
Erin C. Carson
Katedra numerické matematiky, Matematicko-fyzikální fakulta, Univerzita Karlova

SNA '19

January 21-25, 2019

High-Performance Variants of
Krylov Subspace Methods: II/II

This research was partially supported by OP RDE project No. CZ.02.2.69/0.0/0.0/16_027/0008495

Review
• Cost of data movement (relative to low computational cost) causes

bottlenecks in classical formulations of Krylov subspace methods

• Motivates various approaches

• Pipelined Krylov subspace methods

• Add auxiliary recurrences to enable decoupling of inner products
and SpMVs; can then be overlapped using non-blocking MPI

• Effectively hides the cost of synchronization in each iteration

• s-step Krylov subspace methods

• Block iterations in groups of s; use block computation of O(s) basis
vectors and block orthogonalization

• Increases temporal locality, allowing asymptotic reduction in
number of messages per iteration

• Many practical implementation details: choosing parameters,
preconditioning, etc.

• For certain (e.g., latency-bound) problems, these approaches can reduce the
time-per-iteration cost

2

The effects of finite precision

Well-known that roundoff error has two
effects:

1. Delay of convergence
• No longer have exact Krylov

subspace
• Can lose numerical rank deficiency
• Residuals no longer orthogonal -

Minimization of 𝑥 − 𝑥𝑖 𝐴 no
longer exact

2. Loss of attainable accuracy
• Rounding errors cause true

residual 𝑏 − 𝐴𝑥𝑖 and updated
residual 𝑟𝑖 deviate!

𝐴: bcsstk03 from SuiteSparse,
𝑏: equal components in the eigenbasis of 𝐴, 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 7e6

3

CG (double)

The effects of finite precision

Well-known that roundoff error has two
effects:

1. Delay of convergence
• No longer have exact Krylov

subspace
• Can lose numerical rank deficiency
• Residuals no longer orthogonal -

Minimization of 𝑥 − 𝑥𝑖 𝐴 no
longer exact

2. Loss of attainable accuracy
• Rounding errors cause true

residual 𝑏 − 𝐴𝑥𝑖 and updated
residual 𝑟𝑖 deviate!

𝐴: bcsstk03 from SuiteSparse,
𝑏: equal components in the eigenbasis of 𝐴, 𝑏 = 1

𝑁 = 112, 𝜅 𝐴 ≈ 7e6

Much work on these results for CG; See Meurant and Strakoš (2006) for a thorough
summary of early developments in finite precision analysis of Lanczos and CG

3

CG (double)
exact CG

Conjugate Gradient method for solving Ax = b
double precision (𝜀 = 2−53)

𝑥𝑖 − 𝑥 𝐴 = 𝑥𝑖 − 𝑥 𝑇𝐴(𝑥𝑖 − 𝑥)

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖𝑝𝑖

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖𝐴𝑝𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖

4

Conjugate Gradient method for solving Ax = b
double precision (𝜀 = 2−53)

𝑥𝑖 − 𝑥 𝐴 = 𝑥𝑖 − 𝑥 𝑇𝐴(𝑥𝑖 − 𝑥)

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖𝑝𝑖

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖𝐴𝑝𝑖

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖

4

runtime =
time per
iteration

×
number of iterations

until convergence

Improving Performance of Iterative Solvers

5

runtime =
time per
iteration

×
number of iterations

until convergence

Improving Performance of Iterative Solvers

reduced precision

approximate
operators

asynchronous
execution

modify algorithm
to reduce

communication

Reduce time per iteration

5

runtime =
time per
iteration

×
number of iterations

until convergence

Improving Performance of Iterative Solvers

reduced precision

approximate
operators

asynchronous
execution

modify algorithm
to reduce

communication

increased
precision

preconditioning

block methods

eigenvalue
deflation

Reduce number of iterationsReduce time per iteration

subspace
recycling

5

reduced precision

approximate
operators

asynchronous
execution

modify algorithm
to reduce

communication

increased
precision

preconditioning

block methods

eigenvalue
deflation

Reduce number of iterationsReduce time per iteration

runtime =
time per
iteration

×
number of iterations

until convergence

subspace
recycling

𝐴𝑥 = 𝑏 ⇒ 𝑀𝐿
−1𝐴𝑀𝑅

−1𝑢 = 𝑀𝐿
−1𝑏

𝑥 = 𝑀𝑅
−1𝑢

Improving Performance of Iterative Solvers

5

reduced precision

approximate
operators

asynchronous
execution

modify algorithm
to reduce

communication

increased
precision

preconditioning

block methods

eigenvalue
deflation

Reduce number of iterationsReduce time per iteration

runtime =
time per
iteration

×
number of iterations

until convergence

subspace
recycling

𝐴𝑥 = 𝑏 ⇒ 𝑀𝐿
−1𝐴𝑀𝑅

−1𝑢 = 𝑀𝐿
−1𝑏

𝑥 = 𝑀𝑅
−1𝑢

Improving Performance of Iterative Solvers

5

reduced precision

approximate
operators

asynchronous
execution

modify algorithm
to reduce

communication

increased
precision

preconditioning

block methods

eigenvalue
deflation

Reduce number of iterationsReduce time per iteration

subspace
recycling

runtime =
time per
iteration

×
number of iterations

until convergence

doubled precision → twice as many bits moved

Improving Performance of Iterative Solvers

5

reduced precision

approximate
operators

asynchronous
execution

modify algorithm
to reduce

communication

increased
precision

preconditioning

block methods

eigenvalue
deflation

Reduce number of iterationsReduce time per iteration

subspace
recycling

runtime =
time per
iteration

×
number of iterations

until convergence

Improving Performance of Iterative Solvers

5

reduced precision

approximate
operators

asynchronous
execution

modify algorithm
to reduce

communication

increased
precision

preconditioning

block methods

eigenvalue
deflation

Reduce number of iterationsReduce time per iteration

subspace
recycling

runtime =
time per
iteration

×
number of iterations

until convergence

 𝐴𝑥 ≈ 𝐴𝑥

Improving Performance of Iterative Solvers

5

runtime =
time per
iteration

×
number of iterations

until convergence

convergence criteria never met: divergence, or convergence to inaccurate solution

Improving Performance of Iterative Solvers

reduced precision

approximate
operators

asynchronous
execution

modify algorithm
to reduce

communication

increased
precision

preconditioning

block methods

eigenvalue
deflation

Reduce number of iterationsReduce time per iteration

subspace
recycling

5

runtime =
time per
iteration

×
number of iterations

until convergence∞

convergence criteria never met: divergence, or convergence to inaccurate solution

Improving Performance of Iterative Solvers

reduced precision

approximate
operators

asynchronous
execution

modify algorithm
to reduce

communication

increased
precision

preconditioning

block methods

eigenvalue
deflation

Reduce number of iterationsReduce time per iteration

subspace
recycling

5

runtime =
time per
iteration

×
number of iterations

until convergence

reduced precision

approximate
operators

asynchronous
execution

modify algorithm
to reduce

communication

increased
precision

preconditioning

block methods

eigenvalue
deflation

Reduce number of iterationsReduce time per iteration

subspace
recycling

To minimize runtime, must understand how modifications affect:

1) attainable accuracy 2) convergence rate 3) time per iteration

Improving Performance of Iterative Solvers

5

reduced precision

approximate
operators

asynchronous
execution

modify algorithm
to reduce

communication

increased
precision

preconditioning

block methods

eigenvalue
deflation

Reduce number of iterationsReduce time per iteration

subspace
recycling

runtime =
time per
iteration

×
number of iterations

until convergence

Improving Performance of Iterative Solvers

5

Lecture Outline

• Effects of finite precision in Krylov subspace methods

• Maximum attainable accuracy

• Convergence delay

• Existing results for classical Krylov subspace methods

• Results for pipelined and s-step Krylov subspace methods

• Potential remedies for finite precision error in high-performance variants

• Choosing a method in practice

• The future of Krylov subspace methods

6

• Accuracy 𝑥 − 𝑥𝑖 generally not computable, but 𝑥 − 𝑥𝑖 = 𝐴−1 𝑏 − 𝐴 𝑥𝑖

• Size of the true residual, 𝑏 − 𝐴 𝑥𝑖 , used as computable measure of accuracy

Maximum attainable accuracy

7

• Accuracy 𝑥 − 𝑥𝑖 generally not computable, but 𝑥 − 𝑥𝑖 = 𝐴−1 𝑏 − 𝐴 𝑥𝑖

• Size of the true residual, 𝑏 − 𝐴 𝑥𝑖 , used as computable measure of accuracy

• Rounding errors cause the true residual, 𝒃 − 𝑨 𝒙𝒊, and the updated residual, 𝒓𝒊,
to deviate

Maximum attainable accuracy

7

• Accuracy 𝑥 − 𝑥𝑖 generally not computable, but 𝑥 − 𝑥𝑖 = 𝐴−1 𝑏 − 𝐴 𝑥𝑖

• Size of the true residual, 𝑏 − 𝐴 𝑥𝑖 , used as computable measure of accuracy

• Rounding errors cause the true residual, 𝒃 − 𝑨 𝒙𝒊, and the updated residual, 𝒓𝒊,
to deviate

• Writing 𝑏 − 𝐴 𝑥𝑖 = 𝑟𝑖 + 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖,

𝑏 − 𝐴 𝑥𝑖 ≤ 𝑟𝑖 + 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

Maximum attainable accuracy

7

• Accuracy 𝑥 − 𝑥𝑖 generally not computable, but 𝑥 − 𝑥𝑖 = 𝐴−1 𝑏 − 𝐴 𝑥𝑖

• Size of the true residual, 𝑏 − 𝐴 𝑥𝑖 , used as computable measure of accuracy

• Rounding errors cause the true residual, 𝒃 − 𝑨 𝒙𝒊, and the updated residual, 𝒓𝒊,
to deviate

• Writing 𝑏 − 𝐴 𝑥𝑖 = 𝑟𝑖 + 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖,

𝑏 − 𝐴 𝑥𝑖 ≤ 𝑟𝑖 + 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

• As 𝑟𝑖 → 0, 𝑏 − 𝐴 𝑥𝑖 depends on 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

Maximum attainable accuracy

7

• Accuracy 𝑥 − 𝑥𝑖 generally not computable, but 𝑥 − 𝑥𝑖 = 𝐴−1 𝑏 − 𝐴 𝑥𝑖

• Size of the true residual, 𝑏 − 𝐴 𝑥𝑖 , used as computable measure of accuracy

• Rounding errors cause the true residual, 𝒃 − 𝑨 𝒙𝒊, and the updated residual, 𝒓𝒊,
to deviate

• Writing 𝑏 − 𝐴 𝑥𝑖 = 𝑟𝑖 + 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖,

𝑏 − 𝐴 𝑥𝑖 ≤ 𝑟𝑖 + 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

• As 𝑟𝑖 → 0, 𝑏 − 𝐴 𝑥𝑖 depends on 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

• Many results on bounding attainable accuracy, e.g.: Greenbaum (1989, 1994,
1997), Sleijpen, van der Vorst and Fokkema (1994), Sleijpen, van der Vorst
and Modersitzki (2001), Björck, Elfving and Strakoš (1998) and Gutknecht
and Strakoš (2000).

Maximum attainable accuracy

7

• In finite precision HSCG, iterates are updated by

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝜹𝒙𝒊 and 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝜹𝒓𝒊

Maximum attainable accuracy of HSCG

8

• In finite precision HSCG, iterates are updated by

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝜹𝒙𝒊 and 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝜹𝒓𝒊

• Let 𝑓𝑖 ≡ 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

Maximum attainable accuracy of HSCG

8

• In finite precision HSCG, iterates are updated by

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝜹𝒙𝒊 and 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝜹𝒓𝒊

• Let 𝑓𝑖 ≡ 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

𝑓𝑖 = 𝑏 − 𝐴 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝛿𝑥𝑖 − 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝛿𝑟𝑖

Maximum attainable accuracy of HSCG

8

• In finite precision HSCG, iterates are updated by

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝜹𝒙𝒊 and 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝜹𝒓𝒊

• Let 𝑓𝑖 ≡ 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

𝑓𝑖 = 𝑏 − 𝐴 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝛿𝑥𝑖 − 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝛿𝑟𝑖

= 𝑓𝑖−1 + 𝐴𝛿𝑥𝑖 + 𝛿𝑟𝑖

Maximum attainable accuracy of HSCG

8

• In finite precision HSCG, iterates are updated by

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝜹𝒙𝒊 and 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝜹𝒓𝒊

• Let 𝑓𝑖 ≡ 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

𝑓𝑖 = 𝑏 − 𝐴 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝛿𝑥𝑖 − 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝛿𝑟𝑖

= 𝑓𝑖−1 + 𝐴𝛿𝑥𝑖 + 𝛿𝑟𝑖

= 𝑓0 + 𝑚=1
𝑖 𝐴𝛿𝑥𝑚 + 𝛿𝑟𝑚

Maximum attainable accuracy of HSCG

8

• In finite precision HSCG, iterates are updated by

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝜹𝒙𝒊 and 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝜹𝒓𝒊

• Let 𝑓𝑖 ≡ 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖

𝑓𝑖 = 𝑏 − 𝐴 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝛿𝑥𝑖 − 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝛿𝑟𝑖

= 𝑓𝑖−1 + 𝐴𝛿𝑥𝑖 + 𝛿𝑟𝑖

= 𝑓0 + 𝑚=1
𝑖 𝐴𝛿𝑥𝑚 + 𝛿𝑟𝑚

Maximum attainable accuracy of HSCG

𝑓𝑖 ≤ 𝑂(𝜀) 𝐴 𝑥 + max
𝑚=0,…,𝑖

 𝑥𝑚 Greenbaum, 1997

𝑓𝑖 ≤ 𝑂 𝜀 𝑚=0
𝑖 𝑁𝐴 𝐴 𝑥𝑚 + 𝑟𝑚 van der Vorst and Ye, 2000

𝑓𝑖 ≤ 𝑂 𝜀 𝑁𝐴 𝐴 𝐴−1 𝑚=0
𝑖 𝑟𝑚 Sleijpen and van der Vorst, 1995

8

Maximum Attainable Accuracy in HPC Variants

• Various synchronization-reducing modifications/variants discussed in Part I

• Modified recurrence coefficient computation

• 3-term CG (STCG)

• Addition of auxiliary recurrences

• Pipelined CG

• s-step methods

9

Modified recurrence coefficient computation

• What is the effect of changing the way the recurrence coefficients (𝛼
and 𝛽) are computed in HSCG?

