High-Performance Variants of Krylov Subspace Methods: I/II

Erin C. Carson

Katedra numerické matematiky, Matematicko-fyzikální fakulta, Univerzita Karlova

SNA '19 January 21-25, 2019

This research was partially supported by OP RDE project No. CZ.02.2.69/0.0/0.0/16_027/0008495

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

Lecture Outline

- Parallel computers and performance modeling
 - Architecture trends
- Krylov subspace methods
 - Properties
 - Performance bottlenecks at scale
- High-performance variants of Krylov subspace methods
 - Early approaches
 - Pipelined methods
 - s-step methods
- Practical implementation issues and challenges

Computational and Data Science at Scale

- Why are we interested in solving larger and larger problems?
- Enables new frontiers in computational science and engineering
 ⇒ Finer-grained simulation, over longer time scales, processing huge
 amounts of available data

Computational and Data Science at Scale

- Why are we interested in solving larger and larger problems?
- Enables new frontiers in computational science and engineering
 ⇒ Finer-grained simulation, over longer time scales, processing huge
 amounts of available data
 - Atmosphere, Earth, Environment
 - Physics applied, nuclear, particle, fusion, photonics
 - Bioscience, Biotechnology, Genetics
 - Chemistry, Molecular Sciences
 - Geology, Seismology
 - Electrical Engineering, Circuit Design, Microelectronics
 - Mechanical Engineering from prosthetics to spacecraft

Computational and Data Science at Scale

- Why are we interested in solving larger and larger problems?
- Enables new frontiers in computational science and engineering
 ⇒ Finer-grained simulation, over longer time scales, processing huge
 amounts of available data
 - Atmosphere, Earth, Environment
 - Physics applied, nuclear, particle, fusion, photonics
 - Bioscience, Biotechnology, Genetics
 - Chemistry, Molecular Sciences
 - Geology, Seismology
 - Electrical Engineering, Circuit Design, Microelectronics
 - Mechanical Engineering from prosthetics to spacecraft
- Also industrial and commercial interests
 - "Big Data", databases, data mining
 - Artificial Intelligence (AI)
 - Medical imaging and diagnosis
 - Pharmaceutical design
 - Financial and economic modeling
 - Advanced graphics and virtual reality
 - Oil exploration

Technology Trends: Microprocessor Capacity

"Moore's Law"

Microprocessors have become smaller, denser, and more powerful.

Gordon Moore (co-founder of Intel) predicted in 1965 that the transistor density of semiconductor chips would double roughly every 18 months.

Microprocessor Transistors / Clock (1970-2000)

• What happens when the feature size (transistor size) shrinks by a factor of x?

- What happens when the feature size (transistor size) shrinks by a factor of x?
- Clock rate goes up by x because wires are shorter
 - actually less than x, because of power consumption

- What happens when the feature size (transistor size) shrinks by a factor of x?
- Clock rate goes up by x because wires are shorter
 - actually less than x, because of power consumption
- Transistors per unit area goes up by x^2

- What happens when the feature size (transistor size) shrinks by a factor of \times ?
- Clock rate goes up by x because wires are shorter
 - actually less than x, because of power consumption
- Transistors per unit area goes up by x^2
- Die size has also increased
 - typically another factor of $\sim x$

- What happens when the feature size (transistor size) shrinks by a factor of x?
- Clock rate goes up by x because wires are shorter
 - actually less than x, because of power consumption
- Transistors per unit area goes up by χ^2
- Die size has also increased
 - typically another factor of $\sim x$
- Raw computing power of the chip goes up by $\sim x^4$!
 - typically x^3 is devoted to either on-chip
 - parallelism: hidden parallelism such as ILP
 - locality: caches
- So most programs x^3 times faster, without changing them

Power Density Limits Serial Performance

Scaling clock speed (business as usual) will not work

Power Density Limits Serial Performance

- Concurrent systems are more power efficient
 - Dynamic power is proportional to V²fC
 - Increasing frequency (f) also increases supply voltage (V)
 → cubic effect
 - Increasing cores increases capacitance (C) but only linearly
 - Save power by lowering clock speed

Scaling clock speed (business as usual) will not work

Power Density Limits Serial Performance

- Concurrent systems are more power efficient
 - Dynamic power is proportional to V²fC
 - Increasing frequency (f) also increases supply voltage (V)
 → cubic effect
 - Increasing cores increases capacitance (C) but only linearly
 - Save power by lowering clock speed

Scaling clock speed (business as usual) will not work

- High performance serial processors waste power
 - Speculation, dynamic dependence checking, etc. burn power
 - Implicit parallelism discovery
- More transistors, but not faster serial processors

Revolution in Processors

- Chip density is continuing increase $\sim 2x$ every 2 years
- Clock speed is not
- Number of processor cores may double instead
- Power is under control, no longer growing

Parallel Computer Architectures

- Takeaway: all programs that need to run faster will have to become parallel programs
- Since mid 2000s not only are fastest computers parallel, but nearly *all* computers are parallel

1995 Single CPU per node with main memory

Cache

https://str.llnl.gov/march-2015/still

2000-2010 Accelerators usher in era of heterogeneity

New programming models

2000-2010 Accelerators usher in era of heterogeneity

2014 Accelerators share common view of memory with CPU

Summit (Oak Ridge National Lab, Tennessee)

• current #1 on the TOP500

One Processor: 22 SIMD processing cores, on-chip accelerators

- Each core supports 4 hardware threads
- Each core has separate L1 cache; pairs of cores share L2 and L3 cache

One GPU (NVIDIA V100): 80 streaming multiprocessors (SMs), 16 GB of highbandwidth memory (HBM2), 6 MB L2 cache shared by SMs

https://www.olcf.ornl.gov/for-users/system-userguides/summit/summit-user-guide/#nvidia-v100-gpus

One SM:

32 FP64 (double-precision) cores, 64 FP32 (single-precision) cores, 64 INT32 cores,

8 tensor cores,

128-KB shared memory/L1 cache

One Socket: 1 CPU, 3 GPUs

One Node: 2 sockets

Summit Node

https://www.olcf.ornl.gov/for-users/system-user-guides/summit/summit-user-guide

One Rack: 18 nodes

- Dual-rail EDR InfiniBand network with non-blocking fat-tree topology
- Node bandwidth of 23 GB/s

https://en.wikichip.org/wiki/supercomputers/summit

Designing High-Performance Parallel Algorithms

- To design an efficient parallel algorithm, must first model physical costs ---runtime or energy consumption --- of executing a program on a machine
- Tradeoff:
 - More detailed model: more accurate results for a particular machine, but results may not apply to other machines
 - Less detailed model: results applicable to a variety of machines, but may not be accurate for any
 - but abstracting machine details can still give us a general sense of an efficient implementation

A simplified runtime model:

- Time to perform a floating point operation: $\boldsymbol{\gamma}$
- Time to move a message of n words: α + βn
 - $\alpha = \text{latency (seconds)}, \beta = 1/\text{bandwidth (seconds/word)}$

Runtime =
$$\gamma$$
 (# flops) + β (# words) + α (# msgs)

#flops,words,msgs are counted along a critical path in the schedule:

- γ is per-flop:
 - To improve: more parallelism (no longer increase clock frequency)

- γ is per-flop:
 - To improve: more parallelism (no longer increase clock frequency)
- β is per-word:
 - Models bandwidth: maximum amount of data that can be inflight simultaneously
 - To improve: add more ports/wires/etc.

- γ is per-flop:
 - To improve: more parallelism (no longer increase clock frequency)
- β is per-word:
 - Models bandwidth: maximum amount of data that can be inflight simultaneously
 - To improve: add more ports/wires/etc.
- α is per-message and independent of message size
 - Models latency: time for data to travel across machine
 - Difficult to improve, due to fundamental limits (speed of light, atomic radius,...)

"Bandwidth is money, but latency is physics"
Exascale System Projections

	Today's Systems	Predicted Exascale Systems*
System Peak	10 ¹⁶ flops/s	10 ¹⁸ flops/s
Node Memory Bandwidth	10 ² GB/s	10 ³ GB/s
Interconnect Bandwidth	10 ¹ GB/s	10 ² GB/s
Memory Latency	$10^{-7} { m s}$	$5\cdot 10^{-8}$ s
Interconnect Latency	10 ⁻⁶ s	$5\cdot10^{-7}$ s

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

Exascale System Projections

	Today's Systems	Predicted Exascale Systems*	Factor Improvement
System Peak	10 ¹⁶ flops/s	10 ¹⁸ flops/s	100
Node Memory Bandwidth	10 ² GB/s	10 ³ GB/s	10
Interconnect Bandwidth	10 ¹ GB/s	10 ² GB/s	10
Memory Latency	$10^{-7} { m s}$	$5\cdot 10^{-8}$ s	2
Interconnect Latency	10 ⁻⁶ s	$5\cdot 10^{-7}$ s	2

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

Exascale System Projections

	Today's Systems	Predicted Exascale Systems*	Factor Improvement
System Peak	10 ¹⁶ flops/s	10 ¹⁸ flops/s	100
Node Memory Bandwidth	10 ² GB/s	10 ³ GB/s	10
Interconnect Bandwidth	10 ¹ GB/s	10 ² GB/s	10
Memory Latency	$10^{-7} { m s}$	$5\cdot 10^{-8}$ s	2
Interconnect Latency	10 ⁻⁶ s	$5\cdot 10^{-7}$ s	2

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

- Movement of data (communication) is much more expensive than floating point operations (computation), in terms of both time and energy
- Gaps will only grow larger
- Reducing time spent moving data/waiting for data will be essential for applications at exascale!

Exascale Computing: The Modern Space Race

- "Exascale": 10¹⁸ floating point operations per second
 - with maximum energy consumption around 20-40 MWatts
- Advancing knowledge, addressing social challenges, improving quality of life, influencing policy, economic competitiveness

Nothing tends so much to the advancement of knowledge as the application of a new instrument. - Sir Humphry Davy

• Large investment in HPC worldwide

Exascale Computing: The Modern Space Race

- "Exascale": 10¹⁸ floating point operations per second
 - with maximum energy consumption around 20-40 MWatts
- Advancing knowledge, addressing social challenges, improving quality of life, influencing policy, economic competitiveness

Nothing tends so much to the advancement of knowledge as the application of a new instrument. - Sir Humphry Davy

• Large investment in HPC worldwide

• Technical challenges at all levels

hardware to algorithms to applications

Exascale Computing: The Modern Space Race

- "Exascale": 10¹⁸ floating point operations per second
 - with maximum energy consumption around 20-40 MWatts
- Advancing knowledge, addressing social challenges, improving quality of life, influencing policy, economic competitiveness

Nothing tends so much to the advancement of knowledge as the application of a new instrument. - Sir Humphry Davy

• Large investment in HPC worldwide

• Technical challenges at all levels

- When will victory be declared?
 - When a supercomputer reaches exaflop performance on the LINPACK benchmark (TOP500)
 - Solving dense Ax = b using Gaussian elimination with partial pivoting

- When will victory be declared?
 - When a supercomputer reaches exaflop performance on the LINPACK benchmark (TOP500)
 - Solving dense Ax = b using Gaussian elimination with partial pivoting
 - Summit supercomputer has already exceeded exaflop performance for a certain genomics code (<u>https://www.olcf.ornl.gov/2018/06/08/genomics-code-exceeds-exaops-on-summit-supercomputer/</u>)

- When will victory be declared?
 - When a supercomputer reaches exaflop performance on the LINPACK benchmark (TOP500)
 - Solving dense Ax = b using Gaussian elimination with partial pivoting
 - Summit supercomputer has already exceeded exaflop performance for a certain genomics code (<u>https://www.olcf.ornl.gov/2018/06/08/genomics-code-exceeds-exaops-on-summit-supercomputer/</u>)
- Does that mean we are done?

