g.
NUMA-aware allocation)

* Minimize data movement (increase Al)

Image source: Sam Williams 27

Synchronization-reducing variants

Motivated many approaches to reducing synchronization (increasing ratio of
computation to communication) in CG:

28

Synchronization-reducing variants

Motivated many approaches to reducing synchronization (increasing ratio of
computation to communication) in CG:

* Early work: CG with a single synchronization point per iteration
* 3-term recurrence CG
» Using modified computation of recurrence coefficients
* Using auxiliary vectors

10

Synchronization-reducing variants

Motivated many approaches to reducing synchronization (increasing ratio of
computation to communication) in CG:

* Early work: CG with a single synchronization point per iteration
* 3-term recurrence CG
» Using modified computation of recurrence coefficients

* Using auxiliary vectors

* Pipelined Krylov subspace methods
» Uses modified coefficients and auxiliary vectors to reduce synchronization points

to 1 per iteration
* Modifications also allow decoupling of SpMV and inner products - enables
overlapping (MPI non-blocking collectives)

10

Synchronization-reducing variants

Motivated many approaches to reducing synchronization (increasing ratio of
computation to communication) in CG:

* Early work: CG with a single synchronization point per iteration

* 3-term recurrence CG
» Using modified computation of recurrence coefficients

* Using auxiliary vectors

* Pipelined Krylov subspace methods
» Uses modified coefficients and auxiliary vectors to reduce synchronization points
to 1 per iteration
* Modifications also allow decoupling of SpMV and inner products - enables
overlapping (MPI non-blocking collectives)

» s-step Krylov subspace methods
« Compute iterations in blocks of s using a different Krylov subspace basis

* Enables one synchronization per s iterations
28

High Performance Krylov Subspace Methods

* To improve performance of Krylov subspace methods, we must reduce the cost of
data movement
» Communication "hiding" approaches
* Use non-blocking MPIl communication
* Do useful computation while waiting for communication (overlapping)
* "Pipelined" Krylov subspace methods
 Historical background, derivation
» Performance results
* Recent work on "deep pipelined" methods

* Communication "avoiding" approaches

* Mathematically unroll iteration loop, allows all communication for multiple
iterations to be done in one step

* "'s-step" Krylov subspace methods
 Historical background, derivation
* Implementation details (matrix powers kernel, TSQR)
» Performance results

Other approaches: enlarged KSMs, combination of pipelined and s-step approaches

80

Early approaches to reducing synchronization

 Goal: Reduce the 2 synchronization points per iteration in (HS)CG
to 1 synchronization point per iteration

29

Early approaches to reducing synchronization

 Goal: Reduce the 2 synchronization points per iteration in (HS)CG
to 1 synchronization point per iteration

* Compute B; from a;_, and Ap;_4 using relation
17117 = a1 1Api—1 lI? = Il |I?

e Can then also merge the updates of x;, r;, and p;

* Developed independently by Johnson (1983, 1984), van
Rosendale (1983, 1984), Saad (1985)

* Many other similar approaches

15

Early approaches to reducing synchronization

 Goal: Reduce the 2 synchronization points per iteration in (HS)CG
to 1 synchronization point per iteration

* Compute B; from a;_, and Ap;_4 using relation
17117 = a1 1Api—1 lI? = Il |I?

e Can then also merge the updates of x;, r;, and p;

* Developed independently by Johnson (1983, 1984), van
Rosendale (1983, 1984), Saad (1985)

* Many other similar approaches

* Could also compute a;_; from B;_;:

-1
T

_(Ti—1Ario1 Bia
Xi—1 = -

T :
Tiq1Ti-1 @2

29

CG with two three-term recurrences (STCG)

e HSCG recurrences can be written as
APy = Ri11L;, Ry = RU;
we can combine these to obtain a 3-term recurrence for the residuals (STCG):
AR; = Rip1T;, T = L;U;

18

CG with two three-term recurrences (STCG)

* HSCG recurrences can be written as
APy = Ri11L;, Ry = RU;
we can combine these to obtain a 3-term recurrence for the residuals (STCG):
AR; = Rip1T;, T = L;U;

* First developed by Stiefel (1952/53), also Rutishauser (1959) and Hageman and Young

(1981)
* Motivated by relation to three-term recurrences for orthogonal polynomials

o = b — Axo, Po=T1p, X-1=Xg, T=1=T7109, €-1—= 0
for i = 1:nmax
_ (ri—pAri—q)

Q-1 = (ri—1,7i-1) €i-2
1

Xi = Xi_q T 2 (ri—1 + ej—2(xi—1 — Xi—2))
1

=T+ o (—Ari_1 +ej_5(ri—1 — Ti—2))
(ri,ri)

e._ - r —
=1 Qi-1 (ri—1,7i-1)
end

30

CG with two three-term recurrences (STCG)

e HSCG recurrences can be written as

AP; = R; 1L, R; = P;U;

we can combine these to obtain a 3-term recurrence for the residuals (STCG):

AR; = Rj11T;, I; = L;U;

* First developed by Stiefel (1952/53), also Rutishauser (1959) and Hageman and Young

(1981)

* Motivated by relation to three-term recurrences for orthogonal polynomials

for i

end

o = b —Axo, Po=T19, X-1=Xg, T—1=T1p, €_1= 0

1:nmax
(ri—1,ATi_1)
g__ p— — e._
ql 1 (ri—llrlél—l) 1—2
Xi =Xi—1 + 2 (ri1 + €2 (xi—1 — Xi—3))
1
T, =Ti—q + o (—Ari_1 +ej_(ric1 —1i-2))
_ (riri)
el—l - CIL—

Can be accomplished with
a single synchronization
point on parallel
computers (Strakos 1985,
1987)

18

CG with two three-term recurrences (STCG)

* HSCG recurrences can be written as
AP; = Riy1L;, Ry = PU;
we can combine these to obtain a 3-term recurrence for the residuals (STCG):
AR; = RiT;, T = LiU;

* First developed by Stiefel (1952/53), also Rutishauser (1959) and Hageman and Young
(1981)
* Motivated by relation to three-term recurrences for orthogonal polynomials

o = b —Axo, Po=T19, X-1=Xg, T—1=T1p, €_1= 0

fori = 1:nmax
qi_q = (i1 ATiza) _ e;_, Can be accomplished with
(r“l’rll‘l) a single synchronization
Xi =Xi—1 t P (ri—1 + ej_2(xi—1 — x;-2)) point on parallel
1 v
r,=T_q + P (—Ari_{ +e;_5 (i1 — 1i_3)) computers (Strakos 1985,
Guro L257)

end

* Similar approach (computing a; using ;_1) used by D'Azevedo, Eijkhout, Romaine
(1992, 1993) 30

Chronopoulos and Gear's CG (ChG CG)

 Chronopoulos and Gear (1989)
* Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

* Reduces synchronizations/iteration to 1 by changing computation of a; and
using an auxiliary recurrence for Ap;

9o = b — Axy, o= Ty,
So = Apo, o= (0,70)/ (0, So)
fori = 1:nmax

Xi = Xj—1 + Aj—1Pi—1

rp ="Ti—1 — &j—15i—1

w; = Ar;
B, = (riri)
' (ri-17i-1)
riTri
a; (riTi)

- (wi,r)—(Bi/ai—1)(TiTi)
pi =1 + Bipi—1

S; = w; + fiSi—1
21

end

Chronopoulos and Gear's CG (ChG CG)

 Chronopoulos and Gear (1989)
* Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

* Reduces synchronizations/iteration to 1 by changing computation of a; and
using an auxiliary recurrence for Ap;

9o = b — Axy, o= Ty,
So = Apo, o= (0,70)/ (0, So)
fori = 1:nmax

Xi = Xj—1 + Aj—1Pi—1

rp ="Ti—1 — &j—15i—1

w; = Ar;
B, = (riri)
' (ri-17i-1)
riri
a; (riTi)

