High-Performance Variants of

Krylov Subspace Methods: 11/

Erin C. Carson

Katedra numerické matematiky, Matematicko-fyzikalni fakulta, Univerzita Karlova

SNA '19
January 21-25, 2019

This research was partially supported by OP RDE project No. CZ.02.2.69/0.0/0.0/16 _027/0008495

o EUROPEAN UNION
> ’; European Structural and Investment Funds
* *

Operational Programme Research,
Development and Education Y e T 1O,

* 4 x



Review

* Cost of data movement (relative to low computational cost) causes
bottlenecks in classical formulations of Krylov subspace methods
* Motivates various approaches
* Pipelined Krylov subspace methods

» Add auxiliary recurrences to enable decoupling of inner products
and SpMVs; can then be overlapped using non-blocking MPI

» Effectively hides the cost of synchronization in each iteration
» s-step Krylov subspace methods

* Block iterations in groups of s; use block computation of O(s) basis
vectors and block orthogonalization

* Increases temporal locality, allowing asymptotic reduction in
number of messages per iteration

* Many practical implementation details: choosing parameters,
preconditioning, etc.

* For certain (e.g., latency-bound) problems, these approaches can reduce the
time-per-iteration cost
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* Rounding errors cause true b: equal components in the eigenbasis of 4,||b|| = 1
residual b — Ax; and updated N = 112,k(A) = 7e6

residual r; deviate!

Much work on these results for CG; See Meurant and Strakos (2006) for a thorough
summary of early developments in finite precision analysis of Lanczos and CG
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To minimize runtime, must understand how modifications affect:

1) attainable accuracy 2) convergence rate 3) time per iteration
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| ecture Outline

Effects of finite precision in Krylov subspace methods

 Maximum attainable accuracy
» Convergence delay

Existing results for classical Krylov subspace methods

Results for pipelined and s-step Krylov subspace methods

Potential remedies for finite precision error in high-performance variants

Choosing a method in practice

The future of Krylov subspace methods
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Maximum attainable accuracy

 Accuracy ||x — X;|| generally not computable, but x — %; = A=Y (b — AX;)
* Size of the true residual, ||b — AX;||, used as computable measure of accuracy

* Rounding errors cause the true residual, b — AX;, and the updated residual, 7;,
to deviate

° Writing b —AjC\i = fi + b —AjC\i — fi’

b = A%l < |71l + [Ib — A%; — 7]l

* As [[%]l = 0, ||[b — AX;|| depends on ||b — A%x; — 7|

* Many results on bounding attainable accuracy, e.g.: Greenbaum (1989, 1994,
1997), Sleijpen, van der Vorst and Fokkema (1994), Sleijpen, van der Vorst
and Modersitzki (2001), Bjorck, Elfving and Strakos (1998) and Gutknecht
and Strakos (2000). ,
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Maximum attainable accuracy of HSCG

* In finite precision HSCG, iterates are updated by

N N N

X; =Xj_1+ &;_1P;—1 — Ox; and 7y =1i_1 — @j_1AD;_1 — Or;

. Let f, = b — AR, —
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1Al < 0NLAINNATH X o lIEnl Sleijpen and van der Vorst, 1995



Maximum Attainable Accuracy in HPC Variants

* Various synchronization-reducing modifications/variants discussed in Part |
» Modified recurrence coefficient computation
* 3-term CG (STCG)
» Addition of auxiliary recurrences
* Pipelined CG
* s-step methods



Modified recurrence coefficient computation

* What is the effect of changing the way the recurrence coefficients (a
and ) are computed in HSCG?

10



Modified recurrence coefficient computation

* What is the effect of changing the way the recurrence coefficients (a
and ) are computed in HSCG?

* Notice that neither a nor f appear in the bounds on ||f;]|
fi - b - A)/C\l - fi
=b—ARXi_1 + Qj_1Pi—1 — 6x;) — (fi—1 — @;_1AP;_1 — 6T1})

10



Modified recurrence coefficient computation

* What is the effect of changing the way the recurrence coefficients (a
and ) are computed in HSCG?