- When will victory be declared?
 - When a supercomputer reaches exaflop performance on the LINPACK benchmark (TOP500)
 - Solving dense Ax = b using Gaussian elimination with partial pivoting
 - Summit supercomputer has already exceeded exaflop performance for a certain genomics code (<u>https://www.olcf.ornl.gov/2018/06/08/genomics-code-exceeds-exaops-on-summit-supercomputer/</u>)
- Does that mean we are done?
- LINPACK benchmark is typically a compute-bound problem ("BLAS-3")
- Not a good indication of performance for a large number of scientific applications!
 - Lots of remaining work even after exascale performance is achieved
 - Has led to incorporation of other benchmarks into the TOP500 ranking
 - e.g., HPCG: Solving sparse Ax = b iteratively using the conjugate gradient method

Krylov subspace methods

- Linear systems Ax = b, eigenvalue problems, singular value problems, least squares, etc.
- Best for: A large & very sparse, stored implicitly, or only approximation needed
- Krylov Subspace Method is a projection process onto the Krylov subspace

$$\mathcal{K}_{i}(A, r_{0}) = \operatorname{span}\{r_{0}, Ar_{0}, A^{2}r_{0}, \dots, A^{i-1}r_{0}\}$$

where A is an $N \times N$ matrix and $r_0 = b - Ax_0$ is a length-N vector

- In each iteration,
 - Add a dimension to the Krylov subspace
 - Forms nested sequence of Krylov subspaces

 $\mathcal{K}_1(A,r_0) \subset \mathcal{K}_2(A,r_0) \subset \cdots \subset \mathcal{K}_i(A,r_0)$

- Orthogonalize (with respect to some C_i)
- Select approximate solution $x_i \in x_0 + \mathcal{K}_i(A, r_0)$ using $r_i = b - Ax_i \perp C_i$

• Ex: Lanczos/Conjugate Gradient (CG), Arnoldi/Generalized Minimum Residual (GMRES), Biconjugate Gradient (BICG), BICGSTAB, GKL, LSQR, etc.

Krylov Subspace Methods in the Wild

Climate Modeling

Computer Vision

Chemical Engineering

Medical Treatment

Computational Cosmology

Power Grid Modeling

Latent Semantic Analysis

Financial Portfolio Optimization

A is symmetric positive definite, $C_i = \mathcal{K}_i(A, r_0)$

A is symmetric positive definite, $C_i = \mathcal{K}_i(A, r_0)$

$$r_i \perp \mathcal{K}_i(A, r_0) \quad \Leftrightarrow \quad \|x - x_i\|_A = \min_{z \in x_0 + \mathcal{K}_i(A, r_0)} \|x - z\|_A$$

A is symmetric positive definite, $C_i = \mathcal{K}_i(A, r_0)$

$$r_i \perp \mathcal{K}_i(A, r_0) \quad \Leftrightarrow \quad \|x - x_i\|_A = \min_{z \in x_0 + \mathcal{K}_i(A, r_0)} \|x - z\|_A$$

$$\implies$$
 $r_{N+1} = 0$

A is symmetric positive definite, $C_i = \mathcal{K}_i(A, r_0)$

$$r_i \perp \mathcal{K}_i(A, r_0) \quad \Leftrightarrow \quad \|x - x_i\|_A = \min_{z \in x_0 + \mathcal{K}_i(A, r_0)} \|x - z\|_A$$

$$\implies$$
 $r_{N+1} = 0$

Connection with Lanczos

- With $v_1 = r_0/||r_0||$, *i* iterations of Lanczos produces $N \times i$ matrix $V_i = [v_1, ..., v_i]$, and $i \times i$ tridiagonal matrix T_i such that $AV_i = V_iT_i + \delta_{i+1}v_{i+1}e_i^T$, $T_i = V_i^*AV_i$
- CG approximation x_i is obtained by solving the reduced model $T_i y_i = ||r_0||e_1, \qquad x_i = x_0 + V_i y_i$

A is symmetric positive definite, $C_i = \mathcal{K}_i(A, r_0)$

$$r_i \perp \mathcal{K}_i(A, r_0) \quad \Leftrightarrow \quad \|x - x_i\|_A = \min_{z \in x_0 + \mathcal{K}_i(A, r_0)} \|x - z\|_A$$

$$\implies r_{N+1} = 0$$

Connection with Lanczos

- With $v_1 = r_0/||r_0||$, *i* iterations of Lanczos produces $N \times i$ matrix $V_i = [v_1, ..., v_i]$, and $i \times i$ tridiagonal matrix T_i such that $AV_i = V_iT_i + \delta_{i+1}v_{i+1}e_i^T$, $T_i = V_i^*AV_i$
- CG approximation x_i is obtained by solving the reduced model $T_i y_i = ||r_0||e_1, \qquad x_i = x_0 + V_i y_i$
- Connections with orthogonal polynomials, Stieltjes problem of moments, Gauss-Cristoffel quadrature, others (see 2013 book of Liesen and Strakoš)

A is symmetric positive definite, $C_i = \mathcal{K}_i(A, r_0)$

$$r_i \perp \mathcal{K}_i(A, r_0) \quad \Leftrightarrow \quad \|x - x_i\|_A = \min_{z \in x_0 + \mathcal{K}_i(A, r_0)} \|x - z\|_A$$

$$\implies r_{N+1} = 0$$

Connection with Lanczos

- With $v_1 = r_0/||r_0||$, *i* iterations of Lanczos produces $N \times i$ matrix $V_i = [v_1, ..., v_i]$, and $i \times i$ tridiagonal matrix T_i such that $AV_i = V_iT_i + \delta_{i+1}v_{i+1}e_i^T$, $T_i = V_i^*AV_i$
- CG approximation x_i is obtained by solving the reduced model $T_i y_i = ||r_0||e_1, \qquad x_i = x_0 + V_i y_i$
- Connections with orthogonal polynomials, Stieltjes problem of moments, Gauss-Cristoffel quadrature, others (see 2013 book of Liesen and Strakoš)
- ⇒ CG (and other Krylov subspace methods) are highly nonlinear
 - Good for convergence, bad for ease of finite precision analysis

Implementation of CG

- Standard implementation due to Hestenes and Stiefel (1952) (HSCG)
- Uses three 2-term recurrences for updating x_i, r_i, p_i

$$r_{0} = b - Ax_{0}, \ p_{0} = r_{0}$$

for $i = 1$:nmax
$$\alpha_{i-1} = \frac{r_{i-1}^{T} r_{i-1}}{p_{i-1}^{T} A p_{i-1}}$$
$$x_{i} = x_{i-1} + \alpha_{i-1} p_{i-1}$$
$$r_{i} = r_{i-1} - \alpha_{i-1} A p_{i-1}$$
$$\beta_{i} = \frac{r_{i}^{T} r_{i}}{r_{i-1}^{T} r_{i-1}}$$
$$p_{i} = r_{i} + \beta_{i} p_{i-1}$$
end

Implementation of CG

- Standard implementation due to Hestenes and Stiefel (1952) (HSCG)
- Uses three 2-term recurrences for updating x_i, r_i, p_i

minimizes $||x - x_i||_A$ along line $r_0 = b - Ax_0, \ p_0 = r_0$ $z(\alpha) = x_{i-1} + \alpha p_{i-1}$ for i = 1:nmax $\alpha_{i-1} = \frac{r_{i-1}^T r_{i-1}}{p_{i-1}^T A p_{i-1}}$ $x_i = x_{i-1} + \alpha_{i-1} p_{i-1}$ $r_i = r_{i-1} - \alpha_{i-1}Ap_{i-1}$ $\beta_i = \frac{r_i^T r_i}{r_{i-1}^T r_{i-1}}$ $p_i = r_i + \beta_i p_{i-1}$ end

Implementation of CG

- Standard implementation due to Hestenes and Stiefel (1952) (HSCG)
- Uses three 2-term recurrences for updating x_i, r_i, p_i

 $r_0 = b - Ax_0, \ p_0 = r_0$ for i = 1:nmax $\alpha_{i-1} = \frac{r_{i-1}^T r_{i-1}}{p_{i-1}^T A p_{i-1}}$ $x_i = x_{i-1} + \alpha_{i-1} p_{i-1}$ $r_i = r_{i-1} - \alpha_{i-1}Ap_{i-1}$ $\beta_i = \frac{r_i^T r_i}{r_i^T r_i r_{i-1}}$ $p_i = r_i + \beta_i p_{i-1}$ end

minimizes $||x - x_i||_A$ along line $z(\alpha) = x_{i-1} + \alpha p_{i-1}$

lf

$$p_i \perp_A p_j$$
 for $i \neq j$,

1-dimensional minimizations in each iteration give *i*-dimensional minimization over the whole subspace

 $x_0 + \mathcal{K}_i(A, r_0) = x_0 + \operatorname{span}\{p_0, \dots p_{i-1}\}$

Summit - IBM Power System AC922

Site:	Oak Ridge National Laboratory
Manufacturer:	IBM
Cores:	2,282,544
Memory:	2,801,664 GB
Processor:	IBM POWER9 22C 3.07GHz
Interconnect:	Dual-rail Mellanox EDR Infiniband
Performance	
Theoretical peak:	187,659 TFlops/s
LINPACK benchmark:	122,300 Tflops/s
HPCG benchmark:	2,926 Tflops/s

Summit - IBM Power System AC922		
Site:	Oak Ridge National Laboratory	
Manufacturer:	IBM	
Cores:	2,282,544	
Memory:	2,801,664 GB	
Processor:	IBM POWER9 22C 3.07GHz	
Interconnect:	Dual-rail Mellanox EDR Infiniband	
Performance		
Theoretical peak:	187,659 TFlops/s	
LINPACK benchmark:	122,300 Tflops/s	
HPCG benchmark:	2,926 Tflops/s	

Summit - IBM Po	wer System AC922	$ \qquad \qquad$
Site:	Oak Ridge National Laboratory	on top500
Manufacturer:	IBM	
Cores:	2,282,544	-
Memory:	2,801,664 GB	
Processor:	IBM POWER9 22C 3.07GHz	LINPACK benchmark (dense $Ax = b$, direct)
Interconnect:	Dual-rail Mellanox EDR Infiniband	65% efficiency
Performance		
Theoretical peak:	187,659 TFlops/s	
LINPACK benchmark:	122,300 Tflops/s	
HPCG benchmark:	2,926 Tflops/s	