- (wi,r)—(Bi/ai—1)(Ti,Ti)
pi =1 + Bipi-—1

S; = w; + fiSi—1
21

end

Chronopoulos and Gear's CG (ChG CG)

 Chronopoulos and Gear (1989)
* Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

* Reduces synchronizations/iteration to 1 by changing computation of a; and
using an auxiliary recurrence for Ap;

9o = b — Axy, o= Ty,
So = Apo, ao= (0,70)/ (0, So)
fori = 1:nmax

Xi = Xj—1 + Aj—1Pi—1

rp ="Ti—1 — &j—15i—1

w; = Ar;
B, = (riri)
' (ri-17i-1)
riTri
a; (riTi)

- (wi,r)—(Bi/ai—1)(TiTi)
pi =1 + Bipi—1

S; = w; + fiSi—1
21

end

Chronopoulos and Gear's CG (ChG CG)

 Chronopoulos and Gear (1989)
* Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

* Reduces synchronizations/iteration to 1 by changing computation of a; and
using an auxiliary recurrence for Ap;

So = Apg, ap= (19,70)/(Po, So)

fori = 1:nmax

Xi = Xi—1 T qi_1Pi—1
i =71 — &j—-1Si-1

w; = Ar;

B; = (ri,19) Inner Products
L (ri—1,7i-1)

o = (riri)
b wir)—(Bi/ai—)(riT)

pi =71 + BiPi-1
Si = Wi + BiSi—1

end

Chronopoulos and Gear's CG (ChG CG)

 Chronopoulos and Gear (1989)
* Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

* Reduces synchronizations/iteration to 1 by changing computation of a; and
using an auxiliary recurrence for Ap;

So = Apg, ap= (19,70)/(Po, So)

fori = 1:nmax

Xi = Xi—1 T &i_1Pi—1
ri =71 — &—-1Si-1

w; = Ar;

B; = (ri,19) Inner Products
L (ri—1,7i-1)

o = (riri)
b wir)—(Bi/ai—)(riT)

pi =71 + BiPi-1
Si = Wi + BiSi—1

end

Chronopoulos and Gear's CG (ChG CG)

 Chronopoulos and Gear (1989)
* Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

* Reduces synchronizations/iteration to 1 by changing computation of a; and
using an auxiliary recurrence for Ap;

So = Apg, ap= (19,70)/(Po, So)

fori = 1:nmax

Xi = Xi—1 T &i_1Pi—1
ri =71 — &—-1Si-1

w; = Ar;

B; = (ri,19) Inner Products
L (ri—1,7i-1)

o = (riri)
b wir)—(Bi/ai—)(riT)

pi =71 + BiPi-1
Si = Wi + BiSi—1

end

Chronopoulos and Gear's CG (ChG CG)

 Chronopoulos and Gear (1989)
* Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

* Reduces synchronizations/iteration to 1 by changing computation of a; and
using an auxiliary recurrence for Ap;

So = Apg, ap= (19,70)/(Po, So)

fori = 1:nmax

Xi = Xi—1 T &i_1Pi—1
ri =71 — &—-1Si-1

w; = Ar;

B, = (ri7i) Inner Products
L (ri-17i-1)

T = (riri)
b (wir)—(Bi/ai—) (i)

pi =71 + BiPi-1
Si = Wi + BiSi—1

end

Chronopoulos and Gear's CG (ChG CG)

 Chronopoulos and Gear (1989)
* Looks like HSCG, but very similar to 3-term recurrence CG (STCG)

* Reduces synchronizations/iteration to 1 by changing computation of a; and
using an auxiliary recurrence for Ap;

So = Apg, ap= (19,70)/(Po, So)

fori = 1:nmax

Xi = Xi—1 T &i_1Pi—1
ri =71 — &—-1Si-1

w; = Ar;

B, = (ri7i) Inner Products
L (ri-17i-1)

T = (riri)
b (wir)—(Bi/ai—) (i)

pi =1 + BiPi—1
Si = Wi + BiSi—1

end

Pipelined CG (GVCG)

* Pipelined CG of Ghysels and Vanroose (2014)

* Similar to Chronopoulos and Gear approach
» Uses auxiliary vector s; = Ap; and same formula for «;

22

Pipelined CG (GVCG)

* Pipelined CG of Ghysels and Vanroose (2014)

* Similar to Chronopoulos and Gear approach
» Uses auxiliary vector s; = Ap; and same formula for «;

e Also uses auxiliary vectors for Ar; and A?r; to remove sequential
dependency between SpMV and inner products

22

Pipelined CG (GVCG)

* Pipelined CG of Ghysels and Vanroose (2014)

» Similar to Chronopoulos and Gear approach
» Uses auxiliary vector s; = Ap; and same formula for «;

e Also uses auxiliary vectors for Ar; and A?r; to remove sequential
dependency between SpMV and inner products

* Allows the use of nonblocking (asynchronous) MPI communication to
overlap SpMV and inner products

* Hides the latency of global communications

32

GVCG (Ghysels and Vanroose 2014)

TO = b_Axo, po =7‘0
So = AZI?(), W0T= Aro, Zoy = AWO,
g = Ty To/Po So
for i = 1:nmax
Xi = Xi—1 t &i_1Pi—1
i ="i-1 — &j-1Si-1

Wi =W;j_1 —&i—1Zj—1

q; = Aw;
T

ﬂ' __nhr

1~ _..T

Ti—1Ti-1
T

o = i Ti

l

— wlri—(Bi/ai_)r! T
pi =1 + Bibi—1
Si = w; + BiSi—1
zi = q; +Bizi1

end
23

GVCG (Ghysels and Vanroose 2014)

TO = b_Axo, po =7‘0
So = AZI?O' W0T= Aro, Zoy = AWO,
g = Ty To/Po So
for i = 1:nmax
Xi = Xi—1 t &i_1Pi—1
i ="i-1 — &j-1Si-1

Wi =W;_1 —&i—1Zj—1

q; = Aw;
T

ﬂ' __nhr

1~ _..T

Ti—1Ti-1
T

o = i Ti

l

— wlri—(Bi/ai_)r! T
pi =1 + Bibi—1
Si = Wi + BiSi—1
zi = q; +Bizi1

end
23

GVCG (Ghysels and Vanroose 2014)

TO = b_Axo, po =7‘0

So = Apo, Wo = Aro,ZO == AWO,
Y T .

o = 19 To/Po So Iteration Loop

for i = 1:nmax

Xi = Xi—1 t &i_1Pi—1

i =Ti—1 — &i-1Si—1

Wi =W;j_1 —&i—1Zj—1

o
q; = Aw; = Inner
r 2 Products

ﬂ' __nn @)

;=

aTio

o = Ty

b owlri—Bi/ai)T

pi =1 + Bibi—1
Si =w; + Bisi_q

z; =q; + Bizi_q

end
23

GVCG (Ghysels and Vanroose 2014)

TO = b_Axo, po =7‘0

So = Apo, Wo = Aro,ZO == AWO,
Y T .

o = 19 To/Po So Iteration Loop

for i = 1:nmax

Xi = Xi—1 t &i_1Pi—1

i =Ti—1 — &i-1Si—1

Wi =W;_1 —&i—1Zj—1

o
q; = Aw; = Inner
r 2 Products

ﬁ' __nn @)

;=

aTio

o = Ty

b owlri—Bi/ai)T

pi =1 + Bibi—1
Si =w; + Bisi_q

z; =q; + Bizi_q

end
23

GVCG (Ghysels and Vanroose 2014)

TO = b_Axo, po =7‘0

So = Apo, Wo = Aro,ZO == AWO,
— T .