* Notice that neither a nor f appear in the bounds on ||f;]|
fi - b - AJ/C\l - f'i
=b—ARXi_1 + Qj_1Pi—1 — 6x;) — (fi—1 — @;_1AP;_1 — 6T1})

* As long as the same &;_ is used in updating X; and 73,
-1 l l

fi = fi—l + A5xl- + 67"i
still holds

* Rounding errors made in computing &;_; do not contribute to the
residual gap

10



Modified recurrence coefficient computation

* What is the effect of changing the way the recurrence coefficients (a
and ) are computed in HSCG?

* Notice that neither a nor f appear in the bounds on ||f;]|
fi - b - AJ/C\l - f'i
=b—ARXi_1 + Qj_1Pi—1 — 6x;) — (fi—1 — @;_1AP;_1 — 6T1})

* As long as the same &;_ is used in updating X; and 73,
-1 l l

fi = fi—l + A5xi + 67"i
still holds

* Rounding errors made in computing &;_; do not contribute to the
residual gap

* But may change computed X;, 7;, which can affect convergence rate...
10



Modified recurrence coefficient computation

Example: HSCG with modified formula for a;_4
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Attainable accuracy of STCG
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Attainable accuracy of STCG

* Analyzed by Gutknecht and Strakos (2000)

 Attainable accuracy for STCG can be much worse than for

HSCG

* Residual gap bounded by sum of local errors PLUS local errors
multiplied by factors which depend on

Ill°
J
020<%i |12

= Large residual oscillations can cause these factors to be large!

= Local errors can be amplified!

12
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Attainable accuracy of pipelined CG
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Attainable accuracy of pipelined CG

* What is the effect of adding auxiliary recurrences to the CG method?

* To isolate the effects, we consider a simplified version of a pipelined
method

o = b — Axy,po = 10,50 = Apo
for i = 1:nmax

o — (Ti—1,"i-1)
=1 (Pi-1,Si-1)
Xi = Xj_1 T+ Ai_1Pi—1

i ="7i—1 — &j—1Si—1

()
'Bl (Ti-1,7i-1)
pi =1 + Bipi-1
s; = Ary + BiSi—1

end 14




Attainable accuracy of pipelined CG

* What is the effect of adding auxiliary recurrences to the CG method?

* To isolate the effects, we consider a simplified version of a pipelined
method

* Uses same update formulas for @ and f as HSCG, but uses
additional recurrence for Ap;

o = b — Axy,po = 10,50 = APy
for i = 1:nmax

i A = (ri—1,7i—1)
=1 (Pi-1,Si-1)
Xi = Xj_1 T+ Ai_1Pi—1

ri =71 — &i-1Si-1

_ (ryry)
'Bi B (ri—1,Ti-1)
pi =71 + Bivi-1
s; = Ary + BiSi—1
end

see [C., Rozloznik, Strakos, Tichy, Ttima, 2018] 14
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Xi = Xj_1 + &;_1pi—1 + 0x; 1y =Tj—q1 — Oj_q S;—1 + O1;

fi =1 — (b —AX;)
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Attainable accuracy of simple pipelined CG

ol < 72 (ectotanled + NNl

X _ 1 B e o PiBa By

ﬁ.=<1> T o | gl LR e
l E . 1 _"i_ l . . . . L
0 .. 0 [il 0 (1) ﬁil‘l

see [C., Rozloznik, Strakos, Tichy, Ttima, 2018] 16



Attainable accuracy of simple pipelined CG
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Attainable accuracy of simple pipelined CG

16111 = 12 s CeCODIANIE + AN & 107 )
\ _ 1 p e PiBrBicd]
l7.=(1) T 0| a0 PR hefe
l E 1 _"i_ l : . . . e
b Lo b oo
T iy !