Summit - IBM Power System AC922		1 current #1 on top500
Site:	Oak Ridge National Laboratory	
Manufacturer:	IBM	
Cores:	2,282,544	
Memory:	2,801,664 GB	
Processor:	IBM POWER9 22C 3.07GHz	LINPACK benchmark
Interconnect:	Dual-rail Mellanox EDR Infiniband	(dense Ax = b, direct) $65% efficiency$
Performance		
Theoretical peak:	187,659 TFlops/s	-
LINPACK benchmark:	122,300 Tflops/s	HPCG benchmark
HPCG benchmark:	2,926 Tflops/s	(sparse $Ax = b$, iterative) 1.5% efficiency

$$r_{0} = b - Ax_{0}, \ p_{0} = r_{0}$$

for $i = 1$:nmax
$$\alpha_{i-1} = \frac{r_{i-1}^{T}r_{i-1}}{p_{i-1}^{T}Ap_{i-1}}$$
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$
$$r_{i} = r_{i-1} - \alpha_{i-1}Ap_{i-1}$$
$$\beta_{i} = \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}}$$
$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$
end

$$r_{0} = b - Ax_{0}, \ p_{0} = r_{0}$$

for $i = 1$:nmax
$$\alpha_{i-1} = \frac{r_{i-1}^{T}r_{i-1}}{p_{i-1}^{T}Ap_{i-1}}$$
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$
$$r_{i} = r_{i-1} - \alpha_{i-1}Ap_{i-1}$$
$$\beta_{i} = \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}}$$
$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$
end

$$r_{0} = b - Ax_{0}, \ p_{0} = r_{0}$$

for $i = 1$:nmax
$$\alpha_{i-1} = \frac{r_{i-1}^{T}r_{i-1}}{p_{i-1}^{T}Ap_{i-1}}$$
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$
$$r_{i} = r_{i-1} - \alpha_{i-1}Ap_{i-1}$$
$$\beta_{i} = \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}}$$
$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$
end

$$r_{0} = b - Ax_{0}, \quad p_{0} = r_{0}$$

for $i = 1$:nmax
$$\alpha_{i-1} = \frac{r_{i-1}^{T}r_{i-1}}{p_{i-1}^{T}Ap_{i-1}}$$
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$
$$r_{i} = r_{i-1} - \alpha_{i-1}Ap_{i-1}$$
$$\beta_{i} = \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}}$$
$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$
end

$$r_{0} = b - Ax_{0}, \quad p_{0} = r_{0}$$

for $i = 1$:nmax
$$\alpha_{i-1} = \frac{r_{i-1}^{T}r_{i-1}}{p_{i-1}^{T}Ap_{i-1}}$$
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$
$$r_{i} = r_{i-1} - \alpha_{i-1}Ap_{i-1}$$
$$\beta_{i} = \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}}$$
$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$
end

$$r_{0} = b - Ax_{0}, \ p_{0} = r_{0}$$

for $i = 1$:nmax
$$\alpha_{i-1} = \frac{r_{i-1}^{T}r_{i-1}}{p_{i-1}^{T}Ap_{i-1}}$$
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$
$$r_{i} = r_{i-1} - \alpha_{i-1}Ap_{i-1}$$
$$\beta_{i} = \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}}$$
$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$
end

Cost Per Iteration

- \rightarrow Sparse matrix-vector multiplication (SpMV)
 - O(nnz) flops
 - Must communicate vector entries w/neighboring processors (nearest neighbor MPI collective)
 - Must read A/vector from slow memory

Cost Per Iteration

- \rightarrow Sparse matrix-vector multiplication (SpMV)
 - O(nnz) flops
 - Must communicate vector entries w/neighboring processors (nearest neighbor MPI collective)
 - Must read A/vector from slow memory
- \rightarrow Inner products
 - O(N) flops
 - **global synchronization** (MPI_Allreduce)
 - all processors must exchange data and wait for *all* communication to finish before proceeding
 - Multiple reads/writes to slow memory

Cost Per Iteration

- \rightarrow Sparse matrix-vector multiplication (SpMV)
 - O(nnz) flops
 - Must communicate vector entries w/neighboring processors (nearest neighbor MPI collective)
 - Must read A/vector from slow memory
- \rightarrow Inner products
 - O(N) flops
 - global synchronization (MPI_Allreduce)
 - all processors must exchange data and wait for *all* communication to finish before proceeding
 - Multiple reads/writes to slow memory

Low computation/communication ratio

 \Rightarrow Performance is communication-bound

Roofline Model Example

Roofline Model (Williams, Waterman, Patterson, 2009)

- Provides estimates of performance for various applications (based on arithmetic intensity) for given machine
- attainable flop/s = min(peak flop/s, peak bandwidth × arithmetic intensity)
- "ceilings" give peak bandwidth or peak flops in absence of possible optimizations

Roofline Model Example

Roofline Model (Williams, Waterman, Patterson, 2009)

- Provides estimates of performance for various applications (based on arithmetic intensity) for given machine
- attainable flop/s = min(peak flop/s, peak bandwidth × arithmetic intensity)
- "ceilings" give peak bandwidth or peak flops in absence of possible optimizations

Generally three approaches to improving performance:

• Maximize in-core performance (e.g. get compiler to vectorize)

Roofline Model Example

Roofline Model (Williams, Waterman, Patterson, 2009)

- Provides estimates of performance for various applications (based on arithmetic intensity) for given machine
- attainable flop/s = min(peak flop/s, peak bandwidth × arithmetic intensity)
- "ceilings" give peak bandwidth or peak flops in absence of possible optimizations

Generally three approaches to improving performance:

- Maximize in-core performance (e.g. get compiler to vectorize)
- Maximize memory bandwidth (e.g. NUMA-aware allocation)

Roofline Model Example

Roofline Model (Williams, Waterman, Patterson, 2009)

- Provides estimates of performance for various applications (based on arithmetic intensity) for given machine
- attainable flop/s = min(peak flop/s, peak bandwidth × arithmetic intensity)
- "ceilings" give peak bandwidth or peak flops in absence of possible optimizations

Generally three approaches to improving performance:

- Maximize in-core performance (e.g. get compiler to vectorize)
- Maximize memory bandwidth (e.g. NUMA-aware allocation)
- Minimize data movement (increase AI)

- Early work: CG with a single synchronization point per iteration
 - 3-term recurrence CG
 - Using modified computation of recurrence coefficients
 - Using auxiliary vectors

- Early work: CG with a single synchronization point per iteration
 - 3-term recurrence CG
 - Using modified computation of recurrence coefficients
 - Using auxiliary vectors
- Pipelined Krylov subspace methods
 - Uses modified coefficients and auxiliary vectors to reduce synchronization points to 1 per iteration
 - Modifications also allow decoupling of SpMV and inner products enables overlapping (MPI non-blocking collectives)

- Early work: CG with a single synchronization point per iteration
 - 3-term recurrence CG
 - Using modified computation of recurrence coefficients
 - Using auxiliary vectors
- Pipelined Krylov subspace methods
 - Uses modified coefficients and auxiliary vectors to reduce synchronization points to 1 per iteration
 - Modifications also allow decoupling of SpMV and inner products enables overlapping (MPI non-blocking collectives)
- s-step Krylov subspace methods
 - Compute iterations in blocks of s using a different Krylov subspace basis
 - Enables one synchronization per s iterations

High Performance Krylov Subspace Methods

- To improve performance of Krylov subspace methods, we must reduce the cost of data movement
- Communication "hiding" approaches
 - Use non-blocking MPI communication
 - Do useful computation while waiting for communication (overlapping)
 - "Pipelined" Krylov subspace methods
 - Historical background, derivation
 - Performance results
 - Recent work on "deep pipelined" methods
- Communication "avoiding" approaches
 - Mathematically unroll iteration loop, allows all communication for multiple iterations to be done in one step
 - "s-step" Krylov subspace methods
 - Historical background, derivation
 - Implementation details (matrix powers kernel, TSQR)
 - Performance results
- Other approaches: enlarged KSMs, combination of pipelined and s-step approaches

Early approaches to reducing synchronization

• Goal: Reduce the 2 synchronization points per iteration in (HS)CG to 1 synchronization point per iteration

Early approaches to reducing synchronization

- Goal: Reduce the 2 synchronization points per iteration in (HS)CG to 1 synchronization point per iteration
- Compute β_i from α_{i-1} and Ap_{i-1} using relation

$$||r_i||^2 = \alpha_{i-1}^2 ||Ap_{i-1}||^2 - ||r_{i-1}||^2$$

- Can then also merge the updates of x_i , r_i , and p_i
- Developed independently by Johnson (1983, 1984), van Rosendale (1983, 1984), Saad (1985)
- Many other similar approaches

Early approaches to reducing synchronization

- Goal: Reduce the 2 synchronization points per iteration in (HS)CG to 1 synchronization point per iteration
- Compute β_i from α_{i-1} and Ap_{i-1} using relation

$$||r_i||^2 = \alpha_{i-1}^2 ||Ap_{i-1}||^2 - ||r_{i-1}||^2$$

- Can then also merge the updates of x_i , r_i , and p_i
- Developed independently by Johnson (1983, 1984), van Rosendale (1983, 1984), Saad (1985)
- Many other similar approaches
- Could also compute α_{i-1} from β_{i-1} : $\alpha_{i-1} = \left(\frac{r_{i-1}^T A r_{i-1}}{r_{i-1}^T r_{i-1}} - \frac{\beta_{i-1}}{\alpha_{i-2}}\right)^{-1}$

• HSCG recurrences can be written as

$$AP_i = R_{i+1}\underline{L}_i, \qquad R_i = P_iU_i$$

we can combine these to obtain a 3-term recurrence for the residuals (STCG):

$$AR_i = R_{i+1}\underline{T}_i, \qquad \underline{T}_i = \underline{L}_i U_i$$

• HSCG recurrences can be written as

$$AP_i = R_{i+1}\underline{L}_i, \qquad R_i = P_iU_i$$

we can combine these to obtain a 3-term recurrence for the residuals (STCG):

$$AR_i = R_{i+1}\underline{T}_i, \qquad \underline{T}_i = \underline{L}_i U_i$$

- First developed by Stiefel (1952/53), also Rutishauser (1959) and Hageman and Young (1981)
- Motivated by relation to three-term recurrences for orthogonal polynomials

$$\begin{aligned} r_0 &= b - Ax_0, \ p_0 = r_0, \ x_{-1} = x_0, \ r_{-1} = r_0, \ e_{-1} = 0 \\ \text{for } i &= 1:\text{nmax} \\ q_{i-1} &= \frac{(r_{i-1}, Ar_{i-1})}{(r_{i-1}, r_{i-1})} - e_{i-2} \\ x_i &= x_{i-1} + \frac{1}{q_{i-1}} \left(r_{i-1} + e_{i-2}(x_{i-1} - x_{i-2}) \right) \\ r_i &= r_{i-1} + \frac{1}{q_{i-1}} \left(-Ar_{i-1} + e_{i-2}(r_{i-1} - r_{i-2}) \right) \\ e_{i-1} &= q_{i-1} \frac{(r_i, r_i)}{(r_{i-1}, r_{i-1})} \\ \end{aligned}$$
 end