10

Modified recurrence coefficient computation

• What is the effect of changing the way the recurrence coefficients (𝛼
and 𝛽) are computed in HSCG?

• Notice that neither 𝛼 nor 𝛽 appear in the bounds on 𝑓𝑖

𝑓𝑖 = 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖
= 𝑏 − 𝐴 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝛿𝑥𝑖 − 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝛿𝑟𝑖

10

Modified recurrence coefficient computation

• What is the effect of changing the way the recurrence coefficients (𝛼
and 𝛽) are computed in HSCG?

• Notice that neither 𝛼 nor 𝛽 appear in the bounds on 𝑓𝑖

𝑓𝑖 = 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖
= 𝑏 − 𝐴 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝛿𝑥𝑖 − 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝛿𝑟𝑖

• As long as the same 𝛼𝑖−1 is used in updating 𝑥𝑖 and 𝑟𝑖,

𝑓𝑖 = 𝑓𝑖−1 + 𝐴𝛿𝑥𝑖 + 𝛿𝑟𝑖
still holds

• Rounding errors made in computing 𝛼𝑖−1 do not contribute to the
residual gap

10

Modified recurrence coefficient computation

• What is the effect of changing the way the recurrence coefficients (𝛼
and 𝛽) are computed in HSCG?

• But may change computed 𝑥𝑖, 𝑟𝑖, which can affect convergence rate...

• Notice that neither 𝛼 nor 𝛽 appear in the bounds on 𝑓𝑖

𝑓𝑖 = 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖
= 𝑏 − 𝐴 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 − 𝛿𝑥𝑖 − 𝑟𝑖−1 − 𝛼𝑖−1𝐴 𝑝𝑖−1 − 𝛿𝑟𝑖

• As long as the same 𝛼𝑖−1 is used in updating 𝑥𝑖 and 𝑟𝑖,

𝑓𝑖 = 𝑓𝑖−1 + 𝐴𝛿𝑥𝑖 + 𝛿𝑟𝑖
still holds

• Rounding errors made in computing 𝛼𝑖−1 do not contribute to the
residual gap

10

Modified recurrence coefficient computation

𝛼𝑖−1 =
𝑟𝑖−1

𝑇 𝐴𝑟𝑖−1

𝑟𝑖−1
𝑇 𝑟𝑖−1

−
𝛽𝑖−1

𝛼𝑖−2

−1

Example: HSCG with modified formula for 𝛼𝑖−1

11

Attainable accuracy of STCG

• Analyzed by Gutknecht and Strakoš (2000)

• Attainable accuracy for STCG can be much worse than for
HSCG

12

Attainable accuracy of STCG

• Analyzed by Gutknecht and Strakoš (2000)

• Attainable accuracy for STCG can be much worse than for
HSCG

• Residual gap bounded by sum of local errors PLUS local errors
multiplied by factors which depend on

max
0≤ℓ<𝑗≤𝑖

𝑟𝑗
2

𝑟ℓ
2

12

Attainable accuracy of STCG

• Analyzed by Gutknecht and Strakoš (2000)

• Attainable accuracy for STCG can be much worse than for
HSCG

• Residual gap bounded by sum of local errors PLUS local errors
multiplied by factors which depend on

max
0≤ℓ<𝑗≤𝑖

𝑟𝑗
2

𝑟ℓ
2

⇒ Large residual oscillations can cause these factors to be large!

⇒ Local errors can be amplified!

12

STCG

13

STCG

13

Attainable accuracy of pipelined CG

• What is the effect of adding auxiliary recurrences to the CG method?

14

Attainable accuracy of pipelined CG

• What is the effect of adding auxiliary recurrences to the CG method?

• To isolate the effects, we consider a simplified version of a pipelined
method

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0, 𝑠0 = 𝐴𝑝0

for 𝑖 = 1:nmax

𝛼𝑖−1 =
(𝑟𝑖−1,𝑟𝑖−1)

(𝑝𝑖−1,𝑠𝑖−1)

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝛽𝑖 =
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝐴𝑟𝑖 + 𝛽𝑖𝑠𝑖−1

end
14

Attainable accuracy of pipelined CG

• What is the effect of adding auxiliary recurrences to the CG method?

• To isolate the effects, we consider a simplified version of a pipelined
method

• Uses same update formulas for 𝛼 and 𝛽 as HSCG, but uses
additional recurrence for 𝐴𝑝𝑖

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0, 𝑠0 = 𝐴𝑝0

for 𝑖 = 1:nmax

𝛼𝑖−1 =
(𝑟𝑖−1,𝑟𝑖−1)

(𝑝𝑖−1,𝑠𝑖−1)

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1𝑝𝑖−1

𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1𝑠𝑖−1

𝛽𝑖 =
(𝑟𝑖,𝑟𝑖)

(𝑟𝑖−1,𝑟𝑖−1)

𝑝𝑖 = 𝑟𝑖 + 𝛽𝑖𝑝𝑖−1

𝑠𝑖 = 𝐴𝑟𝑖 + 𝛽𝑖𝑠𝑖−1

end
14see [C., Rozložník, Strakoš, Tichý, Tůma, 2018]

Attainable accuracy of simple pipelined CG

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 + 𝜹𝒙𝒊 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 + 𝜹𝒓𝒊

15see [C., Rozložník, Strakoš, Tichý, Tůma, 2018]

Attainable accuracy of simple pipelined CG

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 + 𝜹𝒙𝒊 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 + 𝜹𝒓𝒊

𝑓𝑖 = 𝑟𝑖 − (𝑏 − 𝐴 𝑥𝑖)

15see [C., Rozložník, Strakoš, Tichý, Tůma, 2018]

Attainable accuracy of simple pipelined CG

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 + 𝜹𝒙𝒊 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 + 𝜹𝒓𝒊

𝑓𝑖 = 𝑟𝑖 − (𝑏 − 𝐴 𝑥𝑖)

= 𝑓𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 − 𝐴 𝑝𝑖−1 + 𝛿𝑟𝑖 + 𝐴𝛿𝑥𝑖

15see [C., Rozložník, Strakoš, Tichý, Tůma, 2018]

Attainable accuracy of simple pipelined CG

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 + 𝜹𝒙𝒊 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 + 𝜹𝒓𝒊

𝑓𝑖 = 𝑟𝑖 − (𝑏 − 𝐴 𝑥𝑖)

= 𝑓𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 − 𝐴 𝑝𝑖−1 + 𝛿𝑟𝑖 + 𝐴𝛿𝑥𝑖

= 𝑓0 + 𝑚=1
𝑖 (𝛿𝑟𝑚 + 𝐴𝛿𝑥𝑚) − 𝐺𝑖𝑑𝑖

where

𝐺𝑖 = 𝑆𝑖 − 𝐴 𝑃𝑖, 𝑑𝑖 = 𝛼0, … , 𝛼𝑖−1
𝑇

15see [C., Rozložník, Strakoš, Tichý, Tůma, 2018]

Attainable accuracy of simple pipelined CG

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 + 𝜹𝒙𝒊 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 + 𝜹𝒓𝒊

𝑓𝑖 = 𝑟𝑖 − (𝑏 − 𝐴 𝑥𝑖)

= 𝑓𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 − 𝐴 𝑝𝑖−1 + 𝛿𝑟𝑖 + 𝐴𝛿𝑥𝑖

= 𝑓0 + 𝑚=1
𝑖 (𝛿𝑟𝑚 + 𝐴𝛿𝑥𝑚) − 𝐺𝑖𝑑𝑖

where

𝐺𝑖 = 𝑆𝑖 − 𝐴 𝑃𝑖, 𝑑𝑖 = 𝛼0, … , 𝛼𝑖−1
𝑇

15see [C., Rozložník, Strakoš, Tichý, Tůma, 2018]

Attainable accuracy of simple pipelined CG

 𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖−1 𝑝𝑖−1 + 𝜹𝒙𝒊 𝑟𝑖 = 𝑟𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 + 𝜹𝒓𝒊

𝑓𝑖 = 𝑟𝑖 − (𝑏 − 𝐴 𝑥𝑖)

= 𝑓𝑖−1 − 𝛼𝑖−1 𝑠𝑖−1 − 𝐴 𝑝𝑖−1 + 𝛿𝑟𝑖 + 𝐴𝛿𝑥𝑖

= 𝑓0 + 𝑚=1
𝑖 (𝛿𝑟𝑚 + 𝐴𝛿𝑥𝑚) − 𝐺𝑖𝑑𝑖

where

𝐺𝑖 = 𝑆𝑖 − 𝐴 𝑃𝑖, 𝑑𝑖 = 𝛼0, … , 𝛼𝑖−1
𝑇

15see [C., Rozložník, Strakoš, Tichý, Tůma, 2018]

Attainable accuracy of simple pipelined CG

𝐺𝑖 ≤
𝑂 𝜀

1 − 𝑂 𝜀
𝜅(𝑈𝑖) 𝐴 𝑃𝑖 + 𝐴 𝑅𝑖

 𝑈𝑖
−1

 𝑈𝑖 =

1 − 𝛽1 0 0
0 1 ⋱ 0
⋮ ⋱ 1 − 𝛽𝑖−1

0 … 0 1

 𝑈𝑖
−1 =

1 𝛽1 … … 𝛽1
 𝛽2 ⋯ 𝛽𝑖−1

0 1 𝛽2 … 𝛽2 ⋯ 𝛽𝑖−1

⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ 1 𝛽𝑖−1

0 ⋯ ⋯ 0 1

16see [C., Rozložník, Strakoš, Tichý, Tůma, 2018]

Attainable accuracy of simple pipelined CG

𝐺𝑖 ≤
𝑂 𝜀

1 − 𝑂 𝜀
𝜅(𝑈𝑖) 𝐴 𝑃𝑖 + 𝐴 𝑅𝑖

 𝑈𝑖
−1

 𝑈𝑖 =

1 − 𝛽1 0 0
0 1 ⋱ 0
⋮ ⋱ 1 − 𝛽𝑖−1

0 … 0 1

 𝑈𝑖
−1 =

1 𝛽1 … … 𝛽1
 𝛽2 ⋯ 𝛽𝑖−1

0 1 𝛽2 … 𝛽2 ⋯ 𝛽𝑖−1

⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ 1 𝛽𝑖−1

0 ⋯ ⋯ 0 1

𝛽ℓ𝛽ℓ+1 ⋯ 𝛽𝑗 =
𝑟𝑗

2

𝑟ℓ−1
2 , ℓ < 𝑗

16see [C., Rozložník, Strakoš, Tichý, Tůma, 2018]

Attainable accuracy of simple pipelined CG

𝐺𝑖 ≤
𝑂 𝜀

1 − 𝑂 𝜀
𝜅(𝑈𝑖) 𝐴 𝑃𝑖 + 𝐴 𝑅𝑖

 𝑈𝑖
−1

 𝑈𝑖 =

1 − 𝛽1 0 0
0 1 ⋱ 0
⋮ ⋱ 1 − 𝛽𝑖−1

0 … 0 1

 𝑈𝑖
−1 =

1 𝛽1 … … 𝛽1
 𝛽2 ⋯ 𝛽𝑖−1

0 1 𝛽2 … 𝛽2 ⋯ 𝛽𝑖−1

⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ 1 𝛽𝑖−1

0 ⋯ ⋯ 0 1

• Residual oscillations can cause these factors to be large!
• Errors in computed recurrence coefficients can be amplified!

𝛽ℓ𝛽ℓ+1 ⋯ 𝛽𝑗 =
𝑟𝑗

2

𝑟ℓ−1
2 , ℓ < 𝑗

16see [C., Rozložník, Strakoš, Tichý, Tůma, 2018]

Attainable accuracy of simple pipelined CG

 𝑈𝑖 =

1 − 𝛽1 0 0
0 1 ⋱ 0
⋮ ⋱ 1 − 𝛽𝑖−1

0 … 0 1

 𝑈𝑖
−1 =

1 𝛽1 … … 𝛽1
 𝛽2 ⋯ 𝛽𝑖−1

0 1 𝛽2 … 𝛽2 ⋯ 𝛽𝑖−1

⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ 1 𝛽𝑖−1

0 ⋯ ⋯ 0 1

• Residual oscillations can cause these factors to be large!
• Errors in computed recurrence coefficients can be amplified!