o = 19 To/Po So Iteration Loop

for i = 1:nmax

Xi = Xi—1 t &i_1Pi—1

i =Ti—1 — &i-1Si—1

Wi =W;_1 —&i—1Zj—1

o
(]
T > Products
ﬂ' Y @)
t1 = ..T
Ti—1Ti-1
T',-TT‘,:

a; =
Lowlri—Bi/ai—)r T

pi =1 + Bibi—1
Si =w; + Bisi_q

z; =q; + Bizi_q

end
23

GVCG (Ghysels and Vanroose 2014)

TO = b_Axo, po =7‘0

So = Apo, Wo = Aro,ZO == AWO,
— T .

o = 19 To/Po So Iteration Loop

for i = 1:nmax

Xi = Xi—1 t &i_1Pi—1

i =Ti—1 — &i-1Si—1

Wi =W;_1 —&i—1Zj—1

o
(]
T > Products
ﬂ' Y @)
t1 = ..T
Ti—1Ti-1
T',-TT‘,:

a; =
Lowlri—Bi/ai—)r T

pi =1 + Bibi—1
Si =w; + BiSi_4

z; =q; + Bizi_—q

end
23

GVCG (Ghysels and Vanroose 2014)

T = b — Axg, po =19

So = Apo, Wo = Aro,ZO == AWO,
_ T

o = 19 To/Po So Iteration Loop

for i = 1:nmax

Xi = Xi—1 t &i_1Pi—1

i =Ti—1 — &i-1Si—1

Wi =W;_1 —&i—1Zj—1

o Precond
L Inner
- 2 Products
B; = i Ti @)
borliria
T',-TT‘,:

a; =
Lowlri—Bi/ai—)r T

pi =1 + Bibi—1
S; = w; + Bisi—1 End Loop
z; =q; + Bizi_—q

end
33

MPI Non-Blocking Communication

* "Non-blocking" or "asynchronous" collectives available since MPI 3

MPI Tallreduce(...,MPI Request,...)
// ...other work (SpMV, precond., etc)
MPI Wait(...,MPI Request)

PETSc provides a construct for asynchronous dot-
products:

VecDotBegin (..., &dot);
PetscCommSplitReductionBegin
// ...other work

VecDotEndﬁi;;;Lif?t);

call to MPI_Wait

(comm) ;

Classical GMRES

pime

/=

axpy DO peduction b-castscale

SpMV local dot reduction b-cast

Gram-Schmidt

Pipelined GMRES

1I update

Normalization

reduction beastscale #XPY correction local dot
I update

P. Ghysels, et al. SIAM J. Scientific Computing,
35(1):C48C71, (2013).

call to MPI_lallreduce

34

Deep Pipelining

* Motivation: want to have perfect overlap of computation of inner products
and SpMVs/preconditioner application

* But this depends on the machine, matrix, etc.

* If inner products take much longer than 1 SpMV, do ¢ SpMVs instead
* = "deep" pipelined method with pipeline length

* ¢ should be chosen to be the number of SpMV /precond. operations
that can be done in the time it takes for one Allreduce

* Deep pipelined GMRES variant [Ghysels, Ashby, Meerbergen, Vanroose,
SIAM J. Sci. Comput, 35(1), 2013]

* Deep pipelined CG variant [Cornelis, Cools, Vanroose, arXiv:1801.04728,
2018]

35

Available Software

* Implementations in PETSc:
« KSPPGMRES: pipelined GMRES
 KSPPIPECG: pipelined CG
 KSPPIPECR: pipelined CR
» KSPGROPPCG: Gropp asynchronous variant
» KSPPIPEBCGS: pipelined BiCGSTAB
 KSPPIPELCG: deep pipelined CG

36

Performance of (Deep) Pipelined CG

9 121
10
—e—CG 8r
o | —e—rpca or
gl | ——PMICG _ r O]
o —&—P(2)-CG B 8 O
8 1 P(3)-CG /__'V g6t 2 8f
o g <]
o c ?
S 6 /\1 st 56
- B -) F
g 5 Saf R
o 3 g
4r L
2 5 5l 3 4 /\e\ﬂ\g
Q @ O
L 3+ aQ 7]
Q w
(] 2t
2r] —6— G —8— P2 2T —e— 6 —e— P2CC
1 & —g— P-CG P(3)-CG —— P-CG P(3)-CG
1 o = P(1)-CG =——@— P(4)-CG —— P(1)-CG
0 l
% 5 10 15 20 0 8 16 24 32 40 48 0 8 16 24 82
nr of nodes (x14 MPI procs)
nr of nodes (x12 MPI procs) nr of nodes (x14 MPI procs)
Fi1G. 5. Strong scaling experiment on up to 20 nodes Fic. 6. Strong scaling experiment on up to 48 nodes FIG. 7. Strong scaling empemmgnt om up 120.32 nodes
) {448 processes) for a block Jacobi preconditioned 2D
(240 processes) for a 5-point stencil 2D Poisson prob- (672 processes) for a 5-point stencil 2D Poisson prob- . . -
Tem wi - ’ . . . Poisson problem with 3.062.500 unknowns. All meth-
em with 1.000.000 unknowns. Speedup over single-node lem with 3.062.500 unknowns. Speedup over single-node . . .
, . L) . o ods performed 600 iterations with |r;|l,/]bll, = 1.8e-4
classic CG for various pipeline lengths. All methods classic CG for various pipeline lengths. All methods (on 1 node) and |ril|,/|bll, < 9.3e-4 (ozn 99 z'rmdes)
converged to ||rilly/[|bll, = 1.0e-b in 1342 iterations. performed 1500 iterations with ||r;||y/||bll, = 6.3e-4. Hiz 2= ‘ ’

20 compute nodes, each with two 6-
core Intel Xeon X5660 Nehalem
2:80 GHz processors each (12 cores
per node); 4QDR InfiniBand

48 compute nodes, each with two 14-core Intel E5-2680v4,
Broadwell generation CPUs; EDR InfiniBand

(Cornelis, Cools, Vanroose, arXiv: 1801.04728, 2018) 37

s-step Krylov subspace methods

* |dea: Compute blocks of s iterations at once
* Compute updates in a different basis
« Communicate every s iterations instead of every iteration
* Reduces number of synchronizations per iteration by a factor of s

38

s-step Krylov subspace methods

* |dea: Compute blocks of s iterations at once
* Compute updates in a different basis
« Communicate every s iterations instead of every iteration
* Reduces number of synchronizations per iteration by a factor of s

* An idea rediscovered many times...

28

s-step Krylov subspace methods

* |dea: Compute blocks of s iterations at once
* Compute updates in a different basis
« Communicate every s iterations instead of every iteration
* Reduces number of synchronizations per iteration by a factor of s

* An idea rediscovered many times...

* First related work: s-dimensional steepest descent, least squares
* Khabaza ('63), Forsythe (‘68), Marchuk and Kuznecov (‘68)

28

s-step Krylov subspace methods

|ldea: Compute blocks of s iterations at once
* Compute updates in a different basis
« Communicate every s iterations instead of every iteration

* Reduces number of synchronizations per iteration by a factor of s

* An idea rediscovered many times...

* First related work: s-dimensional steepest descent, least squares
* Khabaza ('63), Forsythe (‘68), Marchuk and Kuznecov (‘68)

* Flurry of work on s-step Krylov methods in ‘80s/early ‘90s: see, e.g., Van
Rosendale (1983); Chronopoulos and Gear (1989)

28

s-step Krylov subspace methods

|ldea: Compute blocks of s iterations at once
* Compute updates in a different basis
« Communicate every s iterations instead of every iteration

* Reduces number of synchronizations per iteration by a factor of s

* An idea rediscovered many times...

* First related work: s-dimensional steepest descent, least squares
* Khabaza ('63), Forsythe (‘68), Marchuk and Kuznecov (‘68)

* Flurry of work on s-step Krylov methods in ‘80s/early ‘90s: see, e.g., Van
Rosendale (1983); Chronopoulos and Gear (1989)

* Resurgence of interest in recent years due to growing problem sizes;
growing relative cost of communication

38

History of s-step Krylov Subspace Methods

First termed
“s-step
methods”

.