HSCG recurrences can be written as

$$AP_i = R_{i+1}\underline{L}_i, \qquad R_i = P_iU_i$$

we can combine these to obtain a 3-term recurrence for the residuals (STCG):

$$AR_i = R_{i+1}\underline{T}_i, \qquad \underline{T}_i = \underline{L}_i U_i$$

- First developed by Stiefel (1952/53), also Rutishauser (1959) and Hageman and Young (1981)
- Motivated by relation to three-term recurrences for orthogonal polynomials

$$\begin{aligned} r_{0} &= b - Ax_{0}, \ p_{0} = r_{0}, \ x_{-1} = x_{0}, \ r_{-1} = r_{0}, \ e_{-1} = 0 \\ \text{for } i &= 1:\text{nmax} \end{aligned}$$

$$\begin{aligned} q_{i-1} &= \frac{(r_{i-1}, Ar_{i-1})}{(r_{i-1}, r_{i-1})} - e_{i-2} \\ x_{i} &= x_{i-1} + \frac{1}{q_{i-1}} \left(r_{i-1} + e_{i-2}(x_{i-1} - x_{i-2}) \right) \\ r_{i} &= r_{i-1} + \frac{1}{q_{i-1}} \left(-Ar_{i-1} + e_{i-2}(r_{i-1} - r_{i-2}) \right) \\ e_{i-1} &= q_{i-1} \frac{(r_{i}, r_{i})}{(r_{i-1}, r_{i-1})} \end{aligned}$$
end

Can be accomplished with a single synchronization point on parallel computers (Strakoš 1985, 1987)

• HSCG recurrences can be written as

$$AP_i = R_{i+1}\underline{L}_i, \qquad R_i = P_iU_i$$

we can combine these to obtain a 3-term recurrence for the residuals (STCG):

$$AR_i = R_{i+1}\underline{T}_i, \qquad \underline{T}_i = \underline{L}_i U_i$$

- First developed by Stiefel (1952/53), also Rutishauser (1959) and Hageman and Young (1981)
- Motivated by relation to three-term recurrences for orthogonal polynomials

$$\begin{aligned} r_{0} &= b - Ax_{0}, \ p_{0} = r_{0}, \ x_{-1} = x_{0}, \ r_{-1} = r_{0}, \ e_{-1} = 0 \\ \text{for } i &= 1:\text{nmax} \end{aligned}$$

$$\begin{aligned} q_{i-1} &= \frac{(r_{i-1}, Ar_{i-1})}{(r_{i-1}, r_{i-1})} - e_{i-2} \\ x_{i} &= x_{i-1} + \frac{1}{q_{i-1}} \left(r_{i-1} + e_{i-2}(x_{i-1} - x_{i-2}) \right) \\ r_{i} &= r_{i-1} + \frac{1}{q_{i-1}} \left(-Ar_{i-1} + e_{i-2}(r_{i-1} - r_{i-2}) \right) \\ e_{i-1} &= q_{i-1} \frac{(r_{i}, r_{i})}{(r_{i-1}, r_{i-1})} \end{aligned}$$
end

Can be accomplished with a single synchronization point on parallel computers (Strakoš 1985, 1987)

- Similar approach (computing α_i using β_{i-1}) used by D'Azevedo, Eijkhout, Romaine (1992, 1993)

- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)
- Reduces synchronizations/iteration to 1 by changing computation of α_i and using an auxiliary recurrence for Ap_i

$$\begin{aligned} r_{0} &= b - Ax_{0}, \ p_{0} = r_{0}, \\ s_{0} &= Ap_{0}, \ \alpha_{0} = (r_{0}, r_{0})/(p_{0}, s_{0}) \\ \text{for } i &= 1:\text{nmax} \\ x_{i} &= x_{i-1} + \alpha_{i-1}p_{i-1} \\ r_{i} &= r_{i-1} - \alpha_{i-1}s_{i-1} \\ w_{i} &= Ar_{i} \\ \beta_{i} &= \frac{(r_{i}, r_{i})}{(r_{i-1}, r_{i-1})} \\ \alpha_{i} &= \frac{(r_{i}, r_{i})}{(w_{i}, r_{i}) - (\beta_{i}/\alpha_{i-1})(r_{i}, r_{i})} \\ p_{i} &= r_{i} + \beta_{i}p_{i-1} \\ s_{i} &= w_{i} + \beta_{i}s_{i-1} \end{aligned}$$
end

- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)
- Reduces synchronizations/iteration to 1 by changing computation of α_i and using an auxiliary recurrence for Ap_i

$$\begin{aligned} r_{0} &= b - Ax_{0}, \ p_{0} = r_{0}, \\ s_{0} &= Ap_{0}, \ \alpha_{0} = (r_{0}, r_{0})/(p_{0}, s_{0}) \\ \text{for } i &= 1:\text{nmax} \\ x_{i} &= x_{i-1} + \alpha_{i-1}p_{i-1} \\ r_{i} &= r_{i-1} - \alpha_{i-1}s_{i-1} \\ w_{i} &= Ar_{i} \\ \beta_{i} &= \frac{(r_{i}, r_{i})}{(r_{i-1}, r_{i-1})} \\ \alpha_{i} &= \frac{(r_{i}, r_{i})}{(w_{i}, r_{i}) - (\beta_{i}/\alpha_{i-1})(r_{i}, r_{i})} \\ p_{i} &= r_{i} + \beta_{i}p_{i-1} \\ s_{i} &= w_{i} + \beta_{i}s_{i-1} \end{aligned}$$
end

- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)
- Reduces synchronizations/iteration to 1 by changing computation of α_i and using an auxiliary recurrence for Ap_i

$$r_{0} = b - Ax_{0}, \ p_{0} = r_{0},$$

$$s_{0} = Ap_{0}, \ \alpha_{0} = (r_{0}, r_{0})/(p_{0}, s_{0})$$
for $i = 1$:nmax
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1}$$

$$w_{i} = Ar_{i}$$

$$\beta_{i} = \frac{(r_{i}, r_{i})}{(r_{i-1}, r_{i-1})}$$

$$\alpha_{i} = \frac{(r_{i}, r_{i})}{(w_{i}, r_{i}) - (\beta_{i}/\alpha_{i-1})(r_{i}, r_{i})}$$

$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$
s_i = w_i + \beta_{i}s_{i-1}
end

- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)
- Reduces synchronizations/iteration to 1 by changing computation of α_i and using an auxiliary recurrence for Ap_i

$$r_{0} = b - Ax_{0}, \ p_{0} = r_{0},$$

$$s_{0} = Ap_{0}, \ \alpha_{0} = (r_{0}, r_{0})/(p_{0}, s_{0})$$
for $i = 1$:nmax
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1}$$

$$w_{i} = Ar_{i}$$

$$\beta_{i} = \frac{(r_{i}, r_{i})}{(r_{i-1}, r_{i-1})}$$

$$\alpha_{i} = \frac{(r_{i}, r_{i})}{(w_{i}, r_{i}) - (\beta_{i}/\alpha_{i-1})(r_{i}, r_{i})}$$

$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$

$$s_{i} = w_{i} + \beta_{i}s_{i-1}$$

- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)
- Reduces synchronizations/iteration to 1 by changing computation of α_i and using an auxiliary recurrence for Ap_i

$$\begin{aligned} r_{0} &= b - Ax_{0}, \ p_{0} = r_{0}, \\ s_{0} &= Ap_{0}, \ \alpha_{0} = (r_{0}, r_{0})/(p_{0}, s_{0}) \\ \text{for } i &= 1:\text{nmax} \end{aligned}$$

$$\begin{aligned} x_{i} &= x_{i-1} + \alpha_{i-1}p_{i-1} \\ r_{i} &= r_{i-1} - \alpha_{i-1}s_{i-1} \\ w_{i} &= Ar_{i} \\ \beta_{i} &= \frac{(r_{i}, r_{i})}{(r_{i-1}, r_{i-1})} \\ \alpha_{i} &= \frac{(r_{i}, r_{i})}{(w_{i}, r_{i}) - (\beta_{i}/\alpha_{i-1})(r_{i}, r_{i})} \\ p_{i} &= r_{i} + \beta_{i}p_{i-1} \\ s_{i} &= w_{i} + \beta_{i}s_{i-1} \end{aligned}$$
end

- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)
- Reduces synchronizations/iteration to 1 by changing computation of α_i and • using an auxiliary recurrence for Ap_i

$$\begin{aligned} r_{0} &= b - Ax_{0}, \ p_{0} = r_{0}, \\ s_{0} &= Ap_{0}, \ \alpha_{0} = (r_{0}, r_{0})/(p_{0}, s_{0}) \\ \text{for } i &= 1:\text{nmax} \end{aligned}$$

$$\begin{aligned} x_{i} &= x_{i-1} + \alpha_{i-1}p_{i-1} \\ r_{i} &= r_{i-1} - \alpha_{i-1}s_{i-1} \end{aligned}$$

$$\begin{aligned} w_{i} &= Ar_{i} \\ \beta_{i} &= \frac{(r_{i}, r_{i})}{(r_{i-1}, r_{i-1})} \\ \alpha_{i} &= \frac{(r_{i}, r_{i})}{(w_{i}, r_{i}) - (\beta_{i}/\alpha_{i-1})(r_{i}, r_{i})} \\ p_{i} &= r_{i} + \beta_{i}p_{i-1} \\ s_{i} &= w_{i} + \beta_{i}s_{i-1} \end{aligned}$$
end

- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)
- Reduces synchronizations/iteration to 1 by changing computation of α_i and using an auxiliary recurrence for Ap_i

$$r_{0} = b - Ax_{0}, \ p_{0} = r_{0},$$

$$s_{0} = Ap_{0}, \ \alpha_{0} = (r_{0}, r_{0})/(p_{0}, s_{0})$$
for $i = 1$:nmax
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1}$$

$$w_{i} = Ar_{i}$$

$$\beta_{i} = \frac{(r_{i}, r_{i})}{(r_{i-1}, r_{i-1})}$$

$$\alpha_{i} = \frac{(r_{i}, r_{i})}{(w_{i}, r_{i}) - (\beta_{i}/\alpha_{i-1})(r_{i}, r_{i})}$$

$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$

$$s_{i} = w_{i} + \beta_{i}s_{i-1}$$
end

- Chronopoulos and Gear (1989)
- Looks like HSCG, but very similar to 3-term recurrence CG (STCG)
- Reduces synchronizations/iteration to 1 by changing computation of α_i and using an auxiliary recurrence for Ap_i

$$r_{0} = b - Ax_{0}, \ p_{0} = r_{0},$$

$$s_{0} = Ap_{0}, \ \alpha_{0} = (r_{0}, r_{0})/(p_{0}, s_{0})$$

for $i = 1$:nmax

$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1}$$

$$w_{i} = Ar_{i}$$

$$\beta_{i} = \frac{(r_{i}, r_{i})}{(r_{i-1}, r_{i-1})}$$

$$\alpha_{i} = \frac{(r_{i}, r_{i})}{(w_{i}, r_{i}) - (\beta_{i}/\alpha_{i-1})(r_{i}, r_{i})}$$