• Very similar to the results for attainable accuracy in the 3-term STCG
• Seemingly innocuous change can cause drastic loss of accuracy

𝛽ℓ𝛽ℓ+1 ⋯ 𝛽𝑗 =
𝑟𝑗

2

𝑟ℓ−1
2 , ℓ < 𝑗

16

𝐺𝑖 ≤
𝑂 𝜀

1 − 𝑂 𝜀
𝜅(𝑈𝑖) 𝐴 𝑃𝑖 + 𝐴 𝑅𝑖

 𝑈𝑖
−1

see [C., Rozložník, Strakoš, Tichý, Tůma, 2018]

Simple pipelined CG

17

Simple pipelined CG

17

effect of using auxiliary vector 𝑠𝑖 ≡ 𝐴𝑝𝑖

Simple pipelined CG

17

effect of changing formula for recurrence coefficient 𝛼 and
using auxiliary vector 𝑠𝑖 ≡ 𝐴𝑝𝑖

Attainable Accuracy of Pipelined CG

Pipelined CG uses 5 auxiliary recurrences:
𝑠𝑖 ≡ 𝐴𝑝𝑖 , 𝑞𝑖 ≡ 𝑀−1𝐴𝑝𝑖 , 𝑢𝑖 ≡ 𝑀−1𝑟𝑖 , 𝑤𝑖 = 𝐴𝑀−1𝑟𝑖 , 𝑧𝑖 ≡ 𝐴𝑀−1𝐴𝑝𝑖

Computed explicitly: 𝑚𝑖 ≡ 𝑀−1𝑤𝑖 ≡ 𝑀−1𝐴𝑀−1𝑟𝑖 , 𝑣𝑖 = 𝐴𝑚𝑖 (≡ 𝐴𝑀−1𝐴𝑀−1𝑟𝑖)

18

(Cools, et al., 2018)

Attainable Accuracy of Pipelined CG

Pipelined CG uses 5 auxiliary recurrences:
𝑠𝑖 ≡ 𝐴𝑝𝑖 , 𝑞𝑖 ≡ 𝑀−1𝐴𝑝𝑖 , 𝑢𝑖 ≡ 𝑀−1𝑟𝑖 , 𝑤𝑖 = 𝐴𝑀−1𝑟𝑖 , 𝑧𝑖 ≡ 𝐴𝑀−1𝐴𝑝𝑖

Computed explicitly: 𝑚𝑖 ≡ 𝑀−1𝑤𝑖 ≡ 𝑀−1𝐴𝑀−1𝑟𝑖 , 𝑣𝑖 = 𝐴𝑚𝑖 (≡ 𝐴𝑀−1𝐴𝑀−1𝑟𝑖)

18

 𝑥𝑖+1 = 𝑥𝑖 + 𝛼𝑖 𝑝𝑖 + 𝛿𝑖
𝑥

 𝑟𝑖+1 = 𝑟𝑖 − 𝛼𝑖 𝑠𝑖 + 𝛿𝑖
𝑟

 𝑤𝑖+1 = 𝑤𝑖 − 𝛼𝑖 𝑧𝑖 + 𝛿𝑖
𝑤

 𝑢𝑖+1 = 𝑢𝑖 − 𝛼𝑖 𝑞𝑖 + 𝛿𝑖
𝑢

 𝑝𝑖 = 𝑢𝑖 + 𝛽𝑖 𝑝𝑖−1 + 𝛿𝑖
𝑝

 𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖 𝑠𝑖−1 + 𝛿𝑖
𝑠

 𝑧𝑖 = 𝐴 𝑚𝑖 + 𝛽𝑖 𝑧𝑖−1 + 𝛿𝑖
𝑧

 𝑞𝑖 = 𝑚𝑖 + 𝛽𝑖 𝑞𝑖−1 + 𝛿𝑖
𝑞

(Cools, et al., 2018)

Attainable Accuracy of Pipelined CG

Pipelined CG uses 5 auxiliary recurrences:
𝑠𝑖 ≡ 𝐴𝑝𝑖 , 𝑞𝑖 ≡ 𝑀−1𝐴𝑝𝑖 , 𝑢𝑖 ≡ 𝑀−1𝑟𝑖 , 𝑤𝑖 = 𝐴𝑀−1𝑟𝑖 , 𝑧𝑖 ≡ 𝐴𝑀−1𝐴𝑝𝑖

Computed explicitly: 𝑚𝑖 ≡ 𝑀−1𝑤𝑖 ≡ 𝑀−1𝐴𝑀−1𝑟𝑖 , 𝑣𝑖 = 𝐴𝑚𝑖 (≡ 𝐴𝑀−1𝐴𝑀−1𝑟𝑖)

18

 𝑥𝑖+1 = 𝑥𝑖 + 𝛼𝑖 𝑝𝑖 + 𝛿𝑖
𝑥

 𝑟𝑖+1 = 𝑟𝑖 − 𝛼𝑖 𝑠𝑖 + 𝛿𝑖
𝑟

 𝑤𝑖+1 = 𝑤𝑖 − 𝛼𝑖 𝑧𝑖 + 𝛿𝑖
𝑤

 𝑢𝑖+1 = 𝑢𝑖 − 𝛼𝑖 𝑞𝑖 + 𝛿𝑖
𝑢

 𝑝𝑖 = 𝑢𝑖 + 𝛽𝑖 𝑝𝑖−1 + 𝛿𝑖
𝑝

 𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖 𝑠𝑖−1 + 𝛿𝑖
𝑠

 𝑧𝑖 = 𝐴 𝑚𝑖 + 𝛽𝑖 𝑧𝑖−1 + 𝛿𝑖
𝑧

 𝑞𝑖 = 𝑚𝑖 + 𝛽𝑖 𝑞𝑖−1 + 𝛿𝑖
𝑞

𝑓𝑖+1 = 𝑏 − 𝐴 𝑥𝑖+1 − 𝑟𝑖+1

= 𝑓𝑖 − 𝛼𝑖 𝐴 𝑝𝑖 − 𝑠𝑖 − 𝐴𝛿𝑖
𝑥 − 𝛿𝑖

𝑟

(Cools, et al., 2018)

Attainable Accuracy of Pipelined CG

Pipelined CG uses 5 auxiliary recurrences:
𝑠𝑖 ≡ 𝐴𝑝𝑖 , 𝑞𝑖 ≡ 𝑀−1𝐴𝑝𝑖 , 𝑢𝑖 ≡ 𝑀−1𝑟𝑖 , 𝑤𝑖 = 𝐴𝑀−1𝑟𝑖 , 𝑧𝑖 ≡ 𝐴𝑀−1𝐴𝑝𝑖

Computed explicitly: 𝑚𝑖 ≡ 𝑀−1𝑤𝑖 ≡ 𝑀−1𝐴𝑀−1𝑟𝑖 , 𝑣𝑖 = 𝐴𝑚𝑖 (≡ 𝐴𝑀−1𝐴𝑀−1𝑟𝑖)

18

 𝑥𝑖+1 = 𝑥𝑖 + 𝛼𝑖 𝑝𝑖 + 𝛿𝑖
𝑥

 𝑟𝑖+1 = 𝑟𝑖 − 𝛼𝑖 𝑠𝑖 + 𝛿𝑖
𝑟

 𝑤𝑖+1 = 𝑤𝑖 − 𝛼𝑖 𝑧𝑖 + 𝛿𝑖
𝑤

 𝑢𝑖+1 = 𝑢𝑖 − 𝛼𝑖 𝑞𝑖 + 𝛿𝑖
𝑢

 𝑝𝑖 = 𝑢𝑖 + 𝛽𝑖 𝑝𝑖−1 + 𝛿𝑖
𝑝

 𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖 𝑠𝑖−1 + 𝛿𝑖
𝑠

 𝑧𝑖 = 𝐴 𝑚𝑖 + 𝛽𝑖 𝑧𝑖−1 + 𝛿𝑖
𝑧

 𝑞𝑖 = 𝑚𝑖 + 𝛽𝑖 𝑞𝑖−1 + 𝛿𝑖
𝑞

𝑓𝑖+1 = 𝑏 − 𝐴 𝑥𝑖+1 − 𝑟𝑖+1

= 𝑓𝑖 − 𝛼𝑖 𝐴 𝑝𝑖 − 𝑠𝑖 − 𝐴𝛿𝑖
𝑥 − 𝛿𝑖

𝑟

𝑔𝑖 = 𝛽𝑖𝑔𝑖−1 + 𝐴 𝑢𝑖+1 − 𝑤𝑖+1 + 𝐴𝛿𝑖
𝑝

− 𝛿𝑖
𝑠

(Cools, et al., 2018)

Attainable Accuracy of Pipelined CG

Pipelined CG uses 5 auxiliary recurrences:
𝑠𝑖 ≡ 𝐴𝑝𝑖 , 𝑞𝑖 ≡ 𝑀−1𝐴𝑝𝑖 , 𝑢𝑖 ≡ 𝑀−1𝑟𝑖 , 𝑤𝑖 = 𝐴𝑀−1𝑟𝑖 , 𝑧𝑖 ≡ 𝐴𝑀−1𝐴𝑝𝑖

Computed explicitly: 𝑚𝑖 ≡ 𝑀−1𝑤𝑖 ≡ 𝑀−1𝐴𝑀−1𝑟𝑖 , 𝑣𝑖 = 𝐴𝑚𝑖 (≡ 𝐴𝑀−1𝐴𝑀−1𝑟𝑖)

18

 𝑥𝑖+1 = 𝑥𝑖 + 𝛼𝑖 𝑝𝑖 + 𝛿𝑖
𝑥

 𝑟𝑖+1 = 𝑟𝑖 − 𝛼𝑖 𝑠𝑖 + 𝛿𝑖
𝑟

 𝑤𝑖+1 = 𝑤𝑖 − 𝛼𝑖 𝑧𝑖 + 𝛿𝑖
𝑤

 𝑢𝑖+1 = 𝑢𝑖 − 𝛼𝑖 𝑞𝑖 + 𝛿𝑖
𝑢

 𝑝𝑖 = 𝑢𝑖 + 𝛽𝑖 𝑝𝑖−1 + 𝛿𝑖
𝑝

 𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖 𝑠𝑖−1 + 𝛿𝑖
𝑠

 𝑧𝑖 = 𝐴 𝑚𝑖 + 𝛽𝑖 𝑧𝑖−1 + 𝛿𝑖
𝑧

 𝑞𝑖 = 𝑚𝑖 + 𝛽𝑖 𝑞𝑖−1 + 𝛿𝑖
𝑞

𝑓𝑖+1 = 𝑏 − 𝐴 𝑥𝑖+1 − 𝑟𝑖+1

= 𝑓𝑖 − 𝛼𝑖 𝐴 𝑝𝑖 − 𝑠𝑖 − 𝐴𝛿𝑖
𝑥 − 𝛿𝑖

𝑟

𝑔𝑖 = 𝛽𝑖𝑔𝑖−1 + 𝐴 𝑢𝑖+1 − 𝑤𝑖+1 + 𝐴𝛿𝑖
𝑝

− 𝛿𝑖
𝑠

ℎ𝑖+1 = ℎ𝑖 − 𝛼𝑖 𝐴 𝑞𝑖 − 𝑧𝑖 + 𝐴𝛿𝑖
𝑢 − 𝛿𝑖

𝑤

(Cools, et al., 2018)

Attainable Accuracy of Pipelined CG

Pipelined CG uses 5 auxiliary recurrences:
𝑠𝑖 ≡ 𝐴𝑝𝑖 , 𝑞𝑖 ≡ 𝑀−1𝐴𝑝𝑖 , 𝑢𝑖 ≡ 𝑀−1𝑟𝑖 , 𝑤𝑖 = 𝐴𝑀−1𝑟𝑖 , 𝑧𝑖 ≡ 𝐴𝑀−1𝐴𝑝𝑖

Computed explicitly: 𝑚𝑖 ≡ 𝑀−1𝑤𝑖 ≡ 𝑀−1𝐴𝑀−1𝑟𝑖 , 𝑣𝑖 = 𝐴𝑚𝑖 (≡ 𝐴𝑀−1𝐴𝑀−1𝑟𝑖)

18

 𝑥𝑖+1 = 𝑥𝑖 + 𝛼𝑖 𝑝𝑖 + 𝛿𝑖
𝑥

 𝑟𝑖+1 = 𝑟𝑖 − 𝛼𝑖 𝑠𝑖 + 𝛿𝑖
𝑟

 𝑤𝑖+1 = 𝑤𝑖 − 𝛼𝑖 𝑧𝑖 + 𝛿𝑖
𝑤

 𝑢𝑖+1 = 𝑢𝑖 − 𝛼𝑖 𝑞𝑖 + 𝛿𝑖
𝑢

 𝑝𝑖 = 𝑢𝑖 + 𝛽𝑖 𝑝𝑖−1 + 𝛿𝑖
𝑝

 𝑠𝑖 = 𝑤𝑖 + 𝛽𝑖 𝑠𝑖−1 + 𝛿𝑖
𝑠

 𝑧𝑖 = 𝐴 𝑚𝑖 + 𝛽𝑖 𝑧𝑖−1 + 𝛿𝑖
𝑧

 𝑞𝑖 = 𝑚𝑖 + 𝛽𝑖 𝑞𝑖−1 + 𝛿𝑖
𝑞

𝑓𝑖+1 = 𝑏 − 𝐴 𝑥𝑖+1 − 𝑟𝑖+1

= 𝑓𝑖 − 𝛼𝑖 𝐴 𝑝𝑖 − 𝑠𝑖 − 𝐴𝛿𝑖
𝑥 − 𝛿𝑖

𝑟

𝑔𝑖 = 𝛽𝑖𝑔𝑖−1 + 𝐴 𝑢𝑖+1 − 𝑤𝑖+1 + 𝐴𝛿𝑖
𝑝

− 𝛿𝑖
𝑠

ℎ𝑖+1 = ℎ𝑖 − 𝛼𝑖 𝐴 𝑞𝑖 − 𝑧𝑖 + 𝐴𝛿𝑖
𝑢 − 𝛿𝑖

𝑤

𝑗𝑖 = 𝛽𝑖𝑗𝑖−1 + 𝐴𝛿𝑖
𝑞

− 𝛿𝑖
𝑧

(Cools, et al., 2018)

Attainable Accuracy of Pipelined CG

𝑓𝑖+1 = 𝑓0 −

𝑗=0

𝑖

 𝛼𝑗𝑔𝑗 −

𝑗=0

𝑖

(𝐴𝛿𝑗
𝑥 + 𝛿𝑗

𝑟)

19

Attainable Accuracy of Pipelined CG

𝑓𝑖+1 = 𝑓0 −

𝑗=0

𝑖

 𝛼𝑗𝑔𝑗 −

𝑗=0

𝑖

(𝐴𝛿𝑗
𝑥 + 𝛿𝑗

𝑟)

19

𝑔𝑗 =

𝑘=1

𝑗

 𝛽𝑘 𝑔0 +

𝑘=1

𝑗

ℓ=𝑘+1

𝑗

 𝛽ℓ 𝐴𝛿𝑘
𝑝

− 𝛿𝑘
𝑠 +

𝑘=1

𝑗

ℓ=𝑘+1

𝑗

 𝛽ℓ ℎ𝑘

ℎ𝑘 = ℎ0 −

ℓ=0

𝑘−1

 𝛼ℓ𝑗ℓ +

ℓ=0

𝑘−1

(𝐴𝛿ℓ
𝑢 + 𝛿ℓ

𝑤)

𝑗ℓ =

𝑚=1

ℓ

 𝛽𝑚 𝑗0 +

𝑚=1

ℓ

𝑛=𝑚+1

ℓ

 𝛽𝑛 𝐴𝛿𝑚
𝑞

− 𝛿𝑚
𝑧

Attainable Accuracy of Pipelined CG

𝑓𝑖+1 = 𝑓0 −

𝑗=0

𝑖

 𝛼𝑗𝑔𝑗 −

𝑗=0

𝑖

(𝐴𝛿𝑗
𝑥 + 𝛿𝑗

𝑟)

19

𝑔𝑗 =

𝑘=1

𝑗

 𝛽𝑘 𝑔0 +

𝑘=1

𝑗

ℓ=𝑘+1

𝑗

 𝛽ℓ 𝐴𝛿𝑘
𝑝

− 𝛿𝑘
𝑠 +

𝑘=1

𝑗

ℓ=𝑘+1

𝑗

 𝛽ℓ ℎ𝑘

ℎ𝑘 = ℎ0 −

ℓ=0

𝑘−1

 𝛼ℓ𝑗ℓ +

ℓ=0

𝑘−1

(𝐴𝛿ℓ
𝑢 − 𝛿ℓ

𝑤)

𝑗ℓ =

𝑚=1

ℓ

 𝛽𝑚 𝑗0 +

𝑚=1

ℓ

𝑛=𝑚+1

ℓ

 𝛽𝑛 𝐴𝛿𝑚
𝑞

− 𝛿𝑚
𝑧

Local rounding errors
all potentially

amplified!