Bai, Hu, and Reichel:
GMRES

de Sturler:
GMRES

Joubert and
Carey: GMRES

de Sturler and

Kim and van der Vorst:

Chronopoulos:

GMRES
Chronopoulos Arndoli, Symm.
and Gear: CG Lanczos ‘
Chronopoulos Toledo: CG
Van ChKronc:)pc:;:Ios ‘and and Kim: oledo:
) im: Orthomin,
Rosendale: Walker- GMRES Nonsymm.
CG GMRES Chronopoulos: Lanczos
Leland: MINRES. GCR Erhel:
GMRES

s

Orthomin

P ! !

1983 1988 1989

R I— L

1991 1992 1995

Chronopoulos
and Kinkaid:
Orthodir

39

Key observation: After iteration i, for j € {0,.., s},

Xivj — Xi» Tigj» Divj € Ksp1(A,p) +HK:(4,17)

29

Key observation: After iteration i, for j € {0,.., s},

Xivj — Xi» Tigj» Divj € Ksp1(A,p) +HK:(4,17)

s steps of s-step CG:

29

Key observation: After iteration i, for j € {0,.., s},

Xivj — Xi» Tigj» Divj € Ksp1(A,p) +HK:(4,17)

s steps of s-step CG:

Expand solution space s dimensions at once

Compute “basis’ matrix Y such that span(Y) = K,,.1(4,p;) + K,(A,1;) according to
the recurrence AY =Y B

29

Key observation: After iteration i, for j € {0,.., s},

Xivj — Xi» Tigj» Divj € Ksp1(A,p) +HK:(4,17)

s steps of s-step CG:

Expand solution space s dimensions at once

Compute “basis’ matrix Y such that span(Y) = K,,.1(4,p;) + K,(A,1;) according to
the recurrence AY =Y B

Compute inner products between basis vectors in one synchronization

G=Y"y

29

Key observation: After iteration i, for j € {0,.., s},

Xivj — Xi» Tigj» Divj € Ksp1(A,p) +HK:(4,17)

s steps of s-step CG:

Expand solution space s dimensions at once

Compute “basis’ matrix Y such that span(Y) = K,,.1(4,p;) + K,(A,1;) according to
the recurrence AY =Y B

Compute inner products between basis vectors in one synchronization

G=Y"y

Compute s iterations of vector updates
Perform s iterations of vector updates by updating coordinates in basis Y:

Xivj — X =Yxj, 1y =Yri, pij=Yp;j

41

For s iterations of updates, inner products and SpMVs (in basis Y) can be
computed by independently by each processor without communication:

30

For s iterations of updates, inner products and SpMVs (in basis Y) can be
computed by independently by each processor without communication:

Apiyj

n

30

For s iterations of updates, inner products and SpMVs (in basis Y) can be
computed by independently by each processor without communication:

Apiyj AYp;

n

30

For s iterations of updates, inner products and SpMVs (in basis Y) can be
computed by independently by each processor without communication:

Apiy = AYp; = Y(Bp))
n
E)
n —— x - o) O x |

30

For s iterations of updates, inner products and SpMVs (in basis Y) can be
computed by independently by each processor without communication:

Apiy = AYp; = Y(Bp))

n

E)
g s Y a - 0 B x |
(Ti+j»ri+j)

X %

30

For s iterations of updates, inner products and SpMVs (in basis Y) can be
computed by independently by each processor without communication:

Apiy = AYp; = Y(Bp))
n
- 0(s)
n [« % o @ x I
(isjpTiej) = rTYTYy

X %

30

For s iterations of updates, inner products and SpMVs (in basis Y) can be
computed by independently by each processor without communication:

Apiy = AYp; = Y(Bp))
n
o)
== - 0w B x
(i Tivj) = 'Yy = r/lgr
X
% — =x O x 1

42

o = b —Axo,po =T
for k = 0:nmax/s

Compute Y and By, such that AYy = YpBy and
span(Yx) = K1 (A, psi) + K (A, 751)

_ T
Gk = Y Y
I O I A
Xo = U, Ty = €542, P0 = €1
forj=1:s
T
_ =Gkt
Ask+j-1 =

p;Z 1ngkp;'_ 1

ro__ /
Xj = Xj_1t Qsp+j-1Pj-1

ro__ /
T =Tj—q — Asp+j—1BrkPj-1
T !
Bsk+j = r7{ Ly
! !
et Ti—19kTj—1

ro__ !
P =71 + Bsk+jPj-1

end

[Xs(k+1)—Xsko Ts(k+1) Psk+1)] = Yk [%5, 75, Ds]

31

end

o =b —Axg,po =19 Outer Loop
for k = 0:nmax/s

Compute Y;, and By, such that AY, = Y, By and -
= Compute basis

span(Yy) = K11 (A, psr) + Hs(A, 1) O(S) SPMVs

Gk = Yr U
!/ ! !/ 2
xo = 0,79 = €s42,00 = €1 PO(j)tln?er
roducts (one
for j = 1: .
°rJ > synchronization)
IT !
_ _Tj—19kTj-1
Ask+j-1 =

Pl 1GkBrP]—,

' , Inner Loo
Xj = Xj_1 + Asi4j-1Pj—1 P

! !

/
T =7Tj_1 — Qsk+j-1BkPj-1
PTG Local Vector S
_ Ty kT .
Bsk+j = T GkTl_s Updates (no times

o , comm.)
P =71 + Bsk+jPj-1

end

End Inner Loop

x — Xk, T , = Yrlxs, 75, ps
%5 (e +1) = Xsto Ts(e+1) Pser)] = Yielxs, 75, s Inner Outer Loop 31

end

o =b —Axg,po =19 Outer Loop
for k = 0:nmax/s

Compute Y, and B;, such that AY, = Y, By and -
— Compute basis

span(Yyi) = K1 (A, psk) + K (A, 751) O(S) SPMVs

Gk = Ui Uk
! !/ ! 2
Xo = 0,79 = €542, P0 = €1 PO(j)tln?er
roducts (one
for j = 1: o
°rJ > synchronization)
IT !/
_ _Tj—19kTj-1
Ask+j-1 =

Pl 1GkBrP]—,

' , Inner Loo
Xj = Xj_1 + Asi4j-1Pj—1 P

! !

/
T =7Tj_1 — Qsk+j-1BkPj-1
PTG Local Vector S
_ Ty kT .
Bsk+j = T GkTl_s Updates (no times

o , comm.)
P =71 + Bsk+jPj-1

end

End Inner Loop

x — Xk, T , = Yrlxs, 75, ps
%5 (e +1) = Xsto Ts(e+1) Pser)] = Yielxs, 75, s Inner Outer Loop 31

end

o =b —Axg,po =19 Outer Loop
for k = 0:nmax/s

Compute Y, and B;, such that AY, = Y, By and -
— Compute basis

span(Yyi) = K1 (A, psk) + K (A, 751) O(S) SPMVs

Gk = Y'Yk
! !/ ! 2
Xo = 0,79 = €542, P0 = €1 PO(j)tln?er
roducts (one
for j = 1: o
°rJ > synchronization)
IT !/
_ _Tj—19kTj-1
Ask+j-1 =

Pl 1GkBrP]—,

' , Inner Loo
Xj = Xj_1 + Asi4j-1Pj—1 P

! !