$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$

$$s_{i} = w_{i} + \beta_{i}s_{i-1}$$

Pipelined CG (GVCG)

- Pipelined CG of Ghysels and Vanroose (2014)
- Similar to Chronopoulos and Gear approach
 - Uses auxiliary vector $s_i \equiv Ap_i$ and same formula for α_i

Pipelined CG (GVCG)

- Pipelined CG of Ghysels and Vanroose (2014)
- Similar to Chronopoulos and Gear approach
 - Uses auxiliary vector $s_i \equiv Ap_i$ and same formula for α_i
- Also uses auxiliary vectors for Ar_i and A^2r_i to remove sequential dependency between SpMV and inner products

Pipelined CG (GVCG)

- Pipelined CG of Ghysels and Vanroose (2014)
- Similar to Chronopoulos and Gear approach
 - Uses auxiliary vector $s_i \equiv Ap_i$ and same formula for α_i
- Also uses auxiliary vectors for Ar_i and A^2r_i to remove sequential dependency between SpMV and inner products
 - Allows the use of nonblocking (asynchronous) MPI communication to overlap SpMV and inner products
 - Hides the latency of global communications

 $r_0 = b - Ax_0, \ p_0 = r_0$ $s_0 = Ap_0, w_0 = Ar_0, z_0 = Aw_0,$ $\alpha_0 = r_0^T r_0 / p_0^T s_0$ for i = 1:nmax $x_i = x_{i-1} + \alpha_{i-1} p_{i-1}$ $r_i = r_{i-1} - \alpha_{i-1} S_{i-1}$ $w_i = w_{i-1} - \alpha_{i-1} Z_{i-1}$ $q_i = Aw_i$ $\beta_i = \frac{r_i^T r_i}{r_{i-1}^T r_{i-1}}$ $\alpha_i = \frac{r_i^T r_i}{w_i^T r_i - (\beta_i / \alpha_{i-1}) r_i^T r_i}$ $p_i = r_i + \beta_i p_{i-1}$ $s_i = w_i + \beta_i s_{i-1}$ $z_i = q_i + \beta_i z_{i-1}$

 $r_0 = b - Ax_0, p_0 = r_0$ $s_0 = Ap_0, w_0 = Ar_0, z_0 = Aw_0,$ $\alpha_0 = r_0^T r_0 / p_0^T s_0$ for i = 1:nmax $x_i = x_{i-1} + \alpha_{i-1} p_{i-1}$ $r_i = r_{i-1} - \alpha_{i-1} S_{i-1}$ $w_i = w_{i-1} - \alpha_{i-1} Z_{i-1}$ $q_i = Aw_i$ $\beta_i = \frac{r_i^T r_i}{r_{i-1}^T r_{i-1}}$ $\alpha_i = \frac{r_i^T r_i}{w_i^T r_i - (\beta_i / \alpha_{i-1}) r_i^T r_i}$ $p_i = r_i + \beta_i p_{i-1}$ $s_i = w_i + \beta_i s_{i-1}$ $z_i = q_i + \beta_i z_{i-1}$

$$r_{0} = b - Ax_{0}, p_{0} = r_{0}$$

$$s_{0} = Ap_{0}, w_{0} = Ar_{0}, z_{0} = Aw_{0},$$

$$\alpha_{0} = r_{0}^{T}r_{0}/p_{0}^{T}s_{0}$$
for $i = 1$:nmax
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1}$$

$$w_{i} = w_{i-1} - \alpha_{i-1}z_{i-1}$$

$$q_{i} = Aw_{i}$$

$$\beta_{i} = \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}}$$

$$\alpha_{i} = \frac{r_{i}^{T}r_{i}}{w_{i}^{T}r_{i} - (\beta_{i}/\alpha_{i-1})r_{i}^{T}r_{i}}$$

$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$

$$s_{i} = w_{i} + \beta_{i}s_{i-1}$$

$$z_{i} = q_{i} + \beta_{i}z_{i-1}$$

$$r_{0} = b - Ax_{0}, p_{0} = r_{0}$$

$$s_{0} = Ap_{0}, w_{0} = Ar_{0}, z_{0} = Aw_{0},$$

$$\alpha_{0} = r_{0}^{T}r_{0}/p_{0}^{T}s_{0}$$
for $i = 1$:nmax
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1}$$

$$w_{i} = w_{i-1} - \alpha_{i-1}z_{i-1}$$

$$q_{i} = Aw_{i}$$

$$\beta_{i} = \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}}$$

$$\alpha_{i} = \frac{r_{i}^{T}r_{i}}{w_{i}^{T}r_{i} - (\beta_{i}/\alpha_{i-1})r_{i}^{T}r_{i}}$$

$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$

$$s_{i} = w_{i} + \beta_{i}s_{i-1}$$

$$z_{i} = q_{i} + \beta_{i}z_{i-1}$$

23

$$r_{0} = b - Ax_{0}, p_{0} = r_{0}$$

$$s_{0} = Ap_{0}, w_{0} = Ar_{0}, z_{0} = Aw_{0},$$

$$\alpha_{0} = r_{0}^{T}r_{0}/p_{0}^{T}s_{0}$$
for $i = 1$:nmax
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1}$$

$$w_{i} = w_{i-1} - \alpha_{i-1}z_{i-1}$$

$$q_{i} = Aw_{i}$$

$$\beta_{i} = \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}}$$

$$\alpha_{i} = \frac{r_{i}^{T}r_{i}}{w_{i}^{T}r_{i} - (\beta_{i}/\alpha_{i-1})r_{i}^{T}r_{i}}$$

$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$

$$s_{i} = w_{i} + \beta_{i}s_{i-1}$$

$$z_{i} = q_{i} + \beta_{i}z_{i-1}$$

$$r_{0} = b - Ax_{0}, p_{0} = r_{0}$$

$$s_{0} = Ap_{0}, w_{0} = Ar_{0}, z_{0} = Aw_{0},$$

$$\alpha_{0} = r_{0}^{T}r_{0}/p_{0}^{T}s_{0}$$
for $i = 1$:nmax
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1}$$

$$w_{i} = w_{i-1} - \alpha_{i-1}z_{i-1}$$

$$q_{i} = Aw_{i}$$

$$\beta_{i} = \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}}$$

$$\alpha_{i} = \frac{r_{i}^{T}r_{i}}{w_{i}^{T}r_{i} - (\beta_{i}/\alpha_{i-1})r_{i}^{T}r_{i}}$$

$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$

$$s_{i} = w_{i} + \beta_{i}s_{i-1}$$

$$z_{i} = q_{i} + \beta_{i}z_{i-1}$$

$$r_{0} = b - Ax_{0}, p_{0} = r_{0}$$

$$s_{0} = Ap_{0}, w_{0} = Ar_{0}, z_{0} = Aw_{0},$$

$$\alpha_{0} = r_{0}^{T}r_{0}/p_{0}^{T}s_{0}$$
for $i = 1$:nmax
$$x_{i} = x_{i-1} + \alpha_{i-1}p_{i-1}$$

$$r_{i} = r_{i-1} - \alpha_{i-1}s_{i-1}$$

$$w_{i} = w_{i-1} - \alpha_{i-1}z_{i-1}$$

$$q_{i} = Aw_{i}$$

$$\beta_{i} = \frac{r_{i}^{T}r_{i}}{r_{i-1}^{T}r_{i-1}}$$

$$\alpha_{i} = \frac{r_{i}^{T}r_{i}}{w_{i}^{T}r_{i} - (\beta_{i}/\alpha_{i-1})r_{i}^{T}r_{i}}$$

$$p_{i} = r_{i} + \beta_{i}p_{i-1}$$

$$s_{i} = w_{i} + \beta_{i}s_{i-1}$$

$$z_{i} = q_{i} + \beta_{i}z_{i-1}$$

MPI Non-Blocking Communication

"Non-blocking" or "asynchronous" collectives available since MPI 3

```
MPI_Iallreduce(...,MPI_Request,...)
// ...other work (SpMV, precond., etc)
MPI_Wait(...,MPI_Request)
```


Pipelined GMRES

P. Ghysels, et al. SIAM J. Scientific Computing, 35(1):C48C71, (2013).

PETSc provides a construct for asynchronous dotproducts:

```
VecDotBegin (...,&dot);
PetscCommSplitReductionBegin (comm);
// ...other work
VecDotEnd (...,&dot);
```


call to MPI_Iallreduce

Deep Pipelining

- Motivation: want to have perfect overlap of computation of inner products and SpMVs/preconditioner application
- But this depends on the machine, matrix, etc.
- If inner products take much longer than 1 SpMV, do ℓ SpMVs instead
 - \Rightarrow "deep" pipelined method with pipeline length ℓ
 - ℓ should be chosen to be the number of SpMV/precond. operations that can be done in the time it takes for one Allreduce
- Deep pipelined GMRES variant [Ghysels, Ashby, Meerbergen, Vanroose, SIAM J. Sci. Comput, 35(1), 2013]
- Deep pipelined CG variant [Cornelis, Cools, Vanroose, arXiv:1801.04728, 2018]

Available Software

- Implementations in PETSc:
 - KSPPGMRES: pipelined GMRES
 - KSPPIPECG: pipelined CG
 - KSPPIPECR: pipelined CR
 - KSPGROPPCG: Gropp asynchronous variant
 - KSPPIPEBCGS: pipelined BiCGSTAB
 - KSPPIPELCG: deep pipelined CG
Performance of (Deep) Pipelined CG

FIG. 5. Strong scaling experiment on up to 20 nodes (240 processes) for a 5-point stencil 2D Poisson problem with 1.000.000 unknowns. Speedup over single-node classic CG for various pipeline lengths. All methods converged to $||r_i||_2/||b||_2 = 1.0e-5$ in 1342 iterations.

FIG. 6. Strong scaling experiment on up to 48 nodes (672 processes) for a 5-point stencil 2D Poisson problem with 3.062.500 unknowns. Speedup over single-node classic CG for various pipeline lengths. All methods performed 1500 iterations with $||r_i||_2/||b||_2 = 6.3e-4$.

FIG. 7. Strong scaling experiment on up to 32 nodes (448 processes) for a block Jacobi preconditioned 2D Poisson problem with 3.062.500 unknowns. All methods performed 600 iterations with $||r_i||_2/||b||_2 = 1.8e-4$ (on 1 node) and $||r_i||_2/||b||_2 \leq 9.3e-4$ (on 32 nodes).

20 compute nodes, each with two 6core Intel Xeon X5660 Nehalem 2:80 GHz processors each (12 cores per node); 4QDR InfiniBand

48 compute nodes, each with two 14-core Intel E5-2680v4, Broadwell generation CPUs; EDR InfiniBand

- Idea: Compute blocks of s iterations at once
 - Compute updates in a different basis
 - Communicate every s iterations instead of every iteration
 - Reduces number of synchronizations per iteration by a factor of s

- Idea: Compute blocks of s iterations at once
 - Compute updates in a different basis
 - Communicate every s iterations instead of every iteration
 - Reduces number of synchronizations per iteration by a factor of s
- An idea rediscovered many times...