Residual oscillations can cause these factors to be large!
Errors in computed recurrence coefficients can be amplified!

Very similar to the results for attainable accuracy in the 3-term STCG
Seemingly innocuous change can cause drastic loss of accuracy
see [C., Rozloznik, Strakos, Tichy, Ttima, 2018] 16
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Simple pipelined CG
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Attainable Accuracy of Pipelined CG

(Cools, et al., 2018)
Pipelined CG uses 5 auxiliary recurrences:
s; = Ap;, q; = M~ 1Ap;, u; = M1, w; = AM ™11, z; = AM~1Ap;

Computed explicitly: m; = M~ w; (= M™AM 1), v; = Am; (= AM~ 1AM~ 1r)
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Attainable Accuracy of Pipelined CG
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Attainable Accuracy of Pipelined CG
fir =fo— ) &g — ) (A8 +5])
=0 =0

(]_[ﬁk>go Z( ﬁ Bf>(A6£—6£)+i< ﬁ f%)hk

k=1 \{=k+1 k=1 \f=k+1

k-1
— w
e = ho 2 Qe+ Z(Aaf %¢) \ Local rounding errors
£=0 all potentially
/ amplified!
4 4 4
je= | [ B Jio+ D | || Bn | (a0 = 52)
m=1 m=1 \n=m+1
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Effect of Deeper Pipelines

» Deeper pipeline -> effectively adding more auxiliary recurrences
* We expect residual gap to increase with increasing pipeline depth

* Some initial work (Cools, 2018) uses Chebyshev shifts to attempt to
stabilize (deep) pipelined CG; but increasing gap is still apparent

2D Poisson problem, N = 200, b set such that x; = 1/\/N

100 T T T T
square root
; breakdown +
10 . ici
* < explicit restart
£ %
2
=
©
2
e 10-10 cG
p-CG
p(1)-CG
p(2)-CG
p(3)-CG
p(5)-CG
10715 p(10)-CG
0 100 200 300 400 500 (Cools, 2018)
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o =b —Axg,po =19 Outer Loop
for k = 0:nmax/s

Compute Y, and B;, such that AY, = Y, By and -
— Compute basis

span(Yyi) = K1 (A, psk) + K (A, 751) O(S) SPMVs

Gk = Y'Yk
! !/ ! 2
Xo = 0,79 = €542, P0 = €1 PO(j )tln?er
roducts (one
for j = 1: o
°rJ > synchronization)
IT !
__Tj=19kTj-1
Ask+j-1 =

Pl 1GkBrDj_4

' / Inner Loo
Xj = Xj_1 T Akt j-1Pj-1 P

! !

!
T =1_q — Qsk+j-1BkPj_1

Local Vector S
Updates (no times
comm.)

IT 4

i GkTj

IT 14
Ti=19kTj-1

I /
p; =1 + Bsk+jPj-1

ﬁsk+j =

end

End Inner Loop

x — Xk, T , = Yrlxs, 75, ps
%5 (e +1) = Xsto Ts(e+1) Pser )] = Yielxs, 75, s Inner Outer Loop 22
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Sources of local roundoff error in s-step CG

Computing the s-step Krylov subspace basis:

AYyx = Y By + AYy
Updating coordinate vectors in the inner loop:

Al al A~/

Xkj = Xk j—1 T Qi j—1 + Sk,

Al _ Al Al
Tej = Tkj-1~ Br Qi j-1 t NMk,j

with (?,'{J-_l = ﬂ(@sk+j—1151’<,j—1)

Recovering CG vectors for use in next outer loop:

A _ i Al o)
Xsic+j = YrXk,j + Xsk + Dsics

Pskrj = Ylij + Wskrj
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Sources of local roundoff error in s-step CG

Computing the s-step Krylov subspace basis:

5 A P Error in computing
AYyx = YpBy + AY <

s-step basis

Updating coordinate vectors in the inner loop:

Al _al Al
Xk,j = Xk,j-1 + k,j—1 + fk,j > Error in updating
NN AT coefficient vectors
Tiej = Tkj-1~ Br G j—1 T Mk,j
. Al _ A A
with dk,j-1 = ﬂ(ask+j—1pk,j—1)
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Sources of local roundoff error in s-step CG

Computing the s-step Krylov subspace basis:

5 A P Error in computing
AYyx = YpBy + AY <

s-step basis

Updating coordinate vectors in the inner loop:

Al _al Al
Xk,j = Xk,j-1 + k,j—1 + fk,j > Error in updating
NN AT coefficient vectors
Tiej = Tkj-1~ Br G j—1 T Mk,j
. Al _ A A
with dk,j-1 = ﬂ(ask+j—1pk,j—1)

Recovering CG vectors for use in next outer loop:

A _ i Al o) H
Xsk+j = 'ykxk,j + Xgp T+ ¢sk+j Errorin

~ basis change
A _ Al
Tsk+j = YrTk,j + Psi+j
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Attainable accuracy of s-step CG

* We can write the gap between the true and updated residuals f in terms
of these errors:

fsk+j = fo
k-1 S
— z Adgprs + Popys + Z[Ayfff,i +Yenei — Ay{)%i_l]]
£=0 =1

J
—AQskyj — Yskrj — Z[A@kfk,i + Ui — AYplr i1
i=1

e Using standard rounding error results, this allows us to obtain an upper
bound on ||fsk+j||.
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Attainable accuracy of s-step CG

* We can write the gap between the true and updated residuals f in terms
of these errors:

fsk+j = fo
k-1 S
— z A¢S€+S + l/)55+5 + Z[Ay,\{f{’,i + ‘yA{’m’,i _ A(yl’qi’,i—l]]
£=0 =1

J
—AQskt+j — Ysk+j — Z[A@kfk,i + Uilrei — DAYy i1
i=1

e Using standard rounding error results, this allows us to obtain an upper
bound on ||fsk+j||.
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Attainable accuracy of s-step CG

fi — b—Ak\i—fi
For CG:

i
Il < lfoll + € Z (1 + MIAlNZ ] + 17l
m=1
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Attainable accuracy of s-step CG

fi — b—Ak\i—f'i
For CG:

i
Il < lfoll + € z (1 + M[IAlZm ]l + 17l
m=1

For s-step CG: i = sk +j
sk+j
feters| < Ufoll + 2T )" 1+ WA + 1]
m=1

where c is a low-degree polynomial in s, and

T, = T, h r, =g - [||g
e=maxte where  G=IGNGN
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s-step CG with monomial basis (Y = [p;, Ap;, ..., ASp;, 13, Ary, ... AS7113])
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s-step CG with monomial basis (Y = [p;, Ap;, ..., ASp;, 13, Ary, ... AS7113])
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Even assuming perfect parallel scalability with s (which is usually not the case due to extra
SpMVs and inner products), already at s = 4 we are worse than HSCG in terms of number

of synchronizations!

—HSCG
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s-step CG

Even assuming perfect parallel scalability with s (which is usually not the case due to extra
SpMVs and inner products), already at s = 4 we are worse than HSCG in terms of number
of synchronizations!

—HSCG
5 s-step CG, s=2

. 1077 s-step CG, s=3| ]
E s-step CG, s=4
@
©
=
S qp-10t
=
O
&
<

10'15 -

0 1000 2000 3000 4000 5000

Number of Global Synchronizations

= Can use other, more well-conditioned bases to improve convergence rate

and accuracy (see, e.g. Philippe and Reichel, 2012). .