/
T =7Tj_1 — Qsk+j-1BkPj-1
PTG Local Vector S
_ Ty kT .
Bsk+j = T GkTl_s Updates (no times

o , comm.)
P =71 + Bsk+jPj-1

end

End Inner Loop

x — Xk, T , = Yrlxs, 75, ps
%5 (e +1) = Xsto Ts(e+1) Pser)] = Yielxs, 75, s Inner Outer Loop 31

end

o =b —Axg,po =19 Outer Loop
for k = 0:nmax/s

Compute Y, and B;, such that AY, = Y, By and -
— Compute basis

span(Yyi) = K1 (A, psk) + K (A, 751) O(S) SPMVs

Gk = Y'Yk
! !/ ! 2
Xo = 0,79 = €542, P0 = €1 PO(j)tln?er
roducts (one
for j = 1: o
°rJ > synchronization)
IT !
__Tj=19kTj-1
Ask+j-1 =

Pl 1GkBrDj_4

' / Inner Loo
Xj = Xj_1 T Akt j-1Pj-1 P

! !

!
T =1_q — Qsk+j-1BkPj_1

Local Vector S
Updates (no times
comm.)

IT 4

i GkTj

IT 14
Ti=19kTj-1

I /
p; =1 + Bsk+jPj-1

ﬁsk+j =

end

End Inner Loop

X —X ,T‘) == x’;r’; ‘
[s(k+1) sk»T's(k+1) ps(k+1)] yk[si'ls ps] Inner Outer Loop 43

end

Sparse Matrix Computations

* Sparse Matrix x Vector (SpMV) (y = Ax)
* Very communication-bound; no reuse

* Lower bound depends on sparsity ? p— p—
structure, algorithm Used (]_D matrix of general linear general sparse matrix
. . d d
rOWW|Se/CO|WISG, 2D, etC.) operator on structured gri

O(nnz)
explicit values ||| explicit values

implicit positions ||| explicit positions

* Communication cost depends on partition

* Hypergraph models capture
communication dependencies
(Catalyurek, Aykanat, 1999)

Example: Example:

* minimize hypergraph cut = minimize stencil matrix Laplacian matrix of a graph
words moved

implicit values || | implicit values
implicit positions | || explicit positions

o(1)

Storage for nonzero values

&
<

0(1) O(nnz)

Storage for nonzero positions

44

Sparse Matrix Computations

* Sparse Matrix x Vector (SpMV) (y = Ax)
* Very communication-bound; no reuse

* Lower bound depends on sparsity ? p— p—
structure, algorithm Used (]_D matrix of general linear general sparse matrix

operator on structured grid

rowwise/colwise, 2D, etc.) E
. . .. 2| ©(nnz) — —
» Communication cost depends on partition o ~ explicit values ||| explicit values
§ implicit positions | || explicit positions
* Hypergraph models capture S
. . . 5 implicit values || | implicit values
communication dependenCIGS qg,m; implicit positions | || explicit positions
(Catalyurek, Aykanat, 1999) 5| ew

Example: Example:

* minimize hypergraph cut = minimize stencil matrix Laplacian matrix of a graph
words moved

&
<

0(1) O(nnz)

Storage for nonzero positions

* Repeated SpMVs (Y = [Ax, A%x, ..., A¥x])
* Naive approach: k repeated SpMVs
* Communication-avoiding approach: "matrix powers kernel"
* see, e.g., (Demmel, Hoemmen, Mohiyuddin, Yelick, 2008)

44

SpMV Dependency Graph

G = (V,E)whereV = {yq, ..., Yn-1} U {x0, ..., X,—1 } and (yl-,xj) EEIifA;;+ 0

Example: Tridiagonal matrix

Yo
Y1

Y2
Ys
Y4

Y

X

X

X1 X9 I3

45

SpMV Dependency Graph

G = (V,E)whereV = {yq, ..., Yn-1} U {x0, ..., X,—1 } and (yl-,xj) EEIifA;;+ 0

Example: Tridiagonal matrix

y() x X X0
Y1 X X X X1
Y2 |— X X X X2 iAQZU
Y3 x x x X3 Agj
Yq X X Xy €T
- * I — Iy T2 I3
Y A x

45

The Matrix Powers Kernel pemmel et al., 2007)

Avoids communication:

* In serial, by exploiting temporal locality:
* Reading A, reading vectors

* In parallel, by doing only 1 ‘expand’ phase
(instead of s).

* Requires sufficiently low ‘surface-to-volume’
ratio

Tridiagonal Example:

Sequential
Ajv 77 ;&//// ' :
AA: /f:;:‘%/ \ \ Parallel
v 1 %’; 10 13 \\\

0 23 - 28 30 33

45

46

The Matrix Powers Kernel pemmel et al., 2007)

Avoids communication:

* In serial, by exploiting temporal locality:
* Reading A, reading vectors

* In parallel, by doing only 1 ‘expand’ phase
(instead of s). |
* Requires sufficiently low ‘surface-to-volume’ /0

) lack = local elements
ratio

Also works for red = 1-level dependencies

general graphs! 8N = 2-level dependencies

Tridiagonal Example: blue = 3-level dependencies

A3y
A |
Av |
v

Sequential

A AN _
AA: %;ﬁ%/ ‘.‘. !l Parallel

WY

vV L

46

Parallel Matrix Powers Kernel

Example: tridiagonal matrix

I
(e

Parallel Matrix Powers Kernel

Example: tridiagonal matrix,s=3,n=40,p =4
Adx

- Nddahbo0e It
N :0‘0’0‘0‘0‘0‘0‘0:0 I

. 0‘0‘0‘“‘0‘0‘“ 0‘0

0 processor 1 10 processor 2 20 processor 3 30 processor 4

Parallel Matrix Powers Kernel

Example: tridiagonal matrix,s=3,n=40,p =4
Adx

- Mddhhbong 0
N :0‘0’0‘0‘0‘0‘0‘0:0 I

. 0‘0‘0‘“‘0‘0‘“ 0‘0

0 processorl 10 processor 2 20 processor3 30 processor 4

Parallel Matrix Powers Kernel

Example: tridiagonal matrix,s=3,n=40,p =4
Adx

- Mddhhbong 0
N :0‘0’0‘0‘0‘0‘0‘0:0 i

. 0‘0‘0‘“‘0‘0‘" 0‘0

0 processorl 10 processor 2 20 processor3 30 processor 4

Parallel Matrix Powers Kernel

Example: tridiagonal matrix,s=3,n=40,p =4
Adx

- Mddhhbong 0
N :0‘0’0‘0‘0‘0‘0‘0:0 I

. 0‘0‘0‘“‘0‘0‘" 0‘0

0 processorl 10 processor 2 20 processor3 30 processor 4

Parallel Matrix Powers Kernel

A3x

. OO
AA:: :."‘.‘.‘."‘ ‘ :

W
W
. QWQ QWN

0 processorl 10 processor 2 20 processor3 30 processor 4

Parallel Matrix Powers Kernel

A3x

. OO
AA:: :."‘.‘.‘."‘ ‘ :

W
W
. QWQ QWN

0 processorl 10 processor 2 20 processor3 30 processor 4

Parallel Matrix Powers Kernel

Example: tridiagonal matrix,s=3,n=40,p =4
Adx

Ty
" I

LR

0 processorl ~ 1(Q processor2 Q) processor3 3(Q) processor 4

Parallel Matrix Powers Kernel

Example: tridiagonal matrix,s=3,n=40,p =4
Adx

T,
" I

LR

0 processorl 10 processor 2 20 processor3 30 processor 4

Parallel Matrix Powers Kernel
n

A3x

)
N :M‘o

. QWQ

0 processor 1

Parallel Matrix Powers Kernel
Exam matrix,s=3,n=40,p=4

Parallel Matrix Powers Kernel

Parallel Matrix Powers Kernel

Parallel Matrix Powers Kernel

A3x

)
N :M‘o

. QWQ

0 processor 1

o
AAi :".‘.‘

Wl

Parallel Matrix Powers Kernel

A3x

)
N :M‘o

. QWQ

0 processor 1

o
AAi :".‘.‘

Wl

Parallel Matrix Powers Kernel

A3x

)
N :M‘o

. QWQ

0 processor 1

o
AAi :".‘.‘

Wl

Parallel Matrix Powers Kernel

A3x

)
N :M‘o

. QWQ

0 processor 1

o
AAi :".‘.‘

Wl

Parallel Matrix Powers Kernel

A3x

)
N :M‘o

. QWQ

0 processor 1

I
AAD): :."‘.‘ optimization: “

i . .ze,

x .“ 122222 IR 2R RR
processor

0 processor 1 10 processor 2 20 processor 3 30 roc 4

‘wMMNNNNNNNW‘Q‘

{

Matrix powers

Complexity comparison

Example of parallel (per processor) complexity for s iterations of CG vs. s-step
CG for a 2D 9-point stencil:

(Assuming each of p processors owns N /p rows of the matrixand s < /N /p)

Flops Words Moved Messages
SpMV | Orth. SpMV Orth. SpMV | Orth.
Classical sN sN
G ? 7 51/N/p slog, p S slog, p
sN 2N
s-step CG ? >0 s+N/p s?log, p 1 log, p
p

All values in the table meant in the Big-O sense (i.e., lower order terms
and constants not included)

48

Complexity comparison

Example of parallel (per processor) complexity for s iterations of CG vs. s-step
CG for a 2D 9-point stencil:

(Assuming each of p processors owns N /p rows of the matrixand s < /N /p)

Flops Words Moved Messages
SpMV | Orth. SpMV Orth. SpMV | Orth.
Classical sN sN
G ? ? s\/N/p slog, p S slog, p
sN 2N
s-step CG ? s s+N/p s?log, p 1 log, p
p

All values in the table meant in the Big-O sense (i.e., lower order terms
and constants not included)

48

Complexity comparison

Example of parallel (per processor) complexity for s iterations of CG vs. s-step
CG for a 2D 9-point stencil:

(Assuming each of p processors owns N /p rows of the matrixand s < /N /p)

Flops Words Moved Messages
SpMV | Orth. SpMV Orth. SpMV | Orth.
Classical sN sN
G ? ? s\/N/p slog, p S slog, p
sN 2N
s-step CG ? s s+N/p s?log, p 1 log, p
p

All values in the table meant in the Big-O sense (i.e., lower order terms
and constants not included)

48

s-step GMRES

Classical GMRES

To = b — Axy, vy = 10/||70l|
fori =1:k
w = Avi_l

Orthogonalize w against [vg, ..., V;_1] < e.g., Modified Gram-Schmidt
Update vector v;, matrix H

end
Use H, [vy, ..., V] to construct the solution

49

s-step GMRES

Classical GMRES

To = b — Axy, vy = 10/||70l|
fori =1:k
w = Avi_l

Orthogonalize w against [vg, ..., V;_1] < e.g., Modified Gram-Schmidt
Update vector v;, matrix H

end
Use H, [vy, ..., V] to construct the solution

s-step GMRES
o = b — Axg,vo = 10/ |I7oll
fori=0:s1k—s .
Compute W such that span([v;, W]) = K1 (4, v;) € 'matrix powers kernel"
Make W orthogonal against [vy, ..., V;] <—

Make W orthogonal \ Block Gram-Schmidt
Update [vjyq, -, Vigs], matrix H

n _Ql; n
end —— "Tall-Skinny QR

Use H, [vy, ..., V] to construct the solution

49

Tall-Skinny QR (TSQR)

* TSQR: QR factorization of a tall
skinny matrix using Householder
transformations

* QR decomposition of m x b matrix W,
m>>Db

* P processors, block row layout

50

Tall-Skinny QR (TSQR)

* TSQR: QR factorization of a tall
skinny matrix using Householder
transformations

* QR decomposition of m x b matrix W,
m>>Db

* P processors, block row layout

* Classic Parallel Algorithm

* Compute Householder vector for
each column

* Number of messages « b log P

50

Tall-Skinny QR (TSQR)

* TSQR: QR factorization of a tall
skinny matrix using Householder
transformations

* QR decomposition of m x b matrix W,
m>>Db

* P processors, block row layout

* Classic Parallel Algorithm

* Compute Householder vector for
each column

* Number of messages « b log P

* Communication Avoiding Algorithm

* Reduction operation, with QR as
operator

* Number of messages « log P

50

Tall-Skinny QR (TSQR)

« TSQR: QR factorization of a tall Parallel
skinny matrix using Householder o
transformations Wo %R00> R
01
. _ W = Wil— Ry
* QR decomposition of m x b matrix W, ~ Wy [Ry, 3 Rz
m>>b _WS_%R%? R11
* P processors, block row layout
Sequential
* Classic Parallel Algorithm Wol> Ry
« Compute Householder vector for w = | me\
each column W, Roz._
e Number of messages «< b log P Ws Ros
* Communication Avoiding Algorithm Dual Core
* Reduction operation, with QR as Wol—>Ryq
operator v |Wa|Ra > RO1> .
e Number of messages « log P — |w, : 3 02>R
03
W3 R14

Tall-Skinny QR (TSQR)

e TSQR: QR factorization of a tall Parallel
skinny matrix using Householder o
transformations Wo %RO(’} R
. _ _ Wil Ry o1
* QR decomposition of m x b matrix W, W = W, |— Ry, > Ro;
m>>b _WS_%R%? R11
* P processors, block row layout
Sequential
* Classic Parallel Algorithm Wol—> Ry,
« Compute Householder vector for w = | Ro1.
each column W, Ro>
7% SR
* Number of messages « b log P 3 03
* Communication Avoiding Algorithm Dual Core
* Reduction operation, with QR as WyT—Ryq
operator W |m Hpm> R01> P
* Number of messages « log P W R 02
2 11 >R03
W5 R14

TSQR implementations in Intel MKL library,
GNU Scientific Library, ScaLAPACK, Spark 50

Performance Results

(Mohiyuddin et al, 2009)

Intel Clovertown (r = k-t = 60)

I Matrix powers

/@ TSQR 1
[Block Gram-Schmidt
I Other dense ops
[
[

Runtime / runtime(CA-GMRES)

1d3pt pwtk bmw cant xenon cfd shipsec

Sparse matrix

S e il ; pwtk shipsec xenon
. 1d3pt ~ bmw cant cfd lpressurized wind tunnel || FEM ship |[Complex zeolite,
Tridiagonal matrix Stiffness matrix || FEM cantilever || Pressure matrix stiffness matrix section/detail ||sodalite crystals
(1M, 3M, 3) (141K, 7.3M, 51)| (62K, 4M, 65) ||(123K, 3.1M, 25) (218K, 12M, 55) (141K, 7.8M, 55)|(157K, 3.9M, 25)

51

Performance and Applications

52| T T T T T |)
» Performance studies 3 I VA
40 -\ & \ N TR A
A /
. | ea'-‘asﬂ WA LARE A \& 2B
* s-step GMRES on hybrid CPU/GPU - [T A
. e e .. _A ..
arch. (Yamazaki et al., 2014) 2 o
o] A
(‘%24 e!f - [
. . . / g B A Ol ALl
» comparison of s-step and pipelined 20 sl P IR PR TR e e P
GMRES (Yamazaki et al., 2017) A"
8y T [—9— CA-GMRES(5.15,30), 1GPU/MPI |
AP |- CA-GMRES(5,1530), 3GPUs/MPI |
2 —B— GMRES(30)
0 1 12 24 36 48 60 72 84 96 108 120

Number of GPUs

Fig. 6. Parallel Strong Scaling of CA-GMRES and GMRES on 120
distributed GPUs (over GMRES on one GPU), for the G3_Circuit matrix.