Pipelined CG

20

effect of changing formula for recurrence coefficient 𝛼 and
using auxiliary vector 𝑠𝑖 ≡ 𝐴𝑝𝑖

Pipelined CG

20

effect of changing formula for recurrence coefficient 𝛼 and
using auxiliary vectors 𝑠𝑖 ≡ 𝐴𝑝𝑖, 𝑤𝑖 ≡ 𝐴𝑟𝑖 , 𝑧𝑖 ≡ 𝐴2𝑟𝑖

Effect of Deeper Pipelines
• Deeper pipeline -> effectively adding more auxiliary recurrences

• We expect residual gap to increase with increasing pipeline depth

• Some initial work (Cools, 2018) uses Chebyshev shifts to attempt to
stabilize (deep) pipelined CG; but increasing gap is still apparent

21

2D Poisson problem, 𝑁 = 200, 𝑏 set such that 𝑥𝑖 = 1/ 𝑁

(Cools, 2018)

square root
breakdown +
explicit restart

s-step CG

Outer Loop

Compute basis
O(s) SPMVs

O(𝑠2) Inner
Products (one

synchronization)

Inner Loop

Local Vector
Updates (no

comm.)

End Inner Loop

Inner Outer Loop

s
times

𝑟0 = 𝑏 − 𝐴𝑥0, 𝑝0 = 𝑟0

for 𝑘 = 0:nmax/𝑠

Compute 𝒴𝑘 and ℬ𝑘 such that 𝐴𝒴𝑘 = 𝒴𝑘ℬ𝑘 and

span(𝒴𝑘) = 𝒦𝑠+1 𝐴, 𝑝𝑠𝑘 + 𝒦𝑠 𝐴, 𝑟𝑠𝑘

𝒢𝑘 = 𝒴𝑘
𝑇𝒴𝑘

𝑥0
′ = 0, 𝑟0

′ = 𝑒𝑠+2, 𝑝0
′ = 𝑒1

for 𝑗 = 1: 𝑠

𝛼𝑠𝑘+𝑗−1 =
𝑟𝑗−1

′𝑇 𝒢𝑘𝑟𝑗−1
′

𝑝𝑗−1
′𝑇 𝒢𝑘ℬ𝑘𝑝𝑗−1

′

𝑥𝑗
′ = 𝑥𝑗−1

′ + 𝛼𝑠𝑘+𝑗−1𝑝𝑗−1
′

𝑟𝑗
′ = 𝑟𝑗−1

′ − 𝛼𝑠𝑘+𝑗−1ℬ𝑘𝑝𝑗−1
′

𝛽𝑠𝑘+𝑗 =
𝑟𝑗

′𝑇𝒢𝑘𝑟𝑗
′

𝑟𝑗−1
′𝑇 𝒢𝑘𝑟𝑗−1

′

𝑝𝑗
′ = 𝑟𝑗

′ + 𝛽𝑠𝑘+𝑗𝑝𝑗−1
′

end

[𝑥𝑠 𝑘+1 −𝑥𝑠𝑘 , 𝑟𝑠 𝑘+1 , 𝑝𝑠 𝑘+1] = 𝒴𝑘[𝑥𝑠
′ , 𝑟𝑠

′, 𝑝𝑠
′]

end
22

Sources of local roundoff error in s-step CG

Computing the 𝑠-step Krylov subspace basis:

𝐴 𝒴𝑘 = 𝒴𝑘ℬ𝑘 + Δ𝒴𝑘

Updating coordinate vectors in the inner loop:

 𝑥𝑘,𝑗
′ = 𝑥𝑘,𝑗−1

′ + 𝑞𝑘,𝑗−1
′ + 𝜉𝑘,𝑗

 𝑟𝑘,𝑗
′ = 𝑟𝑘,𝑗−1

′ − ℬ𝑘 𝑞𝑘,𝑗−1
′ + 𝜂𝑘,𝑗

with 𝑞𝑘,𝑗−1
′ = fl(𝛼𝑠𝑘+𝑗−1 𝑝𝑘,𝑗−1

′)

Recovering CG vectors for use in next outer loop:

 𝑥𝑠𝑘+𝑗 = 𝒴𝑘 𝑥𝑘,𝑗
′ + 𝑥𝑠𝑘 + 𝜙𝑠𝑘+𝑗

 𝑟𝑠𝑘+𝑗 = 𝒴𝑘 𝑟𝑘,𝑗
′ + 𝜓𝑠𝑘+𝑗

23

Sources of local roundoff error in s-step CG

Error in computing
𝑠-step basis

Computing the 𝑠-step Krylov subspace basis:

𝐴 𝒴𝑘 = 𝒴𝑘ℬ𝑘 + Δ𝒴𝑘

Updating coordinate vectors in the inner loop:

 𝑥𝑘,𝑗
′ = 𝑥𝑘,𝑗−1

′ + 𝑞𝑘,𝑗−1
′ + 𝜉𝑘,𝑗

 𝑟𝑘,𝑗
′ = 𝑟𝑘,𝑗−1

′ − ℬ𝑘 𝑞𝑘,𝑗−1
′ + 𝜂𝑘,𝑗

with 𝑞𝑘,𝑗−1
′ = fl(𝛼𝑠𝑘+𝑗−1 𝑝𝑘,𝑗−1

′)

Recovering CG vectors for use in next outer loop:

 𝑥𝑠𝑘+𝑗 = 𝒴𝑘 𝑥𝑘,𝑗
′ + 𝑥𝑠𝑘 + 𝜙𝑠𝑘+𝑗

 𝑟𝑠𝑘+𝑗 = 𝒴𝑘 𝑟𝑘,𝑗
′ + 𝜓𝑠𝑘+𝑗

23

Sources of local roundoff error in s-step CG

Error in computing
𝑠-step basis

Error in updating
coefficient vectors

Computing the 𝑠-step Krylov subspace basis:

𝐴 𝒴𝑘 = 𝒴𝑘ℬ𝑘 + Δ𝒴𝑘

Updating coordinate vectors in the inner loop:

 𝑥𝑘,𝑗
′ = 𝑥𝑘,𝑗−1

′ + 𝑞𝑘,𝑗−1
′ + 𝜉𝑘,𝑗

 𝑟𝑘,𝑗
′ = 𝑟𝑘,𝑗−1

′ − ℬ𝑘 𝑞𝑘,𝑗−1
′ + 𝜂𝑘,𝑗

with 𝑞𝑘,𝑗−1
′ = fl(𝛼𝑠𝑘+𝑗−1 𝑝𝑘,𝑗−1

′)

Recovering CG vectors for use in next outer loop:

 𝑥𝑠𝑘+𝑗 = 𝒴𝑘 𝑥𝑘,𝑗
′ + 𝑥𝑠𝑘 + 𝜙𝑠𝑘+𝑗

 𝑟𝑠𝑘+𝑗 = 𝒴𝑘 𝑟𝑘,𝑗
′ + 𝜓𝑠𝑘+𝑗

23

Error in
basis change

Sources of local roundoff error in s-step CG

Error in computing
𝑠-step basis

Error in updating
coefficient vectors

Computing the 𝑠-step Krylov subspace basis:

𝐴 𝒴𝑘 = 𝒴𝑘ℬ𝑘 + Δ𝒴𝑘

Updating coordinate vectors in the inner loop:

 𝑥𝑘,𝑗
′ = 𝑥𝑘,𝑗−1

′ + 𝑞𝑘,𝑗−1
′ + 𝜉𝑘,𝑗

 𝑟𝑘,𝑗
′ = 𝑟𝑘,𝑗−1

′ − ℬ𝑘 𝑞𝑘,𝑗−1
′ + 𝜂𝑘,𝑗

with 𝑞𝑘,𝑗−1
′ = fl(𝛼𝑠𝑘+𝑗−1 𝑝𝑘,𝑗−1

′)

Recovering CG vectors for use in next outer loop:

 𝑥𝑠𝑘+𝑗 = 𝒴𝑘 𝑥𝑘,𝑗
′ + 𝑥𝑠𝑘 + 𝜙𝑠𝑘+𝑗

 𝑟𝑠𝑘+𝑗 = 𝒴𝑘 𝑟𝑘,𝑗
′ + 𝜓𝑠𝑘+𝑗

23

• We can write the gap between the true and updated residuals 𝑓 in terms
of these errors:

Attainable accuracy of s-step CG

• Using standard rounding error results, this allows us to obtain an upper

bound on 𝑓𝑠𝑘+𝑗 .

𝑓𝑠𝑘+𝑗 = 𝑓0

−

ℓ=0

𝑘−1

𝐴𝜙𝑠ℓ+𝑠 + 𝜓𝑠ℓ+𝑠 +

𝑖=1

𝑠

𝐴 𝒴ℓ𝜉ℓ,𝑖 + 𝒴ℓ𝜂ℓ,𝑖 − Δ𝒴ℓ 𝑞ℓ,𝑖−1
′

−𝐴𝜙𝑠𝑘+𝑗 − 𝜓𝑠𝑘+𝑗 −

𝑖=1

𝑗

𝐴 𝒴𝑘𝜉𝑘,𝑖 + 𝒴𝑘𝜂𝑘,𝑖 − Δ𝒴ℓ 𝑞𝑘,𝑖−1
′

24

• We can write the gap between the true and updated residuals 𝑓 in terms
of these errors:

Attainable accuracy of s-step CG

• Using standard rounding error results, this allows us to obtain an upper

bound on 𝑓𝑠𝑘+𝑗 .

𝑓𝑠𝑘+𝑗 = 𝑓0

−

ℓ=0

𝑘−1

𝐴𝜙𝑠ℓ+𝑠 + 𝜓𝑠ℓ+𝑠 +

𝑖=1

𝑠

𝐴 𝒴ℓ𝜉ℓ,𝑖 + 𝒴ℓ𝜂ℓ,𝑖 − Δ𝒴ℓ 𝑞ℓ,𝑖−1
′

−𝐴𝜙𝑠𝑘+𝑗 − 𝜓𝑠𝑘+𝑗 −

𝑖=1

𝑗

𝐴 𝒴𝑘𝜉𝑘,𝑖 + 𝒴𝑘𝜂𝑘,𝑖 − Δ𝒴ℓ 𝑞𝑘,𝑖−1
′

24

• We can write the gap between the true and updated residuals 𝑓 in terms
of these errors:

Attainable accuracy of s-step CG

• Using standard rounding error results, this allows us to obtain an upper

bound on 𝑓𝑠𝑘+𝑗 .

𝑓𝑠𝑘+𝑗 = 𝑓0

−

ℓ=0

𝑘−1

𝐴𝜙𝑠ℓ+𝑠 + 𝜓𝑠ℓ+𝑠 +

𝑖=1

𝑠

𝐴 𝒴ℓ𝜉ℓ,𝑖 + 𝒴ℓ𝜂ℓ,𝑖 − Δ𝒴ℓ 𝑞ℓ,𝑖−1
′

−𝐴𝜙𝑠𝑘+𝑗 − 𝜓𝑠𝑘+𝑗 −

𝑖=1

𝑗

𝐴 𝒴𝑘𝜉𝑘,𝑖 + 𝒴𝑘𝜂𝑘,𝑖 − Δ𝒴ℓ 𝑞𝑘,𝑖−1
′

24

• We can write the gap between the true and updated residuals 𝑓 in terms
of these errors:

Attainable accuracy of s-step CG

• Using standard rounding error results, this allows us to obtain an upper

bound on 𝑓𝑠𝑘+𝑗 .