Choosing a Polynomial Basis

* Recall: in each outer loop of s-step CG, we compute bases for some Krylov
subspaces, e.g., K.1(4,p;) = span{p;, Ap;, ..., A°p;}
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Choosing a Polynomial Basis

* Recall: in each outer loop of s-step CG, we compute bases for some Krylov
subspaces, e.g., K1 (4,p;) = span{p;, Ap;, ..., A°p;}

« Simple loop unrolling gives monomial basis, e.g., Y = [pm, APy ) A D]
« Condition number can grow exponentially with s

* Recognized early on that this negatively affects convergence and accuracy
(Leland, 1989), (Chronopoulous & Swanson, 1995)
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(Leland, 1989), (Chronopoulous & Swanson, 1995)

* Improve basis condition number to improve numerical behavior: Use different
polynomials to compute a basis for the same subspace.
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Choosing a Polynomial Basis

* Recall: in each outer loop of s-step CG, we compute bases for some Krylov
subspaces, e.g., K1 (4,p;) = span{p;, Ap;, ..., A°p;}

« Simple loop unrolling gives monomial basis, e.g., Y = [pm, APy ) A D]
« Condition number can grow exponentially with s

* Recognized early on that this negatively affects convergence and accuracy
(Leland, 1989), (Chronopoulous & Swanson, 1995)

* Improve basis condition number to improve numerical behavior: Use different
polynomials to compute a basis for the same subspace.

* Two choices based on spectral information that usually lead to well-
conditioned bases:

* Newton polynomials
* Chebyshev polynomials

28



Better conditioned bases

* The Newton basis:
fv,A-0)v,(A—-0,)(A—06v,..,(A—06,) - (A— 0V}
where {64, ..., 05} are approximate eigenvalues of A, ordered according to Leja ordering

— In practice: recover Ritz values from the first few iterations, iteratively refine
eigenvalue estimates to improve basis

— Used by many to improve s-step variants: e.g., Bai, Hu, and Reichel (1991), Erhel
(1995), Hoemmen (2010)
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Better conditioned bases

* The Newton basis:
fv,A-0)v,(A—-0,)(A—06v,..,(A—06,) - (A— 0V}
where {64, ..., 05} are approximate eigenvalues of A, ordered according to Leja ordering

— In practice: recover Ritz values from the first few iterations, iteratively refine
eigenvalue estimates to improve basis

— Used by many to improve s-step variants: e.g., Bai, Hu, and Reichel (1991), Erhel
(1995), Hoemmen (2010)

* Chebyshev basis: given ellipse enclosing spectrum of A with foci at d + ¢, we can
generate the scaled and shifted Chebyshev polynomials as:

~ d—z d
5@ =(5(%))/(= ©)
where {Tj}j>0 are the Chebyshev polynomials of the first kind

— In practice: estimate d and ¢ parameters from Ritz values recovered from the first
few iterations

— Used by many to improve s-step variants: e.g., de Sturler (1991), Joubert and
Carey (1992), de Sturler and van der Vorst (1995)
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"Backwards-like" analysis of Greenbaum

* Anne Greenbaum (1989): finite precision CG with matrix A behaves like
exact CG run on a larger matrix A whose eigenvalues lie in tight clusters
around the eigenvalues of A
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"Backwards-like" analysis of Greenbaum

* Anne Greenbaum (1989): finite precision CG with matrix A behaves like
exact CG run on a larger matrix A whose eigenvalues lie in tight clusters
around the eigenvalues of A

* Based on work of Chris Paige for finite precision Lanczos (1976, 1980):
* Complete rounding error analysis

» Computed eigenvalues lie between extreme eigenvalues of A to within a
small multiple of machine precision

» At least one small interval containing an eigenvalue of A is found by
the Nth iteration

* The algorithm behaves as if it used full reorthogonalization until a close
eigenvalue approximation is found

* Loss of orthogonality among basis vectors follows a rigorous pattern
and implies that some eigenvalue approximation has converged
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"Backwards-like" analysis of Greenbaum

* Anne Greenbaum (1989): finite precision CG with matrix A behaves like
exact CG run on a larger matrix A whose eigenvalues lie in tight clusters
around the eigenvalues of A

* Based on work of Chris Paige for finite precision Lanczos (1976, 1980):