52

Performance and Applications

 Performance studies

* s-step GMRES on hybrid CPU/GPU
arch. (Yamazaki et al., 2014)

» comparison of s-step and pipelined
GMRES (Yamazaki et al., 2017)

8oy [5= CA-GMRES(5,15.30), 1GPU/MPI ||

AP |- CA-GMRES(5,1530), 3GPUs/MPI |
—5— GMRES(30)

0 1 1 1 I T I T

1 12 24 36 48 60 72 84 96 108 120

Number of GPUs

Fig. 6. Parallel Strong Scaling of CA-GMRES and GMRES on 120
distributed GPUs (over GMRES on one GPU), for the G3_Circuit matrix.

* Example applications: s-step BICGSTAB used in
 combustion, cosmology [Williams, C., et al., IPDPS, 2014]
* geoscience dynamics [Anciaux-Sedrakian et al., 2016]
* far-field scattering [Zhang et al., 2016]
« wafer defect detection [Zhang et al., 2016]

52

Performance and Applications

 Performance studies

* s-step GMRES on hybrid CPU/GPU
arch. (Yamazaki et al., 2014)

» comparison of s-step and pipelined
GMRES (Yamazaki et al., 2017)

| =&~ CA-GMRES(5.15.30), 1GPU/MPI ||
| =&~ CA-GMRES(5,15.30), 3GPUs/MPI ||
—B— GMRES(30)

1 1 1
1 12 24 36

48 60 72 84 96 108
Number of GPUs

120

Fig. 6. Parallel Strong Scaling of CA-GMRES and GMRES on 120
distributed GPUs (over GMRES on one GPU), for the G3_Circuit matrix.

* Example applications: s-step BICGSTAB used in
 combustion, cosmology [Williams, C., et al., IPDPS, 2014]
* geoscience dynamics [Anciaux-Sedrakian et al., 2016]
* far-field scattering [Zhang et al., 2016]

« wafer defect detection [Zhang et al., 2016]

R

up to 4.2x on 24K
cores on Cray XE6

52

Alternative Approaches

 Enlarged Krylov subspace methods (Grigori, Moufawad, Nataf, 2016)

 Split vector into t parts based on domain decomposition of A; enlarge
Krylov subspace by t dimensions each iteration

» Faster convergence, more parallelizable

* Combined s-step pipelined methods
* (¢,5)-GMRES (Yamazaki, Hoemmen, Luszczek, Dongarra, 2017)

* Hybrid approach which combines ideas of s-step and pipelined methods;
reduces number of global synchronizations and also overlaps them with
other work

54

Practical Implementation Challenges

* How to pick parameters? (pipeline depth in pipelined method; s in s-step
method)

* Choice must take into account matrix structure, machine, partition, as
well as numerical properties (more on this next time!)

* Preconditioning
* Must consider overlap in pipelined methods (if enough to overlap with)

* For s-step, can diminish potential gain from matrix powers kernel if
preconditioner is dense (but still win from savings in Allreduce)

55

Choosing s

* How do we expect communication costs to change as s
increases?

* Initially decrease, but at some point, start increasing

* Point depends on sparsity structure of matrix, 5 l
partition of matrix, and latency/bandwidth B :
parameters of the machine o I

L |
. . (D}
* Bandwidth cost can start to dominate o1 I
. & l
* For s large enough, the extra entries we need go past =
our neighbors boundaries !
* more messages required -> increased latency .
cost
Flops Words Moved Messages
SpMV Orth. SpMV Orth. SpMV Orth.
N N
Classical CG S? S? s N/p slog, p s slog, p
N 2
s-step CG = SN sy/N/p s?log, p 1 log, p

Choosing s

How do we expect communication costs to change as s
increases?

* Initially decrease, but at some point, start increasing

* Point depends on sparsity structure of matrix, 5 l
partition of matrix, and latency/bandwidth B :
parameters of the machine o I

L |
. . (D}
* Bandwidth cost can start to dominate o1 I
. & l
* For s large enough, the extra entries we need go past =
our neighbors boundaries !
* more messages required -> increased latency .
cost
* For GMRES, best s for matrix powers may not be best
s for TSQR kernel
» Choice of s requires co-tuning
Flops Words Moved Messages
SpMV Orth. SpMV Orth. SpMV Orth.
N N
Classical CG S? S? s N/p slog, p s slog, p
N 2
s-step CG = SN sy/N/p s?log, p 1 log, p

— BW constraint
— Latency constraint

Compute Bound

Basis Length, s

Lower Bound Tradeoffs for Matrix Powers

e Solomonik, C., Knight, Demmel (2014): Lower bounds on tradeoffs
between three basic costs of a parallel algorithm: synchronization, data
movement, and computational cost.

* By considering critical path, tradeoffs give lower bounds on the
execution time which are dependent on the problem size but
independent of the number of processors (assuming homogeneity)

58

Lower Bound Tradeoffs for Matrix Powers

e Solomonik, C., Knight, Demmel (2014): Lower bounds on tradeoffs
between three basic costs of a parallel algorithm: synchronization, data
movement, and computational cost.

* By considering critical path, tradeoffs give lower bounds on the
execution time which are dependent on the problem size but
independent of the number of processors (assuming homogeneity)

* Theorem: Any parallel execution of an s-dimensional Krylov basis

computation for a (2m + 1)%-point stencil on a d-dimensional regular
mesh requires

Q(m%b%s) flops, Q(m%b% 1s)words, Q(s/b) messages,

forsome b € {1, ..., s}

58

Lower Bound Tradeoffs for Matrix Powers

e Solomonik, C., Knight, Demmel (2014): Lower bounds on tradeoffs
between three basic costs of a parallel algorithm: synchronization, data
movement, and computational cost.

* By considering critical path, tradeoffs give lower bounds on the
execution time which are dependent on the problem size but
independent of the number of processors (assuming homogeneity)

* Theorem: Any parallel execution of an s-dimensional Krylov basis

computation for a (2m + 1)%-point stencil on a d-dimensional regular
mesh requires

Q(m%b%s) flops, Q(m%b% 1s)words, Q(s/b) messages,

forsome b € {1, ..., s}

* Matrix powers kernel attains this lower bound when n¢/p > m%bp¢
where n? is # mesh points

58

Performance Modeling to Estimate Parameters

e Goal: estimate best blocking factor b for matrix powers
computation

58

Performance Modeling to Estimate Parameters

e Goal: estimate best blocking factor b for matrix powers
computation

e Cost model:
Time =y X flops + f X words moved + a X # messages

58

Performance Modeling to Estimate Parameters

e Goal: estimate best blocking factor b for matrix powers
computation

e Cost model:
Time =y X flops + f X words moved + a X # messages

* Choose b to minimize

Time ~y m%b%s + fm®b% s+ as/b

58

Performance Modeling to Estimate Parameters

e Goal: estimate best blocking factor b for matrix powers
computation

e Cost model:
Time =y X flops + f X words moved + a X # messages

* Choose b to minimize
Time ~y m%b%s + fm®b% s+ as/b

a
mﬂl/d

* Latency/BW tradeoff point: b ~

58

Performance Modeling to Estimate Parameters

e Goal: estimate best blocking factor b for matrix powers
computation

Cost model:
Time =y X flops + [X words moved + a X # messages

Choose b to minimize
Time ~y m%b%s + fm®b% s+ as/b

a
mﬁl/d

Latency/BW tradeoff point: b ~

Starting place for parameter selection — to get close to optimal
answer, would need more accurate model of time, costs including
constants

58

Matrix Partitioning

* For computing matrix powers (i.e., constructing the basis matrix in s-step
methods, we really want to partition the structure of A° rather than A
* Analogous to single SpMV, can construct a hypergraph model such

that the minimum cut gives a partition with minimum communication
volume

* Load balancing

* The parallel matrix powers kernel involves redundantly computing
entries of the vectors on different processors

* Entries which need to be redundantly computed determined by
partition

59

Hypergraph Partitioning for Matrix Powers

Parallel communication for Parallel communication for (assuming no
— — AS cancellation