- Idea: Compute blocks of *s* iterations at once
 - Compute updates in a different basis
 - Communicate every s iterations instead of every iteration
 - Reduces number of synchronizations per iteration by a factor of s
- An idea rediscovered many times...
- First related work: s-dimensional steepest descent, least squares
 - Khabaza ('63), Forsythe ('68), Marchuk and Kuznecov ('68)

- Idea: Compute blocks of s iterations at once
 - Compute updates in a different basis
 - Communicate every s iterations instead of every iteration
 - Reduces number of synchronizations per iteration by a factor of s
- An idea rediscovered many times...
- First related work: s-dimensional steepest descent, least squares
 - Khabaza ('63), Forsythe ('68), Marchuk and Kuznecov ('68)
- Flurry of work on s-step Krylov methods in '80s/early '90s: see, e.g., Van Rosendale (1983); Chronopoulos and Gear (1989)

- Idea: Compute blocks of s iterations at once
 - Compute updates in a different basis
 - Communicate every s iterations instead of every iteration
 - Reduces number of synchronizations per iteration by a factor of s
- An idea rediscovered many times...
- First related work: s-dimensional steepest descent, least squares
 - Khabaza ('63), Forsythe ('68), Marchuk and Kuznecov ('68)
- Flurry of work on s-step Krylov methods in '80s/early '90s: see, e.g., Van Rosendale (1983); Chronopoulos and Gear (1989)

• Resurgence of interest in recent years due to growing problem sizes; growing relative cost of communication

History of *s*-step Krylov Subspace Methods

Key observation: After iteration i, for $j \in \{0, ..., s\}$,

$x_{i+j} - x_i, r_{i+j}, p_{i+j} \in \mathcal{K}_{s+1}(A, p_i) + \mathcal{K}_s(A, r_i)$

Key observation: After iteration i, for $j \in \{0, ..., s\}$,

 $x_{i+j} - x_i, r_{i+j}, p_{i+j} \in \mathcal{K}_{s+1}(A, p_i) + \mathcal{K}_s(A, r_i)$

s steps of s-step CG:

Key observation: After iteration i, for $j \in \{0, ..., s\}$,

$$x_{i+j} - x_i, r_{i+j}, p_{i+j} \in \mathcal{K}_{s+1}(A, p_i) + \mathcal{K}_s(A, r_i)$$

s steps of s-step CG:

Expand solution space s dimensions at once

Compute "basis" matrix \mathcal{Y} such that $\operatorname{span}(\mathcal{Y}) = \mathcal{K}_{s+1}(A, p_i) + \mathcal{K}_s(A, r_i)$ according to the recurrence $A\mathcal{Y} = \mathcal{Y}\mathcal{B}$

Key observation: After iteration i, for $j \in \{0, ..., s\}$,

$$x_{i+j} - x_i, r_{i+j}, p_{i+j} \in \mathcal{K}_{s+1}(A, p_i) + \mathcal{K}_s(A, r_i)$$

s steps of s-step CG:

Expand solution space s dimensions at once

Compute "basis" matrix \mathcal{Y} such that $\operatorname{span}(\mathcal{Y}) = \mathcal{K}_{s+1}(A, p_i) + \mathcal{K}_s(A, r_i)$ according to the recurrence $A\mathcal{Y} = \mathcal{Y}\mathcal{B}$

Compute inner products between basis vectors in one synchronization $\mathcal{G} = \mathcal{Y}^T \mathcal{Y}$

Key observation: After iteration i, for $j \in \{0, ..., s\}$,

$$x_{i+j} - x_i, r_{i+j}, p_{i+j} \in \mathcal{K}_{s+1}(A, p_i) + \mathcal{K}_s(A, r_i)$$

s steps of s-step CG:

Expand solution space s dimensions at once

Compute "basis" matrix \mathcal{Y} such that $\operatorname{span}(\mathcal{Y}) = \mathcal{K}_{s+1}(A, p_i) + \mathcal{K}_s(A, r_i)$ according to the recurrence $A\mathcal{Y} = \mathcal{Y}\mathcal{B}$

Compute inner products between basis vectors in one synchronization $\mathcal{G} = \mathcal{Y}^T \mathcal{Y}$

Compute s iterations of vector updates

Perform s iterations of vector updates by updating coordinates in basis \mathcal{Y} :

 $x_{i+j} - x_i = \mathcal{Y}x'_j, \qquad r_{i+j} = \mathcal{Y}r'_j, \qquad p_{i+j} = \mathcal{Y}p'_j$

$$\begin{array}{rcl} Ap_{i+j} &=& A\underline{\mathcal{Y}}p_j'\\ n\\ n\\ & & \\ \end{array} \times \end{array}$$

 $r_0 = b - Ax_0, p_0 = r_0$ for k = 0:nmax/sCompute \mathcal{Y}_k and \mathcal{B}_k such that $A\mathcal{Y}_k = \mathcal{Y}_k\mathcal{B}_k$ and $\operatorname{span}(\mathcal{Y}_k) = \mathcal{K}_{s+1}(A, p_{sk}) + \mathcal{K}_s(A, r_{sk})$ $\mathcal{G}_k = \mathcal{Y}_k^T \mathcal{Y}_k$ $x_0' = 0, r_0' = e_{s+2}, p_0' = e_1$ for j = 1:s $\alpha_{sk+j-1} = \frac{r_{j-1}^{\prime T} \mathcal{G}_k r_{j-1}^{\prime}}{p_{j-1}^{\prime T} \mathcal{G}_k \mathcal{B}_k p_{j-1}^{\prime}}$ $x'_{j} = x'_{j-1} + \alpha_{sk+j-1}p'_{j-1}$ $r_j' = r_{j-1}' - \alpha_{sk+j-1} \mathcal{B}_k p_{j-1}'$ $\beta_{sk+j} = \frac{r_j^{\prime T} \mathcal{G}_k r_j^{\prime}}{r_{j-1}^{\prime T} \mathcal{G}_k r_{j-1}^{\prime}}$ $p'_i = r'_i + \beta_{sk+i} p'_{i-1}$ end

$$[x_{s(k+1)} - x_{sk}, r_{s(k+1)}, p_{s(k+1)}] = \mathcal{Y}_k[x'_s, r'_s, p'_s]$$

end

 $r_0 = b - Ax_0, p_0 = r_0$ for k = 0:nmax/sCompute \mathcal{Y}_k and \mathcal{B}_k such that $A\mathcal{Y}_k = \mathcal{Y}_k\mathcal{B}_k$ and $\operatorname{span}(\mathcal{Y}_k) = \mathcal{K}_{s+1}(A, p_{sk}) + \mathcal{K}_s(A, r_{sk})$ $G_k = Y_k^T Y_k$ $x'_0 = 0, r'_0 = e_{s+2}, p'_0 = e_1$ for j = 1:s $\alpha_{sk+j-1} = \frac{r_{j-1}^{\prime T} \mathcal{G}_k r_{j-1}^{\prime}}{p_{j-1}^{\prime T} \mathcal{G}_k \mathcal{B}_k p_{j-1}^{\prime}}$ $x'_{i} = x'_{i-1} + \alpha_{sk+j-1}p'_{j-1}$ $r_i' = r_{i-1}' - \alpha_{sk+i-1} \mathcal{B}_k p_{i-1}'$ $\beta_{sk+j} = \frac{r_j^{\prime T} \mathcal{G}_k r_j^{\prime}}{r_{i-1}^{\prime T} \mathcal{G}_k r_{i-1}^{\prime}}$ $p'_i = r'_i + \beta_{sk+i} p'_{i-1}$ end

$$[x_{s(k+1)} - x_{sk}, r_{s(k+1)}, p_{s(k+1)}] = \mathcal{Y}_k[x'_s, r'_s, p'_s]$$

end

 $r_0 = b - Ax_0, p_0 = r_0$ for k = 0:nmax/sCompute \mathcal{Y}_k and \mathcal{B}_k such that $A\mathcal{Y}_k = \mathcal{Y}_k\mathcal{B}_k$ and $\operatorname{span}(\mathcal{Y}_k) = \mathcal{K}_{s+1}(A, p_{sk}) + \mathcal{K}_s(A, r_{sk})$ $\mathcal{G}_k = \mathcal{Y}_k^T \mathcal{Y}_k$ $x_0' = 0, r_0' = e_{s+2}, p_0' = e_1$ for j = 1:s $\alpha_{sk+j-1} = \frac{r_{j-1}^{\prime T} \mathcal{G}_k r_{j-1}^{\prime}}{p_{j-1}^{\prime T} \mathcal{G}_k \mathcal{B}_k p_{j-1}^{\prime}}$ $x'_{i} = x'_{i-1} + \alpha_{sk+j-1}p'_{j-1}$ $r_i' = r_{i-1}' - \alpha_{sk+i-1} \mathcal{B}_k p_{i-1}'$ $\beta_{sk+j} = \frac{r_j^{\prime T} \mathcal{G}_k r_j^{\prime}}{r_{j-1}^{\prime T} \mathcal{G}_k r_{j-1}^{\prime}}$ $p'_i = r'_i + \beta_{sk+i} p'_{i-1}$ end

 $[x_{s(k+1)} - x_{sk}, r_{s(k+1)}, p_{s(k+1)}] = \mathcal{Y}_k[x'_s, r'_s, p'_s]$

end

 $r_0 = b - Ax_0, p_0 = r_0$ for k = 0:nmax/sCompute \mathcal{Y}_k and \mathcal{B}_k such that $A\mathcal{Y}_k = \mathcal{Y}_k\mathcal{B}_k$ and $\operatorname{span}(\mathcal{Y}_k) = \mathcal{K}_{s+1}(A, p_{sk}) + \mathcal{K}_s(A, r_{sk})$ $\mathcal{G}_k = \mathcal{Y}_k^T \mathcal{Y}_k$ $x_0' = 0, r_0' = e_{s+2}, p_0' = e_1$ for j = 1:s $\alpha_{sk+j-1} = \frac{r_{j-1}^{\prime T} \mathcal{G}_k r_{j-1}^{\prime}}{p_{j-1}^{\prime T} \mathcal{G}_k \mathcal{B}_k p_{j-1}^{\prime}}$ $x'_{i} = x'_{i-1} + \alpha_{sk+j-1}p'_{j-1}$ $r_i' = r_{i-1}' - \alpha_{sk+i-1} \mathcal{B}_k p_{i-1}'$ $\beta_{sk+j} = \frac{r_j^{\prime T} \mathcal{G}_k r_j^{\prime}}{r_{j-1}^{\prime T} \mathcal{G}_k r_{j-1}^{\prime}}$ $p'_i = r'_i + \beta_{sk+i} p'_{i-1}$ end $[x_{s(k+1)} - x_{sk}, r_{s(k+1)}, p_{s(k+1)}] = \mathcal{Y}_k[x'_s, r'_s, p'_s]$