𝑓𝑠𝑘+𝑗 = 𝑓0

−

ℓ=0

𝑘−1

𝐴𝜙𝑠ℓ+𝑠 + 𝜓𝑠ℓ+𝑠 +

𝑖=1

𝑠

𝐴 𝒴ℓ𝜉ℓ,𝑖 + 𝒴ℓ𝜂ℓ,𝑖 − Δ𝒴ℓ 𝑞ℓ,𝑖−1
′

−𝐴𝜙𝑠𝑘+𝑗 − 𝜓𝑠𝑘+𝑗 −

𝑖=1

𝑗

𝐴 𝒴𝑘𝜉𝑘,𝑖 + 𝒴𝑘𝜂𝑘,𝑖 − Δ𝒴ℓ 𝑞𝑘,𝑖−1
′

24

For CG:

Attainable accuracy of s-step CG

𝑓𝑖 ≤ 𝑓0 + 𝜀

𝑚=1

𝑖

1 + 𝑁 𝐴 𝑥𝑚 + 𝑟𝑚

𝑓𝑖 ≡ 𝑏−𝐴 𝑥𝑖− 𝑟𝑖

25

For CG:

Attainable accuracy of s-step CG

𝑓𝑠𝑘+𝑗 ≤ 𝑓0 + 𝜀𝒄 𝚪𝒌

𝑚=1

𝑠𝑘+𝑗

1 + 𝑁 𝐴 𝑥𝑚 + 𝑟𝑚

𝑓𝑖 ≤ 𝑓0 + 𝜀

𝑚=1

𝑖

1 + 𝑁 𝐴 𝑥𝑚 + 𝑟𝑚

For s-step CG: 𝑖 ≡ 𝑠𝑘 + 𝑗

where 𝑐 is a low-degree polynomial in 𝑠, and

 Γ𝑘 = max
ℓ≤𝑘

Γℓ , where Γℓ = 𝒴ℓ
+ ⋅ 𝒴ℓ

𝑓𝑖 ≡ 𝑏−𝐴 𝑥𝑖− 𝑟𝑖

(see C., 2015)

25

s-step CG

26

s-step CG

s-step CG with monomial basis (𝒴 = [𝑝𝑖 , 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖 , 𝑟𝑖 , 𝐴𝑟𝑖 , … 𝐴𝑠−1𝑟𝑖])

26

s-step CG

s-step CG with monomial basis (𝒴 = [𝑝𝑖 , 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖 , 𝑟𝑖 , 𝐴𝑟𝑖 , … 𝐴𝑠−1𝑟𝑖])

26

s-step CG

s-step CG with monomial basis (𝒴 = [𝑝𝑖 , 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖 , 𝑟𝑖 , 𝐴𝑟𝑖 , … 𝐴𝑠−1𝑟𝑖])

26

s-step CG

Even assuming perfect parallel scalability with s (which is usually not the case due to extra
SpMVs and inner products), already at 𝑠 = 4 we are worse than HSCG in terms of number
of synchronizations!

27

s-step CG

Even assuming perfect parallel scalability with s (which is usually not the case due to extra
SpMVs and inner products), already at 𝑠 = 4 we are worse than HSCG in terms of number
of synchronizations!

27

⇒ Can use other, more well-conditioned bases to improve convergence rate
and accuracy (see, e.g. Philippe and Reichel, 2012).

Choosing a Polynomial Basis

• Recall: in each outer loop of s-step CG, we compute bases for some Krylov
subspaces, e.g., 𝒦𝑠+1 𝐴, 𝑝𝑖 = span{𝑝𝑖, 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖}

28

Choosing a Polynomial Basis

• Recall: in each outer loop of s-step CG, we compute bases for some Krylov
subspaces, e.g., 𝒦𝑠+1 𝐴, 𝑝𝑖 = span{𝑝𝑖, 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖}

• Simple loop unrolling gives monomial basis, e.g., 𝒴𝑘 = 𝑝𝑚, 𝐴𝑝𝑚, … , 𝐴𝑠𝑝𝑚

• Condition number can grow exponentially with 𝑠

• Recognized early on that this negatively affects convergence and accuracy
(Leland, 1989), (Chronopoulous & Swanson, 1995)

28

Choosing a Polynomial Basis

• Recall: in each outer loop of s-step CG, we compute bases for some Krylov
subspaces, e.g., 𝒦𝑠+1 𝐴, 𝑝𝑖 = span{𝑝𝑖, 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖}

• Improve basis condition number to improve numerical behavior: Use different
polynomials to compute a basis for the same subspace.

• Simple loop unrolling gives monomial basis, e.g., 𝒴𝑘 = 𝑝𝑚, 𝐴𝑝𝑚, … , 𝐴𝑠𝑝𝑚

• Condition number can grow exponentially with 𝑠

• Recognized early on that this negatively affects convergence and accuracy
(Leland, 1989), (Chronopoulous & Swanson, 1995)

28

Choosing a Polynomial Basis

• Recall: in each outer loop of s-step CG, we compute bases for some Krylov
subspaces, e.g., 𝒦𝑠+1 𝐴, 𝑝𝑖 = span{𝑝𝑖, 𝐴𝑝𝑖 , … , 𝐴𝑠𝑝𝑖}

• Two choices based on spectral information that usually lead to well-
conditioned bases:

• Newton polynomials

• Chebyshev polynomials

• Improve basis condition number to improve numerical behavior: Use different
polynomials to compute a basis for the same subspace.

• Simple loop unrolling gives monomial basis, e.g., 𝒴𝑘 = 𝑝𝑚, 𝐴𝑝𝑚, … , 𝐴𝑠𝑝𝑚

• Condition number can grow exponentially with 𝑠

• Recognized early on that this negatively affects convergence and accuracy
(Leland, 1989), (Chronopoulous & Swanson, 1995)

28

Better conditioned bases

29

• The Newton basis:

𝑣, 𝐴 − 𝜃1 𝑣, 𝐴 − 𝜃2 𝐴 − 𝜃1 𝑣, … , 𝐴 − 𝜃𝑠 ⋯ 𝐴 − 𝜃1 𝑣

where {𝜃1, … , 𝜃𝑠} are approximate eigenvalues of 𝐴, ordered according to Leja ordering

– In practice: recover Ritz values from the first few iterations, iteratively refine
eigenvalue estimates to improve basis

– Used by many to improve 𝑠-step variants: e.g., Bai, Hu, and Reichel (1991), Erhel
(1995), Hoemmen (2010)

Better conditioned bases

• The Newton basis:

𝑣, 𝐴 − 𝜃1 𝑣, 𝐴 − 𝜃2 𝐴 − 𝜃1 𝑣, … , 𝐴 − 𝜃𝑠 ⋯ 𝐴 − 𝜃1 𝑣

where {𝜃1, … , 𝜃𝑠} are approximate eigenvalues of 𝐴, ordered according to Leja ordering

– In practice: recover Ritz values from the first few iterations, iteratively refine
eigenvalue estimates to improve basis

– Used by many to improve 𝑠-step variants: e.g., Bai, Hu, and Reichel (1991), Erhel
(1995), Hoemmen (2010)

• Chebyshev basis: given ellipse enclosing spectrum of 𝐴 with foci at 𝑑 ± 𝑐, we can
generate the scaled and shifted Chebyshev polynomials as:

 𝜏𝑗 𝑧 = 𝜏𝑗
𝑑−𝑧

𝑐
𝜏𝑗

𝑑

𝑐

where 𝜏𝑗 𝑗≥0
are the Chebyshev polynomials of the first kind

– In practice: estimate 𝑑 and 𝑐 parameters from Ritz values recovered from the first
few iterations

– Used by many to improve 𝑠-step variants: e.g., de Sturler (1991), Joubert and
Carey (1992), de Sturler and van der Vorst (1995)

29

"Backwards-like" analysis of Greenbaum

• Anne Greenbaum (1989): finite precision CG with matrix 𝐴 behaves like
exact CG run on a larger matrix 𝐴 whose eigenvalues lie in tight clusters
around the eigenvalues of 𝐴

30

"Backwards-like" analysis of Greenbaum

• Anne Greenbaum (1989): finite precision CG with matrix 𝐴 behaves like
exact CG run on a larger matrix 𝐴 whose eigenvalues lie in tight clusters
around the eigenvalues of 𝐴

• Based on work of Chris Paige for finite precision Lanczos (1976, 1980):

• Complete rounding error analysis

• Computed eigenvalues lie between extreme eigenvalues of A to within a
small multiple of machine precision

• At least one small interval containing an eigenvalue of A is found by
the Nth iteration

• The algorithm behaves as if it used full reorthogonalization until a close
eigenvalue approximation is found

• Loss of orthogonality among basis vectors follows a rigorous pattern
and implies that some eigenvalue approximation has converged

30

"Backwards-like" analysis of Greenbaum

• Anne Greenbaum (1989): finite precision CG with matrix 𝐴 behaves like
exact CG run on a larger matrix 𝐴 whose eigenvalues lie in tight clusters
around the eigenvalues of 𝐴

• Based on work of Chris Paige for finite precision Lanczos (1976, 1980):

• Complete rounding error analysis

• Computed eigenvalues lie between extreme eigenvalues of A to within a
small multiple of machine precision

• At least one small interval containing an eigenvalue of A is found by
the Nth iteration

• The algorithm behaves as if it used full reorthogonalization until a close
eigenvalue approximation is found

• Loss of orthogonality among basis vectors follows a rigorous pattern
and implies that some eigenvalue approximation has converged

• Can we make similar statements for HPC variants?

30

Roundoff Error in Lanczos vs. s-step Lanczos

Finite precision Lanczos process: (𝐴 is 𝑁 × 𝑁 with at most 𝑛 nonzeros per row)

𝐴 𝑉𝑚 = 𝑉𝑚
 𝑇𝑚 + 𝛽𝑚+1 𝑣𝑚+1𝑒𝑚

𝑇 + 𝛿 𝑉𝑚

 𝑉𝑚 = 𝑣1, … , 𝑣𝑚 , 𝛿 𝑉𝑚 = 𝛿 𝑣1, … , 𝛿 𝑣𝑚 , 𝑇𝑚 =

 𝛼1
 𝛽2

 𝛽2 ⋱ ⋱

⋱ ⋱ 𝛽𝑚

 𝛽𝑚 𝛼𝑚

𝜎 ≡ 𝐴 2

𝜃𝜎 ≡ 𝐴 2

Lanczos [Paige, 1976]

𝜀0 = 𝑂 𝜀𝑁

𝜀1 = 𝑂 𝜀𝑛𝜃

31

for 𝑖 ∈ {1, … , 𝑚},
𝛿 𝑣𝑖 2 ≤ 𝜀1𝜎

 𝛽𝑖+1 𝑣𝑖
𝑇 𝑣𝑖+1 ≤ 2𝜀0𝜎

 𝑣𝑖+1
𝑇 𝑣𝑖+1 − 1 ≤ 𝜀0 2

 𝛽𝑖+1
2 + 𝛼𝑖

2 + 𝛽𝑖
2 − 𝐴 𝑣𝑖 2

2 ≤ 4𝑖 3𝜀0 + 𝜀1 𝜎2

Roundoff Error in Lanczos vs. s-step Lanczos

Finite precision Lanczos process: (𝐴 is 𝑁 × 𝑁 with at most 𝑛 nonzeros per row)

𝐴 𝑉𝑚 = 𝑉𝑚
 𝑇𝑚 + 𝛽𝑚+1 𝑣𝑚+1𝑒𝑚

𝑇 + 𝛿 𝑉𝑚

 𝑉𝑚 = 𝑣1, … , 𝑣𝑚 , 𝛿 𝑉𝑚 = 𝛿 𝑣1, … , 𝛿 𝑣𝑚 , 𝑇𝑚 =

 𝛼1
 𝛽2

 𝛽2 ⋱ ⋱

⋱ ⋱ 𝛽𝑚

 𝛽𝑚 𝛼𝑚

𝜎 ≡ 𝐴 2

𝜃𝜎 ≡ 𝐴 2

Lanczos [Paige, 1976]

𝜀0 = 𝑂 𝜀𝑁

𝜀1 = 𝑂 𝜀𝑛𝜃

for 𝑖 ∈ {1, … , 𝑚},
𝛿 𝑣𝑖 2 ≤ 𝜀1𝜎

 𝛽𝑖+1 𝑣𝑖
𝑇 𝑣𝑖+1 ≤ 2𝜀0𝜎

 𝑣𝑖+1
𝑇 𝑣𝑖+1 − 1 ≤ 𝜀0 2

 𝛽𝑖+1
2 + 𝛼𝑖

2 + 𝛽𝑖
2 − 𝐴 𝑣𝑖 2

2 ≤ 4𝑖 3𝜀0 + 𝜀1 𝜎2

s-step Lanczos [C., Demmel, 2015]:

𝜀0 = 𝑂 𝜀𝑁𝚪𝟐

𝜀1 = 𝑂 𝜀𝑛𝜃𝚪

Γ = 𝑐 ⋅ max
ℓ≤𝑘

 𝒴ℓ
+ 𝒴ℓ 31

• Roundoff errors in s-step variant follow same pattern as classical variant,
but amplified by factor of Γ or Γ2

• Theoretically confirms empirical observations on importance of basis
conditioning (dating back to late ‘80s)

The amplification term

32

• Roundoff errors in s-step variant follow same pattern as classical variant,
but amplified by factor of Γ or Γ2

• Theoretically confirms empirical observations on importance of basis
conditioning (dating back to late ‘80s)

• Using the definition
Γ ≡ Γ𝑘 = max

ℓ≤𝑘
𝒴ℓ

+ ∙ 𝒴ℓ

gives simple, but loose bounds

• What we really need: 𝒴 |𝑦′| ≤ Γ 𝒴𝑦′ to hold for the computed basis 𝒴
and coordinate vector 𝑦′ in every bound.

The amplification term

32

• Roundoff errors in s-step variant follow same pattern as classical variant,
but amplified by factor of Γ or Γ2

• Theoretically confirms empirical observations on importance of basis
conditioning (dating back to late ‘80s)

• Using the definition
Γ ≡ Γ𝑘 = max

ℓ≤𝑘
𝒴ℓ

+ ∙ 𝒴ℓ

gives simple, but loose bounds

• What we really need: 𝒴 |𝑦′| ≤ Γ 𝒴𝑦′ to hold for the computed basis 𝒴
and coordinate vector 𝑦′ in every bound.