Complete rounding error analysis

Computed eigenvalues lie between extreme eigenvalues of A to within a
small multiple of machine precision

At least one small interval containing an eigenvalue of A is found by
the Nth iteration

The algorithm behaves as if it used full reorthogonalization until a close
eigenvalue approximation is found

Loss of orthogonality among basis vectors follows a rigorous pattern
and implies that some eigenvalue approximation has converged

* Can we make similar statements for HPC variants?
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Roundoff Error in Lanczos vs. s-step Lanczos

Finite precision Lanczos process: (A is N X N with at most n nonzeros per row)

AV, = Vin T + Brns1Omer€m + 6V, )
& By
U = P10l 6% = [601,,800), Tu=|® "
. P
ﬁm &m
fori € {1,...,m},
160, < €10
s o = Al
. V: Vs < 28 o
Biva| 0 Diva | < 229 0o = |||Alll2

/\T A
|vi+1vi+1 —1|<¢&/2
B2, + &% + B? — |AD;13| < 4i(3<y + &) 02

Lanczos [Paige, 1976]
Eop = O(EN)
g1 = 0(enb)

31



Roundoff Error in Lanczos vs. s-step Lanczos

Finite precision Lanczos process: (A is N X N with at most n nonzeros per row)

AVm — Vme + ,ém+1ﬁm+1e17111 + 5I7m A
@ P
I7‘)’!7, — [vll ) ﬁm]l 51777’1 = [5ﬁlr ) Sﬁm]l Tm = ﬁz B
Bm &m
fori € {1,...,m},
167;ll; < &0
5 AT o= ||A
:Bi+1|v£rvi+1 = 2EOO- g = ”lAlllTl
~T A = 2
X |vAi+1vi+1 —1]|<¢/2
|BZ.1 + a? + B7 — IIAD|13] < 4i(Be, + &1)0?
Lanczos [Paige, 1976] s-step Lanczos [C., Demmel, 2015]:
g9 = 0(eN) g0 = 0(eNT?)
g, = 0(enb) g, = 0(endl)

= ¢ max |97 I1Gll

31



The amplification term

* Roundoff errors in s-step variant follow same pattern as classical variant,
but amplified by factor of ' or I'?

* Theoretically confirms empirical observations on importance of basis
conditioning (dating back to late ‘80s)
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The amplification term

* Roundoff errors in s-step variant follow same pattern as classical variant,
but amplified by factor of ' or I'?

* Theoretically confirms empirical observations on importance of basis
conditioning (dating back to late ‘80s)

 Using the definition
=T = max Y71 1

gives simple, but loose bounds

* What we really need: |||Y]|y'|l| < TlIYy'|l to hold for the computed basis Y
and coordinate vector y’ in every bound.
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The amplification term

* Roundoff errors in s-step variant follow same pattern as classical variant,
but amplified by factor of ' or I'?

* Theoretically confirms empirical observations on importance of basis
conditioning (dating back to late ‘80s)

* Using the definition
=1 = max Y711 1Yl
gives simple, but loose bounds

* What we really need: |||Y]|y'|l| < TlIYy'|l to hold for the computed basis Y
and coordinate vector y’ in every bound.

* Alternate definition of I' gives tighter bounds; requires light bookkeeping

. Exa_n)p_le: for bounds on ﬁi+1|ﬁfﬁi+1 | and |ﬁiT+119i+1 -1 | we can use the
definition

o |||'gk||x|||
k,] - ~ 1 Arlnazcl 1 ]
XE{Wy j U, j»Vk, j»Pk,j-1} ||ykx||
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Problem: 2D Poisson,
n = 256,
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Convergence of Ritz Values in s-step Lanczos

 All results of Paige [1980], e.g., loss of orthogonality — eigenvalue

convergence, hold for s-step Lanczos as long as A
(= c-max 19711 119611)

[ < (24e(NV + 115+ 15)) 7% »

1
\/Ne
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Convergence of Ritz Values in s-step Lanczos

 All results of Paige [1980], e.g., loss of orthogonality — eigenvalue

convergence, hold for s-step Lanczos as long as
(r = max 1921 1:I1)
1/2

1
< (24e(N +11s + 15)) W
&

 Bounds on accuracy of Ritz values depend on I'?