 $r_0 = b - Ax_0, p_0 = r_0$ for k = 0:nmax/sCompute \mathcal{Y}_k and \mathcal{B}_k such that $A\mathcal{Y}_k = \mathcal{Y}_k\mathcal{B}_k$ and $\operatorname{span}(\mathcal{Y}_k) = \mathcal{K}_{s+1}(A, p_{sk}) + \mathcal{K}_s(A, r_{sk})$ $\mathcal{G}_k = \mathcal{Y}_k^T \mathcal{Y}_k$ $x_0' = 0, r_0' = e_{s+2}, p_0' = e_1$ for j = 1:s $\alpha_{sk+j-1} = \frac{r_{j-1}'^T \mathcal{G}_k r_{j-1}'}{p_{j-1}'^T \mathcal{G}_k \mathcal{B}_k p_{j-1}'}$ $x'_{j} = x'_{j-1} + \alpha_{sk+j-1}p'_{j-1}$ $r_i' = r_{i-1}' - \alpha_{sk+i-1} \mathcal{B}_k p_{i-1}'$ $\beta_{sk+j} = \frac{r_j^{\prime T} \mathcal{G}_k r_j^{\prime}}{r_{j-1}^{\prime T} \mathcal{G}_k r_{j-1}^{\prime}}$ $p'_i = r'_i + \beta_{sk+i} p'_{i-1}$ end

$$[x_{s(k+1)} - x_{sk}, r_{s(k+1)}, p_{s(k+1)}] = \mathcal{Y}_k[x'_s, r'_s, p'_s]$$

end

Sparse Matrix Computations

- Sparse Matrix x Vector (SpMV) (y = Ax)
 - Very communication-bound; no reuse
 - Lower bound depends on sparsity structure, algorithm used (1D rowwise/colwise, 2D, etc.)
 - Communication cost depends on partition
 - Hypergraph models capture communication dependencies (Catalyurek, Aykanat, 1999)
 - minimize hypergraph cut = minimize words moved

Sparse Matrix Computations

- Sparse Matrix x Vector (SpMV) (y = Ax)
 - Very communication-bound; no reuse
 - Lower bound depends on sparsity structure, algorithm used (1D rowwise/colwise, 2D, etc.)
 - Communication cost depends on partition
 - Hypergraph models capture communication dependencies (Catalyurek, Aykanat, 1999)
 - minimize hypergraph cut = minimize words moved

- Repeated SpMVs $(Y = [Ax, A^2x, ..., A^kx])$
 - Naive approach: k repeated SpMVs
 - Communication-avoiding approach: "matrix powers kernel"
 - see, e.g., (Demmel, Hoemmen, Mohiyuddin, Yelick, 2008)

SpMV Dependency Graph

$$G = (V, E)$$
 where $V = \{y_0, \dots, y_{n-1}\} \cup \{x_0, \dots, x_{n-1}\}$ and $(y_i, x_j) \in E$ if $A_{ij} \neq 0$

Example: Tridiagonal matrix

SpMV Dependency Graph

$$G = (V, E)$$
 where $V = \{y_0, \dots, y_{n-1}\} \cup \{x_0, \dots, x_{n-1}\}$ and $(y_i, x_j) \in E$ if $A_{ij} \neq 0$

Example: Tridiagonal matrix

The Matrix Powers Kernel (Demmel et al., 2007)

Avoids communication:

- In serial, by exploiting temporal locality:
 - Reading A, reading vectors
- In parallel, by doing only 1 'expand' phase (instead of *s*).
- Requires sufficiently low 'surface-to-volume' ratio

Tridiagonal Example:

The Matrix Powers Kernel (Demmel et al., 2007)

Avoids communication:

- In serial, by exploiting temporal locality:
 - Reading A, reading vectors
- In parallel, by doing only 1 'expand' phase (instead of *s*).
- Requires sufficiently low 'surface-to-volume' ratio

Also works for general graphs!

black = local elements
red = 1-level dependencies
green = 2-level dependencies
blue = 3-level dependencies

Tridiagonal Example:

Example of parallel (per processor) complexity for *s* iterations of CG vs. s-step CG for a 2D 9-point stencil:

(Assuming each of p processors owns N/p rows of the matrix and $s \leq \sqrt{N/p}$)

	Flops		Words Moved		Messages	
	SpMV	Orth.	SpMV	Orth.	SpMV	Orth.
Classical CG	$\frac{sN}{p}$	$\frac{sN}{p}$	$s\sqrt{N/p}$	$s \log_2 p$	S	$s \log_2 p$
s-step CG	$\frac{sN}{p}$	$\frac{s^2N}{p}$	$s\sqrt{N/p}$	$s^2 \log_2 p$	1	$\log_2 p$

All values in the table meant in the Big-O sense (i.e., lower order terms and constants not included)

Example of parallel (per processor) complexity for *s* iterations of CG vs. s-step CG for a 2D 9-point stencil:

(Assuming each of p processors owns N/p rows of the matrix and $s \leq \sqrt{N/p}$)

	Flops		Words Moved		Messages	
	SpMV	Orth.	SpMV	Orth.	SpMV	Orth.
Classical CG	$\frac{sN}{p}$	$\frac{sN}{p}$	$s\sqrt{N/p}$	$s \log_2 p$	S	$s \log_2 p$
s-step CG	$\frac{sN}{p}$	$\frac{s^2N}{p}$	$s\sqrt{N/p}$	$s^2 \log_2 p$	1	$\log_2 p$

All values in the table meant in the Big-O sense (i.e., lower order terms and constants not included)

Example of parallel (per processor) complexity for *s* iterations of CG vs. s-step CG for a 2D 9-point stencil:

(Assuming each of p processors owns N/p rows of the matrix and $s \leq \sqrt{N/p}$)

	Flops		Words Moved		Messages	
	SpMV	Orth.	SpMV	Orth.	SpMV	Orth.
Classical CG	$\frac{sN}{p}$	$\frac{sN}{p}$	$s\sqrt{N/p}$	$s \log_2 p$	S	$s \log_2 p$
s-step CG	$\frac{sN}{p}$	$\frac{s^2N}{p}$	$s\sqrt{N/p}$	$s^2 \log_2 p$	1	$\log_2 p$

All values in the table meant in the Big-O sense (i.e., lower order terms and constants not included)

s-step GMRES

Classical GMRES

s-step GMRES

Classical GMRES

s-step GMRES

- TSQR: QR factorization of a tall skinny matrix using Householder transformations
- QR decomposition of m x b matrix W, m >> b
 - P processors, block row layout

- TSQR: QR factorization of a tall skinny matrix using Householder transformations
- QR decomposition of m x b matrix W, m >> b
 - P processors, block row layout
- Classic Parallel Algorithm
 - Compute Householder vector for each column
 - Number of messages \propto b log P

- TSQR: QR factorization of a tall skinny matrix using Householder transformations
- QR decomposition of m x b matrix W, m >> b
 - P processors, block row layout
- Classic Parallel Algorithm
 - Compute Householder vector for each column
 - Number of messages \propto b log P
- Communication Avoiding Algorithm
 - Reduction operation, with QR as operator
 - Number of messages $\propto \log P$

- TSQR: QR factorization of a tall skinny matrix using Householder transformations
- QR decomposition of m x b matrix W, m >> b
 - P processors, block row layout
- Classic Parallel Algorithm
 - Compute Householder vector for each column
 - Number of messages \propto b log P
- Communication Avoiding Algorithm
 - Reduction operation, with QR as operator
 - Number of messages $\propto \log P$

- TSQR: QR factorization of a tall skinny matrix using Householder transformations
- QR decomposition of m x b matrix W, m >> b
 - P processors, block row layout
- Classic Parallel Algorithm
 - Compute Householder vector for each column
 - Number of messages \propto b log P
- Communication Avoiding Algorithm
 - Reduction operation, with QR as operator
 - Number of messages $\propto \log P$

TSQR implementations in Intel MKL library, GNU Scientific Library, ScaLAPACK, Spark

Performance Results

Performance and Applications

- Performance studies
 - s-step GMRES on hybrid CPU/GPU arch. (Yamazaki et al., 2014)
 - comparison of s-step and pipelined GMRES (Yamazaki et al., 2017)

Fig. 6. Parallel Strong Scaling of CA-GMRES and GMRES on 120 distributed GPUs (over GMRES on one GPU), for the G3_Circuit matrix.

Performance and Applications

- Performance studies
 - s-step GMRES on hybrid CPU/GPU arch. (Yamazaki et al., 2014)
 - comparison of s-step and pipelined GMRES (Yamazaki et al., 2017)

Fig. 6. Parallel Strong Scaling of CA-GMRES and GMRES on 120 distributed GPUs (over GMRES on one GPU), for the G3_Circuit matrix.

- Example applications: s-step BICGSTAB used in
 - combustion, cosmology [Williams, C., et al., IPDPS, 2014]
 - geoscience dynamics [Anciaux-Sedrakian et al., 2016]
 - far-field scattering [Zhang et al., 2016]
 - wafer defect detection [Zhang et al., 2016]

Performance and Applications

- Performance studies
 - s-step GMRES on hybrid CPU/GPU arch. (Yamazaki et al., 2014)
 - comparison of s-step and pipelined GMRES (Yamazaki et al., 2017)

Fig. 6. Parallel Strong Scaling of CA-GMRES and GMRES on 120 distributed GPUs (over GMRES on one GPU), for the G3_Circuit matrix.

- Example applications: s-step BICGSTAB used in
 - combustion, cosmology [Williams, C., et al., IPDPS, 2014]
 - geoscience dynamics [Anciaux-Sedrakian et al., 2016]
 - far-field scattering [Zhang et al., 2016]
 - wafer defect detection [Zhang et al., 2016]

Alternative Approaches

- Enlarged Krylov subspace methods (Grigori, Moufawad, Nataf, 2016)
 - Split vector into t parts based on domain decomposition of A; enlarge Krylov subspace by t dimensions each iteration
 - Faster convergence, more parallelizable
- Combined s-step pipelined methods
 - (ℓ, s) -GMRES (Yamazaki, Hoemmen, Luszczek, Dongarra, 2017)
 - Hybrid approach which combines ideas of s-step and pipelined methods; reduces number of global synchronizations and also overlaps them with other work

Practical Implementation Challenges

- How to pick parameters? (pipeline depth in pipelined method; s in s-step method)
 - Choice must take into account matrix structure, machine, partition, as well as numerical properties (more on this next time!)
- Preconditioning
 - Must consider overlap in pipelined methods (if enough to overlap with)
 - For s-step, can diminish potential gain from matrix powers kernel if preconditioner is dense (but still win from savings in Allreduce)

Choosing s

- How do we expect communication costs to change as s increases?
- Initially decrease, but at some point, start increasing
 - Point depends on sparsity structure of matrix, partition of matrix, and latency/bandwidth parameters of the machine
- Bandwidth cost can start to dominate
- For s large enough, the extra entries we need go past our neighbors boundaries
 - more messages required -> increased latency cost

C
3

	Flops		Words Moved		Messages	
	SpMV	Orth.	SpMV	Orth.	SpMV	Orth.
Classical CG	$\frac{sN}{p}$	$\frac{sN}{p}$	$s\sqrt{N/p}$	$s \log_2 p$	S	$s \log_2 p$
s-step CG	$\frac{sN}{p}$	$\frac{s^2N}{p}$	$s\sqrt{N/p}$	$s^2 \log_2 p$	1	$\log_2 p$