• Alternate definition of 𝚪 gives tighter bounds; requires light bookkeeping

• Example: for bounds on 𝛽𝑖+1 𝑣𝑖
𝑇 𝑣𝑖+1 and 𝑣𝑖+1

𝑇 𝑣𝑖+1 − 1 , we can use the
definition

Γ𝑘,𝑗 ≡ max
𝑥∈{ 𝑤𝑘,𝑗

′ , 𝑢𝑘,𝑗
′ , 𝑣𝑘,𝑗

′ , 𝑣𝑘,𝑗−1
′ }

 𝒴𝑘 𝑥

 𝒴𝑘𝑥

The amplification term

32

33

Problem: 2D Poisson,
𝑛 = 256,
random starting vector

 𝑣𝑖+1
𝑇 𝑣𝑖+1 − 1 ≤ 𝜀0 2

 𝛽𝑖+1 𝑣𝑖
𝑇 𝑣𝑖+1 ≤ 2𝜀0𝜎

Computed value

Bound

33

Problem: 2D Poisson,
𝑛 = 256,
random starting vector

 𝑣𝑖+1
𝑇 𝑣𝑖+1 − 1 ≤ 𝜀0 2

 𝛽𝑖+1 𝑣𝑖
𝑇 𝑣𝑖+1 ≤ 2𝜀0𝜎

Computed value

Bound
Amplification factor Γ𝑘,𝑗

2

𝒔 = 𝟒

33

Problem: 2D Poisson,
𝑛 = 256,
random starting vector

 𝑣𝑖+1
𝑇 𝑣𝑖+1 − 1 ≤ 𝜀0 2

 𝛽𝑖+1 𝑣𝑖
𝑇 𝑣𝑖+1 ≤ 2𝜀0𝜎

Computed value

Bound
Amplification factor Γ𝑘,𝑗

2

𝒔 = 𝟒

33

Problem: 2D Poisson,
𝑛 = 256,
random starting vector

Computed value

Bound
Amplification factor Γ𝑘,𝑗

2

𝒔 = 𝟖

 𝑣𝑖+1
𝑇 𝑣𝑖+1 − 1 ≤ 𝜀0 2

 𝛽𝑖+1 𝑣𝑖
𝑇 𝑣𝑖+1 ≤ 2𝜀0𝜎

𝒔 = 𝟏𝟐

Problem: 2D Poisson,
𝑛 = 256,
random starting vector

Computed value

Bound
Amplification factor Γ𝑘,𝑗

2

33

 𝑣𝑖+1
𝑇 𝑣𝑖+1 − 1 ≤ 𝜀0 2

 𝛽𝑖+1 𝑣𝑖
𝑇 𝑣𝑖+1 ≤ 2𝜀0𝜎

Γ ≤ 24𝜀 𝑁 + 11𝑠 + 15
− 1 2

≈
1

𝑁𝜀

Convergence of Ritz Values in s-step Lanczos

• All results of Paige [1980], e.g., loss of orthogonality  eigenvalue
convergence, hold for s-step Lanczos as long as

34

Γ = 𝑐 ⋅ max
ℓ≤𝑘

 𝒴ℓ
+ 𝒴ℓ

Γ ≤ 24𝜀 𝑁 + 11𝑠 + 15
− 1 2

≈
1

𝑁𝜀

Convergence of Ritz Values in s-step Lanczos

• All results of Paige [1980], e.g., loss of orthogonality  eigenvalue
convergence, hold for s-step Lanczos as long as

• Bounds on accuracy of Ritz values depend on Γ2

34

Γ = 𝑐 ⋅ max
ℓ≤𝑘

 𝒴ℓ
+ 𝒴ℓ

Convergence of Ritz Values in s-step Lanczos

• All results of Paige [1980], e.g., loss of orthogonality  eigenvalue
convergence, hold for s-step Lanczos as long as

𝜆

𝑂(𝜀𝑁3 𝐴)
Lanczos

• Bounds on accuracy of Ritz values depend on Γ2

Γ ≤ 24𝜀 𝑁 + 11𝑠 + 15
− 1 2

≈
1

𝑁𝜀

34

Γ = 𝑐 ⋅ max
ℓ≤𝑘

 𝒴ℓ
+ 𝒴ℓ

Convergence of Ritz Values in s-step Lanczos

• All results of Paige [1980], e.g., loss of orthogonality  eigenvalue
convergence, hold for s-step Lanczos as long as

𝜆

𝑂(𝜀𝑁3 𝐴)

𝑂(𝜀𝑁3 𝐴 𝚪𝟐)

Lanczos

• Bounds on accuracy of Ritz values depend on Γ2

s-step Lanczos

Γ ≤ 24𝜀 𝑁 + 11𝑠 + 15
− 1 2

≈
1

𝑁𝜀

34

Γ = 𝑐 ⋅ max
ℓ≤𝑘

 𝒴ℓ
+ 𝒴ℓ

Convergence of Ritz Values in s-step Lanczos

• All results of Paige [1980], e.g., loss of orthogonality  eigenvalue
convergence, hold for s-step Lanczos as long as

𝜆

𝑂(𝜀𝑁3 𝐴)

𝑂(𝜀𝑁3 𝐴)

Lanczos

• Bounds on accuracy of Ritz values depend on Γ2

s-step Lanczos behaves
the same numerically
as classical Lanczos

If 𝚪 ≈ 𝟏:

s-step Lanczos

Γ ≤ 24𝜀 𝑁 + 11𝑠 + 15
− 1 2

≈
1

𝑁𝜀

34

Γ = 𝑐 ⋅ max
ℓ≤𝑘

 𝒴ℓ
+ 𝒴ℓ

35

Problem: Diagonal matrix with 𝑛 = 100 with
evenly spaced eigenvalues between 𝜆𝑚𝑖𝑛 = 0.1
and 𝜆𝑚𝑎𝑥 = 100; random starting vector

Problem: Diagonal matrix with 𝑛 = 100 with
evenly spaced eigenvalues between 𝜆𝑚𝑖𝑛 = 0.1
and 𝜆𝑚𝑎𝑥 = 100; random starting vector

Top plots:

Computed Γ𝑘,𝑗
2

24(𝜀(𝑛 + 11𝑠 + 15) −1

𝒔 = 𝟐

monomial basis Chebyshev basis

35

Problem: Diagonal matrix with 𝑛 = 100 with
evenly spaced eigenvalues between 𝜆𝑚𝑖𝑛 = 0.1
and 𝜆𝑚𝑎𝑥 = 100; random starting vector

Top plots:

Computed Γ𝑘,𝑗
2

24(𝜀(𝑛 + 11𝑠 + 15) −1

Bottom Plots:

𝒔 = 𝟐

Computed Ritz values True eigenvalues

Bounds on range of computed Ritz values

monomial basis Chebyshev basis

35

𝒔 = 𝟒

Bottom Plots:

Problem: Diagonal matrix with 𝑛 = 100 with
evenly spaced eigenvalues between 𝜆𝑚𝑖𝑛 = 0.1
and 𝜆𝑚𝑎𝑥 = 100; random starting vector

Top plots:

Computed Ritz values True eigenvalues

Bounds on range of computed Ritz values

Computed Γ𝑘,𝑗
2

24(𝜀(𝑛 + 11𝑠 + 15) −1

monomial basis Chebyshev basis

35

𝒔 = 𝟏𝟐

Bottom Plots:

Problem: Diagonal matrix with 𝑛 = 100 with
evenly spaced eigenvalues between 𝜆𝑚𝑖𝑛 = 0.1
and 𝜆𝑚𝑎𝑥 = 100; random starting vector

Top plots:

Computed Ritz values True eigenvalues

Bounds on range of computed Ritz values

Computed Γ𝑘,𝑗
2

24(𝜀(𝑛 + 11𝑠 + 15) −1

monomial basis Chebyshev basis

35

Problem: Diagonal matrix with 𝑛 = 100 with evenly spaced eigenvalues between
𝜆𝑚𝑖𝑛 = 0.1 and 𝜆𝑚𝑎𝑥 = 100; random starting vector

max
𝑖

|𝑧𝑖
𝑚 𝑇

 𝑣𝑚+1|

min
𝑖

 𝛽𝑚+1𝜂𝑚,𝑖
(𝑚)

classical Lanczos s-step Lanczos, monomial basis, 𝑠 = 2

Γ ≤ 7 × 102

Measure of loss
of orthogonality

Measure of Ritz
value convergence 36

Problem: Diagonal matrix with 𝑛 = 100 with evenly spaced eigenvalues between
𝜆𝑚𝑖𝑛 = 0.1 and 𝜆𝑚𝑎𝑥 = 100; random starting vector

max
𝑖

|𝑧𝑖
𝑚 𝑇

 𝑣𝑚+1|

min
𝑖

 𝛽𝑚+1𝜂𝑚,𝑖
(𝑚)

classical Lanczos s-step Lanczos, monomial basis, 𝑠 = 4

Γ ≤ 3 × 103

Measure of loss
of orthogonality

Measure of Ritz
value convergence 36

Problem: Diagonal matrix with 𝑛 = 100 with evenly spaced eigenvalues between
𝜆𝑚𝑖𝑛 = 0.1 and 𝜆𝑚𝑎𝑥 = 100; random starting vector

max
𝑖

|𝑧𝑖
𝑚 𝑇

 𝑣𝑚+1|

min
𝑖

 𝛽𝑚+1𝜂𝑚,𝑖
(𝑚)

classical Lanczos s-step Lanczos, monomial basis, 𝑠 = 8

Γ ≤ 2 × 106

Measure of loss
of orthogonality

Measure of Ritz
value convergence 36

Problem: Diagonal matrix with 𝑛 = 100 with evenly spaced eigenvalues between
𝜆𝑚𝑖𝑛 = 0.1 and 𝜆𝑚𝑎𝑥 = 100; random starting vector

max
𝑖

|𝑧𝑖
𝑚 𝑇

 𝑣𝑚+1|

min
𝑖

 𝛽𝑚+1𝜂𝑚,𝑖
(𝑚)

classical Lanczos s-step Lanczos, Chebyshev basis, 𝑠 = 8

Γ ≤ 2 × 103

Measure of loss
of orthogonality

Measure of Ritz
value convergence 36

Towards understanding convergence delay

• Coefficients α and 𝛽 (related to entries of 𝑇𝑖) determine distribution functions
𝜔 𝑖 𝜆 which approximate distribution function 𝜔(𝜆) determined by inputs 𝐴, 𝑏, 𝑥0
in terms of the 𝑖th Gauss-Christoffel quadrature

• CG method = matrix formulation of Gauss-Christoffel quadrature (see, e.g., [Liesen
& Strakoš, 2013])

• A-norm of CG error for 𝑓 𝜆 = 𝜆−1 given as scaled quadrature error

 𝜆−1𝑑𝜔 𝜆 =

ℓ=1

𝑖

𝜔ℓ
(𝑖)

𝜃ℓ
𝑖

−1
+

𝑥 − 𝑥𝑖 𝐴
2

𝑟0
2

37

Towards understanding convergence delay

• Coefficients α and 𝛽 (related to entries of 𝑇𝑖) determine distribution functions
𝜔 𝑖 𝜆 which approximate distribution function 𝜔(𝜆) determined by inputs 𝐴, 𝑏, 𝑥0
in terms of the 𝑖th Gauss-Christoffel quadrature

• CG method = matrix formulation of Gauss-Christoffel quadrature (see, e.g., [Liesen
& Strakoš, 2013])

• A-norm of CG error for 𝑓 𝜆 = 𝜆−1 given as scaled quadrature error

 𝜆−1𝑑𝜔 𝜆 =

ℓ=1

𝑖

𝜔ℓ
(𝑖)

𝜃ℓ
𝑖

−1
+

𝑥 − 𝑥𝑖 𝐴
2

𝑟0
2

• For particular CG implementation, can the computed 𝜔 𝑖 (𝜆) be associated with
some distribution function 𝜔(𝜆) related to the distribution function 𝜔(𝜆), i.e.,

 𝜆−1𝑑𝜔 𝜆 ≈ 𝜆−1𝑑 𝜔 𝜆 =

ℓ=1

𝑖

 𝜔ℓ
𝑖 𝜃ℓ

𝑖
−1

+
𝑥 − 𝑥𝑖 𝐴

2

𝑟0
2

+ 𝐹𝑖

where 𝐹𝑖 is small relative to error term?

37

Towards understanding convergence delay

• Coefficients α and 𝛽 (related to entries of 𝑇𝑖) determine distribution functions
𝜔 𝑖 𝜆 which approximate distribution function 𝜔(𝜆) determined by inputs 𝐴, 𝑏, 𝑥0
in terms of the 𝑖th Gauss-Christoffel quadrature

• CG method = matrix formulation of Gauss-Christoffel quadrature (see, e.g., [Liesen
& Strakoš, 2013])

• A-norm of CG error for 𝑓 𝜆 = 𝜆−1 given as scaled quadrature error

 𝜆−1𝑑𝜔 𝜆 =

ℓ=1

𝑖

𝜔ℓ
(𝑖)

𝜃ℓ
𝑖

−1
+

𝑥 − 𝑥𝑖 𝐴
2

𝑟0
2

• For particular CG implementation, can the computed 𝜔 𝑖 (𝜆) be associated with
some distribution function 𝜔(𝜆) related to the distribution function 𝜔(𝜆), i.e.,

 𝜆−1𝑑𝜔 𝜆 ≈ 𝜆−1𝑑 𝜔 𝜆 =

ℓ=1

𝑖

 𝜔ℓ
𝑖 𝜃ℓ

𝑖
−1

+
𝑥 − 𝑥𝑖 𝐴

2

𝑟0
2

+ 𝐹𝑖

where 𝐹𝑖 is small relative to error term?

• For classical CG, yes; proved by Greenbaum [1989]

37

Towards understanding convergence delay

• Coefficients α and 𝛽 (related to entries of 𝑇𝑖) determine distribution functions
𝜔 𝑖 𝜆 which approximate distribution function 𝜔(𝜆) determined by inputs 𝐴, 𝑏, 𝑥0
in terms of the 𝑖th Gauss-Christoffel quadrature

• CG method = matrix formulation of Gauss-Christoffel quadrature (see, e.g., [Liesen
& Strakoš, 2013])

• A-norm of CG error for 𝑓 𝜆 = 𝜆−1 given as scaled quadrature error

 𝜆−1𝑑𝜔 𝜆 =

ℓ=1

𝑖

𝜔ℓ
(𝑖)

𝜃ℓ
𝑖

−1
+

𝑥 − 𝑥𝑖 𝐴
2

𝑟0
2

• For particular CG implementation, can the computed 𝜔 𝑖 (𝜆) be associated with
some distribution function 𝜔(𝜆) related to the distribution function 𝜔(𝜆), i.e.,

 𝜆−1𝑑𝜔 𝜆 ≈ 𝜆−1𝑑 𝜔 𝜆 =

ℓ=1

𝑖

 𝜔ℓ
𝑖 𝜃ℓ

𝑖
−1

+
𝑥 − 𝑥𝑖 𝐴

2

𝑟0
2

+ 𝐹𝑖

where 𝐹𝑖 is small relative to error term?