- PAEL)) y - X,

rse tiling of A given 1D rowwise layout of A®

0 processor 1 10 process 2 20 proc 3 30 processor 4

 “s-level’ row- and column-nets encode the structure of A°S

Hypergraph Partitioning for Matrix Powers

Parallel communication for Parallel communication for (aSS‘IJImi_”g ”Od

_ — AS cancellation an
V. = [xAx A " A"x],) : Y .A X ¢ | nonzero diagonal)
given a sparse tiling of A given 1D rowwise layout of A

0 processor 1 10 processarz 20 processar.ﬁ' 30 processor 4

* “s-level” row- and column-nets encode the structure of A°®
* But expensive to compute (s x Boolean sparse matrix—matrix multiplies)
* Only worth it if A has particularly irregular sparsity structure (e.g., number of nonzeros
per column in A® grows at various rates) and same matrix will be reused
* Potential use of randomized algorithms to estimate nnz/column in A¢

Preconditioning for s-step variants

* Preconditioners improve spectrum of system to improve convergence
rate

« E.g., instead of Ax = b, solve M~1Ax = M~1b, where M1 = 471
» Essential in practice

187

Preconditioning for s-step variants

* Preconditioners improve spectrum of system to improve convergence
rate

« E.g., instead of Ax = b, solve M~1Ax = M~1b, where M1 = 471
» Essential in practice

* In s-step variants, general preconditioning is a challenge

* Except for very simple cases, ability to exploit temporal locality (in
matrix powers computation) across iterations is diminished by
preconditioning

* Still potential gain from blocking inner products/avoiding
global synchronization

* |f possible to avoid communication at all, usually necessitates
significant modifications to the algorithm

188

Preconditioning for s-step variants

* Preconditioners improve spectrum of system to improve convergence
rate

« E.g., instead of Ax = b, solve M~1Ax = M~1b, where M1 = 471
» Essential in practice

* In s-step variants, general preconditioning is a challenge

* Except for very simple cases, ability to exploit temporal locality (in
matrix powers computation) across iterations is diminished by
preconditioning

* Still potential gain from blocking inner products/avoiding
global synchronization

* |f possible to avoid communication at all, usually necessitates
significant modifications to the algorithm

* Tradeoff: speed up convergence, but increase time per iteration due to
communication!

* For each specific app, must evaluate tradeoff between

preconditioner quality and sparsity of the system 150

Preconditioning for s-step KSMs

* Much recent/ongoing work in developing communication-avoiding
preconditioned methods

* Many approaches shown to be compatible

Diagonal

Sparse Approx. Inverse (SPAI) — for s-step BICGSTAB by Mehri
(2014)

HSS preconditioning (Hoemmen, 2010); for banded matrices (Knight,
C., Demmel, 2014); same general technique for any system that can
be written as sparse + low-rank

Deflation for s-step CG (C., Knight, Demmel, 2014), for s-step
GMRES (Yamazaki et al., 2014)

CA-ILU(0) — Moufawad and Grigori (2013)

Domain decomposition — avoid introducing additional communication
by “underlapping” subdomains (Yamazaki et al., 2014)

60

"Underlapping" Domain Decomposition

(Yamazaki et al., 2014)

* Variant of an additive Schwarz preconditioner, modified to ensure consistent interfaces
between the subdomains without additional communication beyond what is required by

sparsity structure of A

Interior of Interior of
s level underlap
i : Subdomain 1
subdomain 1 relative to
subdomain 1

s level overlap,
relative to

subdomain 1 It 5 7 i Interior of

subdomain 2 Subdomain 2

Fig. 8. Matrix Partitioning for the CA Preconditioner for two subdomains.
The underlap and the overlap relative to subdomain 1 are shown.

In order to "localize" effects of preconditioner,
* form "interior" by removing s-level "underlap"
* apply "local" preconditioner on "interior"
* ILU(k), SAI(k), Jacobi, GaussSeidel, etc. on "interior"
» apply diagonal Jacobi on "underlap"

62

"Underlapping" Domain Decomposition

(Yamazaki et al., 2014)

* Variant of an additive Schwarz preconditioner, modified to ensure consistent interfaces
between the subdomains without additional communication beyond what is required by
sparsity structure of A

; L ——GMRES
10 ' —A—GMRES +block Jacabi
-HB-GMRES+overlap (s=1)
%7+ GMRES+overlap (s=3)
Interior of Interior of —S—GMERS+underlap (s=1)
subdomain 1 fellz‘{iileut';deﬂap’ Subdomain 1 g 107 : -&- GMRES-+underlap (s=2)
subdomain 1 z - % - CA-GMRES+underlap (s=1)
E] =+ CA—-GMRES+underlap (s=2)
ax 10 -
2
©
©
s level overlap, o 9
relative to Interior of 10
subdomain 1 nterior of Interior of
subdomain 2 Subdomain 2
10'12 L L 1 I
20 40 60 80 100 120
Number of Restarts
Fig. 8. Matrix Partitioning for the CA Preconditioner for two subdomains.
The underlap and the overlap relative to subdomain 1 are shown. . } . .
(b) G3_Circuit matrix, with restart = 30.
Fig. 11. Solution Convergence, using Different Domain Decomposition

Preconditioners with Local ILU(0)’s on 6 GPUs.

In order to "localize" effects of preconditioner,
* form "interior" by removing s-level "underlap"
* apply "local" preconditioner on "interior"

 ILU(k), SAI(k), Jacobi, GaussSeidel, etc. on "interior"
 apply diagonal Jacobi on "underlap"

62

The effects of finite precision

Well-known that roundoff error has two

—— CG (double).

effects:
_ 107
=
1. Delay of convergence @
* No longer have exact Krylov = o
o - L
subspace e 10
* Can lose numerical rank deficiency &
<

* Residuals no longer orthogonal -

. . . 10-15_
Minimization of ||x — x;||4 no

longer exact

0 200 400 600 800 1000 1200

_ lteration
2. Loss of attainable accuracy A: besstk03 from SuiteSparse,

* Rounding errors cause true b: equal components in the eigenbasis of 4,||b|| = 1
residual b — Ax; and updated N = 112,k(A) = 7e6

residual r; deviate!

Much work on these results for CG; See Meurant and Strakos (2006) for a thorough

summary of early developments in finite precision analysis of Lanczos and CG ”

The effects of finite precision

Well-known that roundoff error has two ' '
— CG (double)

effects: e S exact CG
. 10°r
=
1. Delay of convergence o
* No longer have exact Krylov = 0
o - L
subspace e 10
* Can lose numerical rank deficiency €
<

* Residuals no longer orthogonal -

. e . . -15 |
Minimization of ||x — x;||4 no 10

longer exact

0 200 400 600 800 1000 1200

_ Iteration
2. Loss of attainable accuracy A: besstk03 from SuiteSparse,

* Rounding errors cause true b: equal components in the eigenbasis of 4,||b|| = 1
residual b — Ax; and updated N = 112,k(A) = 7e6

residual r; deviate!

Much work on these results for CG; See Meurant and Strakos (2006) for a thorough

summary of early developments in finite precision analysis of Lanczos and CG ”

Xi = Xj—1 T Q;p;
T =Ti—1 — aAp;
pi =1+ Bipi

Conjugate Gradient method for solving Ax = b
double precision (¢ = 27°3)

llx; — xll4 =/ (; — X)TA(x; — x)

10'1[} -

A-norm of the error

10'15 -

0 200 400 600 800 1000 1200

lteration
195

Conjugate Gradient method for solving Ax = b
double precision (¢ = 27°3)

llx; — xll4 =/ (; — X)TA(x; — x)

A-norm of the error

10'1[} -

10'15 -

Xi = Xj—1 T Q;p;
T =Ti—1 — aAp;
pi =1+ Bipi

200 400 600 800 1000 1200
lteration