Choosing s

- How do we expect communication costs to change as s increases?
- Initially decrease, but at some point, start increasing
 - Point depends on sparsity structure of matrix, partition of matrix, and latency/bandwidth parameters of the machine
- Bandwidth cost can start to dominate
- For s large enough, the extra entries we need go past our neighbors boundaries
 - more messages required -> increased latency cost
- For GMRES, best s for matrix powers may not be best s for TSQR kernel
 - Choice of s requires co-tuning

	Flops		Words Moved		Messages	
	SpMV	Orth.	SpMV	Orth.	SpMV	Orth.
Classical CG	$\frac{sN}{p}$	$\frac{sN}{p}$	$s\sqrt{N/p}$	$s \log_2 p$	S	$s \log_2 p$
s-step CG	$\frac{sN}{p}$	$\frac{s^2N}{p}$	$s\sqrt{N/p}$	$s^2 \log_2 p$	1	$\log_2 p$

Basis Length, s

Lower Bound Tradeoffs for Matrix Powers

- Solomonik, C., Knight, Demmel (2014): Lower bounds on tradeoffs between three basic costs of a parallel algorithm: synchronization, data movement, and computational cost.
- By considering critical path, tradeoffs give lower bounds on the execution time which are dependent on the problem size but independent of the number of processors (assuming homogeneity)

Lower Bound Tradeoffs for Matrix Powers

- Solomonik, C., Knight, Demmel (2014): Lower bounds on tradeoffs between three basic costs of a parallel algorithm: synchronization, data movement, and computational cost.
- By considering critical path, tradeoffs give lower bounds on the execution time which are dependent on the problem size but independent of the number of processors (assuming homogeneity)
- Theorem: Any parallel execution of an s-dimensional Krylov basis computation for a $(2m + 1)^d$ -point stencil on a d-dimensional regular mesh requires

$$\Omega(m^d b^d s)$$
 flops, $\Omega(m^d b^{d-1} s)$ words, $\Omega(s/b)$ messages,
for some $b \in \{1, ..., s\}$

Lower Bound Tradeoffs for Matrix Powers

- Solomonik, C., Knight, Demmel (2014): Lower bounds on tradeoffs between three basic costs of a parallel algorithm: synchronization, data movement, and computational cost.
- By considering critical path, tradeoffs give lower bounds on the execution time which are dependent on the problem size but independent of the number of processors (assuming homogeneity)
- Theorem: Any parallel execution of an s-dimensional Krylov basis computation for a $(2m + 1)^d$ -point stencil on a d-dimensional regular mesh requires

 $\Omega(m^d b^d s)$ flops, $\Omega(m^d b^{d-1} s)$ words, $\Omega(s/b)$ messages,

for some $b \in \{1, \dots, s\}$

• Matrix powers kernel attains this lower bound when $n^d/p \geq m^d b^d$ where n^d is # mesh points

Performance Modeling to Estimate Parameters

• Goal: estimate best blocking factor *b* for matrix powers computation

Performance Modeling to Estimate Parameters

- Goal: estimate best blocking factor *b* for matrix powers computation
- Cost model:

Time = $\gamma \times$ flops + $\beta \times$ words moved + $\alpha \times$ # messages
Performance Modeling to Estimate Parameters

- Goal: estimate best blocking factor *b* for matrix powers computation
- Cost model:

Time = $\gamma \times \text{flops} + \beta \times \text{words moved} + \alpha \times \# \text{messages}$

• Choose *b* to minimize

Time ~
$$\gamma m^d b^d s + \beta m^d b^{d-1} s + \alpha s/b$$

Performance Modeling to Estimate Parameters

- Goal: estimate best blocking factor b for matrix powers computation
- Cost model:

Time = $\gamma \times \text{flops} + \beta \times \text{words moved} + \alpha \times \# \text{messages}$

• Choose *b* to minimize

Time ~
$$\gamma m^d b^d s + \beta m^d b^{d-1} s + \alpha s/b$$

• Latency/BW tradeoff point : $b \sim \frac{\alpha^{1/d}}{m\beta^{1/d}}$

Performance Modeling to Estimate Parameters

- Goal: estimate best blocking factor b for matrix powers computation
- Cost model:

Time = $\gamma \times \text{flops} + \beta \times \text{words moved} + \alpha \times \# \text{messages}$

• Choose *b* to minimize

Time ~
$$\gamma m^d b^d s + \beta m^d b^{d-1} s + \alpha s/b$$

- Latency/BW tradeoff point : $b \sim \frac{\alpha^{1/d}}{m\beta^{1/d}}$
- Starting place for parameter selection to get close to optimal answer, would need more accurate model of time, costs including constants

Matrix Partitioning

- For computing matrix powers (i.e., constructing the basis matrix in s-step methods, we really want to partition the structure of A^s rather than A
 - Analogous to single SpMV, can construct a hypergraph model such that the minimum cut gives a partition with minimum communication volume
- Load balancing
 - The parallel matrix powers kernel involves redundantly computing entries of the vectors on different processors
 - Entries which need to be redundantly computed determined by partition

Hypergraph Partitioning for Matrix Powers

"s-level" row- and column-nets encode the structure of A^s

Hypergraph Partitioning for Matrix Powers

- "s-level" row- and column-nets encode the structure of A^s
- But expensive to compute (s × Boolean sparse matrix-matrix multiplies)
 - Only worth it if A has particularly irregular sparsity structure (e.g., number of nonzeros per column in Aⁱ grows at various rates) and same matrix will be reused
 - Potential use of randomized algorithms to estimate nnz/column in A^i

Preconditioning for s-step variants

- Preconditioners improve spectrum of system to improve convergence rate
 - E.g., instead of Ax = b, solve $M^{-1}Ax = M^{-1}b$, where $M^{-1} \approx A^{-1}$
 - Essential in practice

Preconditioning for s-step variants

- Preconditioners improve spectrum of system to improve convergence rate
 - E.g., instead of Ax = b, solve $M^{-1}Ax = M^{-1}b$, where $M^{-1} \approx A^{-1}$
 - Essential in practice
- In s-step variants, general preconditioning is a challenge
 - Except for very simple cases, ability to exploit temporal locality (in matrix powers computation) across iterations is diminished by preconditioning
 - Still potential gain from blocking inner products/avoiding global synchronization
 - If possible to avoid communication at all, usually necessitates significant modifications to the algorithm

Preconditioning for s-step variants

- Preconditioners improve spectrum of system to improve convergence rate
 - E.g., instead of Ax = b, solve $M^{-1}Ax = M^{-1}b$, where $M^{-1} \approx A^{-1}$
 - Essential in practice
- In s-step variants, general preconditioning is a challenge
 - Except for very simple cases, ability to exploit temporal locality (in matrix powers computation) across iterations is diminished by preconditioning
 - Still potential gain from blocking inner products/avoiding global synchronization
 - If possible to avoid communication at all, usually necessitates significant modifications to the algorithm
- Tradeoff: speed up convergence, but increase time per iteration due to communication!
 - For each specific app, must evaluate tradeoff between preconditioner quality and sparsity of the system

Preconditioning for s-step KSMs

- Much recent/ongoing work in developing communication-avoiding preconditioned methods
- Many approaches shown to be compatible
 - Diagonal
 - Sparse Approx. Inverse (SPAI) for s-step BICGSTAB by Mehri (2014)
 - HSS preconditioning (Hoemmen, 2010); for banded matrices (Knight, C., Demmel, 2014); same general technique for any system that can be written as sparse + low-rank
 - **Deflation** for s-step CG (C., Knight, Demmel, 2014), for s-step GMRES (Yamazaki et al., 2014)
 - CA-ILU(0) Moufawad and Grigori (2013)
 - **Domain decomposition** avoid introducing additional communication by "underlapping" subdomains (Yamazaki et al., 2014)

"Underlapping" Domain Decomposition

(Yamazaki et al., 2014)

• Variant of an additive Schwarz preconditioner, modified to ensure consistent interfaces between the subdomains without additional communication beyond what is required by sparsity structure of A

Fig. 8. Matrix Partitioning for the CA Preconditioner for two subdomains. The underlap and the overlap relative to subdomain 1 are shown.

In order to "localize" effects of preconditioner,

- form "interior" by removing s-level "underlap"
- apply "local" preconditioner on "interior"
 - ILU(k), SAI(k), Jacobi, GaussSeidel, etc. on "interior"
- apply diagonal Jacobi on "underlap"

"Underlapping" Domain Decomposition

(Yamazaki et al., 2014)

• Variant of an additive Schwarz preconditioner, modified to ensure consistent interfaces between the subdomains without additional communication beyond what is required by sparsity structure of A

Fig. 8. Matrix Partitioning for the CA Preconditioner for two subdomains. The underlap and the overlap relative to subdomain 1 are shown.

In order to "localize" effects of preconditioner,

- form "interior" by removing s-level "underlap"
- apply "local" preconditioner on "interior"
 - ILU(k), SAI(k), Jacobi, GaussSeidel, etc. on "interior"
- apply diagonal Jacobi on "underlap"

The effects of finite precision

Well-known that roundoff error has two effects:

- 1. Delay of convergence
 - No longer have exact Krylov subspace
 - Can lose numerical rank deficiency
 - Residuals no longer orthogonal -Minimization of $||x - x_i||_A$ no longer exact
- 2. Loss of attainable accuracy
 - Rounding errors cause true residual b – Ax_i and updated residual r_i deviate!

A: bcsstk03 from SuiteSparse, b: equal components in the eigenbasis of A, ||b|| = 1N = 112, $\kappa(A) \approx 7e6$

Much work on these results for CG; See Meurant and Strakoš (2006) for a thorough summary of early developments in finite precision analysis of Lanczos and CG

The effects of finite precision

Well-known that roundoff error has two effects:

- Delay of convergence 1.
 - No longer have exact Krylov subspace
 - Can lose numerical rank deficiency •
 - Residuals no longer orthogonal -٠ Minimization of $||x - x_i||_A$ no longer exact
- 2. Loss of attainable accuracy
 - Rounding errors cause true residual $b - Ax_i$ and updated residual r_i deviate!

Iteration A: bcsstk03 from SuiteSparse, b: equal components in the eigenbasis of A, ||b|| = 1 $N = 112, \kappa(A) \approx 7e6$

Much work on these results for CG; See Meurant and Strakoš (2006) for a thorough summary of early developments in finite precision analysis of Lanczos and CG

Conjugate Gradient method for solving Ax = b double precision ($\varepsilon = 2^{-53}$)

$$\begin{vmatrix} x_i = x_{i-1} + \alpha_i p_i \\ r_i = r_{i-1} - \alpha_i A p_i \\ p_i = r_i + \beta_i p_i \end{vmatrix}$$

$$||x_i - x||_A = \sqrt{(x_i - x)^T A (x_i - x)}$$

Conjugate Gradient method for solving Ax = b double precision ($\varepsilon = 2^{-53}$)

$$\begin{vmatrix} x_i = x_{i-1} + \alpha_i p_i \\ r_i = r_{i-1} - \alpha_i A p_i \\ p_i = r_i + \beta_i p_i \end{vmatrix}$$

$$||x_i - x||_A = \sqrt{(x_i - x)^T A(x_i - x)}$$