• For classical CG, yes; proved by Greenbaum [1989]

• For pipelined CG and s-step CG, THOROUGH ANALYSIS NEEDED!

37

(matrix bcsstk03)

Differences in entries 𝛾𝑖 , 𝛿𝑖 in Jacobi matrices 𝑇𝑖 in HSCG vs. GVCG

see [C., Rozložník, Strakoš, Tichý, Tůma, 2018]
38

*

o
x

eigenvalues of 𝐴

eigenvalues of 𝑇400, HSCG

eigenvalues of 𝑇400, GVCG

value

fr
eq

u
en

cy

see [C., Rozložník, Strakoš, Tichý, Tůma, 2018]
39

A different problem...

𝐴: nos4 from UFSMC,
𝑏: equal components in the eigenbasis

of 𝐴 and 𝑏 = 1
𝑁 = 100, 𝜅 𝐴 ≈ 2e3

40

A different problem...

𝐴: nos4 from UFSMC,
𝑏: equal components in the eigenbasis

of 𝐴 and 𝑏 = 1
𝑁 = 100, 𝜅 𝐴 ≈ 2e3

40

A different problem...

𝐴: nos4 from UFSMC,
𝑏: equal components in the eigenbasis

of 𝐴 and 𝑏 = 1
𝑁 = 100, 𝜅 𝐴 ≈ 2e3

40

A different problem...

𝐴: nos4 from UFSMC,
𝑏: equal components in the eigenbasis

of 𝐴 and 𝑏 = 1
𝑁 = 100, 𝜅 𝐴 ≈ 2e3

A different problem...

𝐴: nos4 from UFSMC,
𝑏: equal components in the eigenbasis

of 𝐴 and 𝑏 = 1
𝑁 = 100, 𝜅 𝐴 ≈ 2e3

If application only requires
𝑥 − 𝑥𝑖 𝐴 ≤ 10−10,

any of these methods will work!

A different problem...

𝐴: nos4 from UFSMC,
𝑏: equal components in the eigenbasis

of 𝐴 and 𝑏 = 1
𝑁 = 100, 𝜅 𝐴 ≈ 2e3

If application only requires
𝑥 − 𝑥𝑖 𝐴 ≤ 10−10,

any of these methods will work!

Need adaptive, problem-dependent approach based
on understanding of finite precision behavior!

Summary

• Finite precision errors cause loss of attainable accuracy and convergence
delay

• In classical CG, attainable accuracy limited only by sum of local rounding
errors

• In pipelined CG, sum of many different local rounding errors can be
(globally!) amplified

• Amplification depends on CG recurrence coefficients 𝛼 and 𝛽

• Not much to do except try to decrease local errors (e.g., by
stabilizing shifts)

• In s-step CG, local rounding errors in each outer loop are amplified by a
factor related to the condition number of the generated s-step basis matrix

• Amplification effects are still "local" within an outer loop (block of s
iterations)

• Suggests that basis condition number plays a huge role

• More difficult to precisely characterize convergence delay; further work
needed

42

s-step CG Convergence, s = 4 s-step CG Convergence, s = 8

s-step CG Convergence, s = 16
CG true
CG updated
s-step CG (monomial) true
s-step CG (monomial) updated
s-step CG (Newton) true
s-step CG (Newton) updated
s-step CG (Chebyshev) true
s-step CG (Chebyshev) updated

Model Problem: 2D Poisson (5-pt stencil),
𝑛 = 5122, 𝑁 ≈ 106, 𝜅 𝐴 ≈ 104

𝑏 = 𝐴(1 𝑛 ⋅ ones 𝑛, 1)

Better basis
choice allows

higher s values

s-step CG Convergence, s = 4 s-step CG Convergence, s = 8

s-step CG Convergence, s = 16
CG true
CG updated
s-step CG (monomial) true
s-step CG (monomial) updated
s-step CG (Newton) true
s-step CG (Newton) updated
s-step CG (Chebyshev) true
s-step CG (Chebyshev) updated

Model Problem: 2D Poisson (5-pt stencil),
𝑛 = 5122, 𝑁 ≈ 106, 𝜅 𝐴 ≈ 104

𝑏 = 𝐴(1 𝑛 ⋅ ones 𝑛, 1)

Better basis
choice allows

higher s values

s-step CG Convergence, s = 4 s-step CG Convergence, s = 8

s-step CG Convergence, s = 16

But can still see loss of
accuracy/convergence

delay

CG true
CG updated
s-step CG (monomial) true
s-step CG (monomial) updated
s-step CG (Newton) true
s-step CG (Newton) updated
s-step CG (Chebyshev) true
s-step CG (Chebyshev) updated

Model Problem: 2D Poisson (5-pt stencil),
𝑛 = 5122, 𝑁 ≈ 106, 𝜅 𝐴 ≈ 104

𝑏 = 𝐴(1 𝑛 ⋅ ones 𝑛, 1)

Residual replacement strategy

• Improve accuracy by replacing computed residual 𝑟𝒊 by the true residual

𝒃 − 𝑨 𝑥𝒊 in certain iterations

• Related work for classical CG: van der Vorst and Ye (1999)

44

Residual replacement strategy

• Improve accuracy by replacing computed residual 𝑟𝒊 by the true residual

𝒃 − 𝑨 𝑥𝒊 in certain iterations

• Related work for classical CG: van der Vorst and Ye (1999)

44

• Choose when to replace 𝑟𝑖 with 𝑏 − 𝐴 𝑥𝑖 to meet two constraints:

1. 𝑓𝑖 = 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖 is small (relative to 𝜀𝑁 𝐴 𝑥𝑚+1)

2. Convergence rate is maintained (avoid large perturbations to finite

precision CG recurrence)

Residual replacement strategy

• Improve accuracy by replacing computed residual 𝑟𝒊 by the true residual

𝒃 − 𝑨 𝑥𝒊 in certain iterations

• Related work for classical CG: van der Vorst and Ye (1999)

44

• Based on derived bound on deviation of residuals, can devise a residual
replacement strategy for s-step CG

• Choose when to replace 𝑟𝑖 with 𝑏 − 𝐴 𝑥𝑖 to meet two constraints:

1. 𝑓𝑖 = 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖 is small (relative to 𝜀𝑁 𝐴 𝑥𝑚+1)

2. Convergence rate is maintained (avoid large perturbations to finite

precision CG recurrence)

• Implementation has negligible cost

Residual replacement for s-step CG

• Use computable bound for 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖 to update 𝑑𝑖, an estimate of error
in computing 𝑟𝑖, in each iteration

• Set threshold 𝜀 ≈ 𝜀, replace whenever 𝑑𝑖/ 𝑟𝑖 reaches threshold

45

if 𝑑𝑖−1 ≤ 𝜀 𝑟𝑖−1 𝐚𝐧𝐝 𝑑𝑖 > 𝜀 𝑟𝑖 𝐚𝐧𝐝 𝑑𝑖 > 1.1𝑑𝑖𝑛𝑖𝑡

𝑧 = 𝑧 + 𝒴𝑘 𝑥𝑘,𝑗
′ + 𝑥𝑠𝑘

𝑥𝑖 = 0
𝑟𝑖 = 𝑏 − 𝐴𝑧

𝑑𝑖𝑛𝑖𝑡 = 𝑑𝑖= 𝜀 1 + 2𝑁′ 𝐴 𝑧 + 𝑟𝑖
𝑝𝑖 = 𝒴𝑘𝑝𝑘,𝑗

′

break from inner loop and begin new outer loop

end

Residual replacement for s-step CG

• Use computable bound for 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖 to update 𝑑𝑖, an estimate of error
in computing 𝑟𝑖, in each iteration

• Set threshold 𝜀 ≈ 𝜀, replace whenever 𝑑𝑖/ 𝑟𝑖 reaches threshold

45

Pseudo-code for residual replacement with group update for s-step CG:

if 𝑑𝑖−1 ≤ 𝜀 𝑟𝑖−1 𝐚𝐧𝐝 𝑑𝑖 > 𝜀 𝑟𝑖 𝐚𝐧𝐝 𝑑𝑖 > 1.1𝑑𝑖𝑛𝑖𝑡

𝑧 = 𝑧 + 𝒴𝑘 𝑥𝑘,𝑗
′ + 𝑥𝑠𝑘

𝑥𝑖 = 0
𝑟𝑖 = 𝑏 − 𝐴𝑧

𝑑𝑖𝑛𝑖𝑡 = 𝑑𝑖= 𝜀 1 + 2𝑁′ 𝐴 𝑧 + 𝑟𝑖
𝑝𝑖 = 𝒴𝑘𝑝𝑘,𝑗

′

break from inner loop and begin new outer loop

end

Residual replacement for s-step CG

• Use computable bound for 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖 to update 𝑑𝑖, an estimate of error
in computing 𝑟𝑖, in each iteration

• Set threshold 𝜀 ≈ 𝜀, replace whenever 𝑑𝑖/ 𝑟𝑖 reaches threshold

45

Pseudo-code for residual replacement with group update for s-step CG:

group update of approximate solution

if 𝑑𝑖−1 ≤ 𝜀 𝑟𝑖−1 𝐚𝐧𝐝 𝑑𝑖 > 𝜀 𝑟𝑖 𝐚𝐧𝐝 𝑑𝑖 > 1.1𝑑𝑖𝑛𝑖𝑡

𝑧 = 𝑧 + 𝒴𝑘 𝑥𝑘,𝑗
′ + 𝑥𝑠𝑘

𝑥𝑖 = 0
𝑟𝑖 = 𝑏 − 𝐴𝑧

𝑑𝑖𝑛𝑖𝑡 = 𝑑𝑖= 𝜀 1 + 2𝑁′ 𝐴 𝑧 + 𝑟𝑖
𝑝𝑖 = 𝒴𝑘𝑝𝑘,𝑗

′

break from inner loop and begin new outer loop

end

Residual replacement for s-step CG

• Use computable bound for 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖 to update 𝑑𝑖, an estimate of error
in computing 𝑟𝑖, in each iteration

• Set threshold 𝜀 ≈ 𝜀, replace whenever 𝑑𝑖/ 𝑟𝑖 reaches threshold

45

Pseudo-code for residual replacement with group update for s-step CG:

group update of approximate solution

set residual to true residual

if 𝑑𝑖−1 ≤ 𝜀 𝑟𝑖−1 𝐚𝐧𝐝 𝑑𝑖 > 𝜀 𝑟𝑖 𝐚𝐧𝐝 𝑑𝑖 > 1.1𝑑𝑖𝑛𝑖𝑡

𝑧 = 𝑧 + 𝒴𝑘 𝑥𝑘,𝑗
′ + 𝑥𝑠𝑘

𝑥𝑖 = 0
𝑟𝑖 = 𝑏 − 𝐴𝑧

𝑑𝑖𝑛𝑖𝑡 = 𝑑𝑖= 𝜀 1 + 2𝑁′ 𝐴 𝑧 + 𝑟𝑖
𝑝𝑖 = 𝒴𝑘𝑝𝑘,𝑗

′

break from inner loop and begin new outer loop

end

Residual replacement for s-step CG

• Use computable bound for 𝑏 − 𝐴 𝑥𝑖 − 𝑟𝑖 to update 𝑑𝑖, an estimate of error
in computing 𝑟𝑖, in each iteration

• Set threshold 𝜀 ≈ 𝜀, replace whenever 𝑑𝑖/ 𝑟𝑖 reaches threshold

45

Pseudo-code for residual replacement with group update for s-step CG:

group update of approximate solution

set residual to true residual

• In each iteration, update error estimate 𝑑𝑖 (𝑖 ≡ 𝑠𝑘 + 𝑗) by:

A computable bound

o.w.

𝑗 = 𝑠

where 𝑁′ = max 𝑁, 2𝑠 + 1 .

46

+𝜀
𝐴 𝑥𝑠𝑘+𝑠 + 2+2𝑁′ 𝐴 𝒴𝑘 ∙ 𝑥𝑘,𝑠

′ +𝑁′ 𝒴𝑘 ∙ 𝑟𝑘,𝑠
′ ,

0,

𝑑𝑖 ≡ 𝑑𝑖−1

+𝜀 4+𝑁′ 𝐴 𝒴𝑘 ∙ 𝑥𝑘,𝑗
′ + 𝒴𝑘 ∙ ℬ𝑘 ∙ 𝑥𝑘,𝑗

′ + 𝒴𝑘 ∙ 𝑟𝑘,𝑗
′

• In each iteration, update error estimate 𝑑𝑖 (𝑖 ≡ 𝑠𝑘 + 𝑗) by:

A computable bound

o.w.

𝑗 = 𝑠

where 𝑁′ = max 𝑁, 2𝑠 + 1 .

46

+𝜀
𝐴 𝑥𝑠𝑘+𝑠 + 2+2𝑁′ 𝐴 𝒴𝑘 ∙ 𝑥𝑘,𝑠

′ +𝑁′ 𝒴𝑘 ∙ 𝑟𝑘,𝑠
′ ,

0,

𝑑𝑖 ≡ 𝑑𝑖−1

+𝜀 4+𝑁′ 𝐴 𝒴𝑘 ∙ 𝑥𝑘,𝑗
′ + 𝒴𝑘 ∙ ℬ𝑘 ∙ 𝑥𝑘,𝑗

′ + 𝒴𝑘 ∙ 𝑟𝑘,𝑗
′

Estimated only once

• In each iteration, update error estimate 𝑑𝑖 (𝑖 ≡ 𝑠𝑘 + 𝑗) by:

A computable bound

o.w.

𝑗 = 𝑠

where 𝑁′ = max 𝑁, 2𝑠 + 1 .

46

+𝜀
𝐴 𝑥𝑠𝑘+𝑠 + 2+2𝑁′ 𝐴 𝒴𝑘 ∙ 𝑥𝑘,𝑠

′ +𝑁′ 𝒴𝑘 ∙ 𝑟𝑘,𝑠
′ ,

0,

𝑑𝑖 ≡ 𝑑𝑖−1

+𝜀 4+𝑁′ 𝐴 𝒴𝑘 ∙ 𝑥𝑘,𝑗
′ + 𝒴𝑘 ∙ ℬ𝑘 ∙ 𝑥𝑘,𝑗

′ + 𝒴𝑘 ∙ 𝑟𝑘,𝑗
′

𝑶(𝒔𝟑) flops per 𝒔 iterations; ≤1 reduction per 𝒔 iterations

to compute 𝓨𝒌
𝑻 𝓨𝒌

• In each iteration, update error estimate 𝑑𝑖 (𝑖 ≡ 𝑠𝑘 + 𝑗) by:

A computable bound

o.w.

𝑗 = 𝑠

where 𝑁′ = max 𝑁, 2𝑠 + 1 .

46

+𝜀
𝐴 𝑥𝑠𝑘+𝑠 + 2+2𝑁′ 𝐴 𝒴𝑘 ∙ 𝑥𝑘,𝑠

′ +𝑁′ 𝒴𝑘 ∙ 𝑟𝑘,𝑠
′ ,

0,

𝑑𝑖 ≡ 𝑑𝑖−1

+𝜀 4+𝑁′ 𝐴 𝒴𝑘 ∙ 𝑥𝑘,𝑗
′ + 𝒴𝑘 ∙ ℬ𝑘 ∙ 𝑥𝑘,𝑗

′ + 𝒴𝑘 ∙ 𝑟𝑘,𝑗
′

𝑶(𝒔𝟐) flops per 𝒔 iterations; no communication

• In each iteration, update error estimate 𝑑𝑖 (𝑖 ≡ 𝑠𝑘 + 𝑗) by:

A computable bound

o.w.

𝑗 = 𝑠

where 𝑁′ = max 𝑁, 2𝑠 + 1 .

Extra computation all lower order terms, communication only
increased by at most factor of 2

46

+𝜀
𝐴 𝑥𝑠𝑘+𝑠 + 2+2𝑁′ 𝐴 𝒴𝑘 ∙ 𝑥𝑘,𝑠

′ +𝑁′ 𝒴𝑘 ∙ 𝑟𝑘,𝑠
′ ,

0,

𝑑𝑖 ≡ 𝑑𝑖−1

+𝜀 4+𝑁′ 𝐴 𝒴𝑘 ∙ 𝑥𝑘,𝑗
′ + 𝒴𝑘 ∙ ℬ𝑘 ∙ 𝑥𝑘,𝑗

′ + 𝒴𝑘 ∙ 𝑟𝑘,𝑗
′

s-step CG Convergence, s = 4 s-step CG Convergence, s = 8

s-step CG Convergence, s = 16
CG true
CG updated
s-step CG (monomial) true
s-step CG (monomial) updated
s-step CG (Newton) true
s-step CG (Newton) updated
s-step CG (Chebyshev) true
s-step CG (Chebyshev) updated

Model Problem: 2D Poisson (5-pt stencil),
𝑛 = 5122, 𝑁 ≈ 106, 𝜅 𝐴 ≈ 104

𝑏 = 𝐴(1 𝑛 ⋅ ones 𝑛, 1)

s-step CG Convergence, s = 4 s-step CG Convergence, s = 8

s-step CG Convergence, s = 16
CG+RR true
CG+RR updated
s-step CG+RR (monomial) true
s-step CG+RR (monomial) updated
s-step CG+RR (Newton) true
s-step CG+RR (Newton) updated
s-step CG+RR(Chebyshev) true
s-step CG+RR(Chebyshev) updated

Model Problem: 2D Poisson (5-pt stencil),
𝑛 = 5122, 𝑁 ≈ 106, 𝜅 𝐴 ≈ 104

𝑏 = 𝐴(1 𝑛 ⋅ ones 𝑛, 1)

s-step CG Convergence, s = 4 s-step CG Convergence, s = 8

s-step CG Convergence, s = 16
CG+RR true
CG+RR updated
s-step CG+RR (monomial) true
s-step CG+RR (monomial) updated
s-step CG+RR (Newton) true
s-step CG+RR (Newton) updated
s-step CG+RR(Chebyshev) true
s-step CG+RR(Chebyshev) updated

Residual Replacement
can improve accuracy
orders of magnitude

for negligible cost

Maximum
replacement steps
(extra reductions)

for any test: 8

Model Problem: 2D Poisson (5-pt stencil),
𝑛 = 5122, 𝑁 ≈ 106, 𝜅 𝐴 ≈ 104

𝑏 = 𝐴(1 𝑛 ⋅ ones 𝑛, 1)

Pipelined CG with residual replacement

Similar approach possible for pipelined CG; see (Cools et al., 2018)

48

20 nodes (two 6-core Intel Xeon X5660 Nehalem 2:80-GHz processors per node),
2D Poisson problem with 1e6 unknowns;
in pipelined CG with residual replacement, 39 replacements were performed.

Pipelined CG with residual replacement

Similar approach possible for pipelined CG; see (Cools et al., 2018)

48

20 nodes (two 6-core Intel Xeon X5660 Nehalem 2:80-GHz processors per node),
2D Poisson problem with 1e6 unknowns;
in pipelined CG with residual replacement, 39 replacements were performed.

• Consider the growth of the relative residual gap caused by errors in outer loop
𝑘, which begins with global iteration number 𝑚

Adaptive s-step CG

49

• Consider the growth of the relative residual gap caused by errors in outer loop
𝑘, which begins with global iteration number 𝑚

• We can approximate an upper bound on this quantity by

𝑓𝑚+𝑠 − 𝑓𝑚
𝐴 𝑥

≲ 𝜀 1 + 𝜅 𝐴 Γ𝑘

max
𝑗∈{0,…,𝑠}

 𝑟𝑚+𝑗

𝐴 𝑥

Adaptive s-step CG

𝑓𝑖 ≡ 𝑏−𝐴 𝑥𝑖− 𝑟𝑖

49

• Consider the growth of the relative residual gap caused by errors in outer loop
𝑘, which begins with global iteration number 𝑚

• We can approximate an upper bound on this quantity by

𝑓𝑚+𝑠 − 𝑓𝑚
𝐴 𝑥

≲ 𝜀 1 + 𝜅 𝐴 Γ𝑘

max
𝑗∈{0,…,𝑠}

 𝑟𝑚+𝑗

𝐴 𝑥

• If our application requires relative accuracy 𝜀∗, we must have

Γ𝑘 ≡ 𝑐 ⋅ 𝒴𝑘
+ 𝒴𝑘 ≲

𝜀∗

𝜀 max
𝑗∈{0,…,𝑠}

 𝑟𝑚+𝑗

Adaptive s-step CG

𝑓𝑖 ≡ 𝑏−𝐴 𝑥𝑖− 𝑟𝑖

49

• Consider the growth of the relative residual gap caused by errors in outer loop
𝑘, which begins with global iteration number 𝑚

• We can approximate an upper bound on this quantity by

𝑓𝑚+𝑠 − 𝑓𝑚
𝐴 𝑥

≲ 𝜀 1 + 𝜅 𝐴 Γ𝑘

max
𝑗∈{0,…,𝑠}

 𝑟𝑚+𝑗

𝐴 𝑥

• If our application requires relative accuracy 𝜀∗, we must have

Γ𝑘 ≡ 𝑐 ⋅ 𝒴𝑘
+ 𝒴𝑘 ≲

𝜀∗

𝜀 max
𝑗∈{0,…,𝑠}

 𝑟𝑚+𝑗

• 𝑟𝑖 large → Γ𝑘 must be small; 𝑟𝑖 small → Γ𝑘 can grow

Adaptive s-step CG

𝑓𝑖 ≡ 𝑏−𝐴 𝑥𝑖− 𝑟𝑖

49

• Consider the growth of the relative residual gap caused by errors in outer loop
𝑘, which begins with global iteration number 𝑚

• We can approximate an upper bound on this quantity by

𝑓𝑚+𝑠 − 𝑓𝑚
𝐴 𝑥

≲ 𝜀 1 + 𝜅 𝐴 Γ𝑘

max
𝑗∈{0,…,𝑠}

 𝑟𝑚+𝑗

𝐴 𝑥

• If our application requires relative accuracy 𝜀∗, we must have

Γ𝑘 ≡ 𝑐 ⋅ 𝒴𝑘
+ 𝒴𝑘 ≲

𝜀∗

𝜀 max
𝑗∈{0,…,𝑠}

 𝑟𝑚+𝑗

• 𝑟𝑖 large → Γ𝑘 must be small; 𝑟𝑖 small → Γ𝑘 can grow

⇒ adaptive s-step approach [C., 2018]

• 𝑠 starts off small, increases at rate depending on 𝑟𝑖 and 𝜀∗

Adaptive s-step CG

𝑓𝑖 ≡ 𝑏−𝐴 𝑥𝑖− 𝑟𝑖

49

mesh3e1 (SuiteSparse)
𝑛 = 289
𝜅 𝐴 ≈ 10

𝑏𝑖 = 1/ 𝑁

s-step CG

adpt. s-step CG

CG

Adaptive s-step CG

50

mesh3e1 (SuiteSparse)
𝑛 = 289
𝜅 𝐴 ≈ 10

𝑏𝑖 = 1/ 𝑁

Adaptive s-step CG

s-step CG

adpt. s-step CG

CG

50

Extensions to adaptive s-step CG

• Method of Meurant and Tichý (2018) for cheap approximation of extremal
Ritz values

• Uses Cholesky factors of Lanczos tridiagonal 𝑇𝑖, 𝑇𝑖 = 𝐿𝑖𝐿𝑖
𝑇

• Use 𝛼 and 𝛽 computed during each iteration to incrementally update

estimates of 𝐿𝑖 2
2 = 𝜆𝑚𝑎𝑥 𝑇𝑖 ≈ 𝜆𝑚𝑎𝑥(𝐴), 𝐿𝑖

−1
2

−2
= 𝜆𝑚𝑖𝑛 𝑇𝑖 ≈

𝜆𝑚𝑖𝑛(𝐴)

• Essentially no extra work, no extra communication

51

Extensions to adaptive s-step CG

• Method of Meurant and Tichý (2018) for cheap approximation of extremal
Ritz values

• Uses Cholesky factors of Lanczos tridiagonal 𝑇𝑖, 𝑇𝑖 = 𝐿𝑖𝐿𝑖
𝑇

• Use 𝛼 and 𝛽 computed during each iteration to incrementally update

estimates of 𝐿𝑖 2
2 = 𝜆𝑚𝑎𝑥 𝑇𝑖 ≈ 𝜆𝑚𝑎𝑥(𝐴), 𝐿𝑖

−1
2

−2
= 𝜆𝑚𝑖𝑛 𝑇𝑖 ≈

𝜆𝑚𝑖𝑛(𝐴)

• Essentially no extra work, no extra communication

• Can be used in two ways in adaptive algorithm

1. Incrementally refine estimate of 𝜅(𝐴) (used in determining which s to
use)

2. Incrementally refine parameters used to construct Newton or
Chebyshev polynomials

51

52

Fixed s-step Old adaptive s-step
Improved adaptive s-step

w/Newton
Improved adaptive s-step

w/Chebyshev
classical CG

- 132 59 53 414

Number of global synchronizations

𝐴 = 494bus from SuiteSparse

𝑏i = 1/ 𝑁

52

Fixed s-step Old adaptive s-step
Improved adaptive s-step

w/Newton
Improved adaptive s-step

w/Chebyshev
classical CG

111 111 43 43 407

Number of global synchronizations

𝐴 = 494bus from SuiteSparse

𝑏i = 1/ 𝑁

When to use an HPC variant

• Solve constitutes a bottleneck within the application (Amdahl's law)

53

When to use an HPC variant

• Solve constitutes a bottleneck within the application (Amdahl's law)

• Krylov solve is communication-bound (particularly latency bound due to global
synchronization)

53

When to use an HPC variant

• Solve constitutes a bottleneck within the application (Amdahl's law)

• Krylov solve is communication-bound (particularly latency bound due to global
synchronization)

• Extremal eigenvalues are known or easy to estimate

53

When to use an HPC variant

• Solve constitutes a bottleneck within the application (Amdahl's law)

• Krylov solve is communication-bound (particularly latency bound due to global
synchronization)

• Extremal eigenvalues are known or easy to estimate

• Accuracy much less than machine epsilon required by the application

53

When to use an HPC variant

• Solve constitutes a bottleneck within the application (Amdahl's law)

• Krylov solve is communication-bound (particularly latency bound due to global
synchronization)

• Extremal eigenvalues are known or easy to estimate

• Accuracy much less than machine epsilon required by the application

• s-step methods

• The matrix is well-partitioned into domains with low surface-to-volume ratio

• Simple preconditioning is sufficient/the preconditioner is amenable to
communication avoidance

• The same coefficient matrix (or at least a coefficient matrix with the same
nonzero structure) will be reused over multiple solves

• improvement even for small numbers of nodes (reduces both intra- and inter-
processor communication)

53

When to use an HPC variant

• Solve constitutes a bottleneck within the application (Amdahl's law)

• Krylov solve is communication-bound (particularly latency bound due to global
synchronization)

• Extremal eigenvalues are known or easy to estimate

• Accuracy much less than machine epsilon required by the application

• s-step methods

• The matrix is well-partitioned into domains with low surface-to-volume ratio

• Simple preconditioning is sufficient/the preconditioner is amenable to
communication avoidance

• The same coefficient matrix (or at least a coefficient matrix with the same
nonzero structure) will be reused over multiple solves

• improvement even for small numbers of nodes (reduces both intra- and inter-
processor communication)

• (deep) pipelined methods

• cost of applying preconditioner + SpMV is less than or the same as a global
synchronization

• improvement only for large numbers of nodes

53

Looking Forward

• Better understanding of finite precision behavior

• Improved usability

• More adaptivity, autotuning; less left to the user

• Hybrid methods?

• stationary iterative method + Krylov subspace method

• Fault tolerance?

• MTTF=0 on an exascale machine

• A problem to be handled at the algorithm level, or...?

• Making use of specialized hardware

• accelerators, GPUs, etc.

• multiple precisions?

• new performance model, new programming model, bigger tuning space

54

carson@karlin.mff.cuni.cz

www.karlin.mff.cuni.cz/~carson

Thank You!Thank you!