IfI' = 1:

s-step Lanczos behaves Lanczos

the same numerically 0(eN3||AlD

as classical Lanczos AL
! 3
| ¢ l
\—

Y
0(eN3|1AlD)

s-step Lanczos
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Problem: Diagonal matrix with n = 100 with
evenly spaced eigenvalues between 4,,;,, = 0.1
and A4, = 100; random starting vector
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Problem: Diagonal matrix with n = 100 with
evenly spaced eigenvalues between 4,,;,, = 0.1
and A4, = 100; random starting vector
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Problem: Diagonal matrix with n = 100 with Top plots:
evenly spaced eigenvalues between 4,,;,, = 0.1
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Problem: Diagonal matrix with n = 100 with evenly spaced eigenvalues between
Amin = 0.1 and A,,,,, = 100; random starting vector
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Problem: Diagonal matrix with n = 100 with evenly spaced eigenvalues between
Amin = 0.1 and A,,,,, = 100; random starting vector
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Problem: Diagonal matrix with n = 100 with evenly spaced eigenvalues between
Amin = 0.1 and A,,,,, = 100; random starting vector
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Problem: Diagonal matrix with n = 100 with evenly spaced eigenvalues between
Amin = 0.1 and A,,,,, = 100; random starting vector

r<2x103
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Towards understanding convergence delay

* Coefficients a and f (related to entries of T;) determine distribution functions
0@ (1) which approximate distribution function w(A) determined by inputs 4, b, x,
in terms of the ith Gauss-Christoffel quadrature

* CG method = matrix formulation of Gauss-Christoffel quadrature (see, e.g., [Liesen
& Strakos, 2013])

« A-norm of CG error for f(1) = 271 given as scaled quadrature error
i

_ 5 ("t X = x5
f/l 1dw(/1)=zw§,‘){9,§‘)} + ”r()”;“‘

£=1
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Towards understanding convergence delay

* Coefficients a and f (related to entries of T;) determine distribution functions
0@ (1) which approximate distribution function w(A) determined by inputs 4, b, x,
in terms of the ith Gauss-Christoffel quadrature

* CG method = matrix formulation of Gauss-Christoffel quadrature (see, e.g., [Liesen
& Strakos, 2013])

« A-norm of CG error for f(1) = 271 given as scaled quadrature error
i

_ 5 ("t X = x5
[ atao@ = 3 o (o) +

£=1

« For particular CG implementation, can the computed &@® (1) be associated with
some distribution function @(A) related to the distribution function w(A), i.e.,

i

_1 1 g~ () (AT llx — %115
1 tdo() ~ | 2 dwu):Z% o) + +F,

T' 2

where F; is small relative to error term?
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Towards understanding convergence delay

* Coefficients o and f (related to entries of T;) determine distribution functions

0@ (1) which approximate distribution function w(A) determined by inputs 4, b, x,
in terms of the ith Gauss-Christoffel quadrature

* CG method = matrix formulation of Gauss-Christoffel quadrature (see, e.g., [Liesen
& Strakos, 2013])

« A-norm of CG error for f(1) = 271 given as scaled quadrature error
i

_ 5 ("t X = x5
[ atao@ = 3 o (o) +

£=1

« For particular CG implementation, can the computed &@® (1) be associated with
some distribution function @(A) related to the distribution function w(A), i.e.,

i

_1 1 g~ () (AT llx — %115
1 tdo() ~ | 2 dwu):Z% o) + +F,

T' 2

where F; is small relative to error term?
* For classical CG, yes; proved by Greenbaum [1989]
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Towards understanding convergence delay

* Coefficients o and f (related to entries of T;) determine distribution functions

0@ (1) which approximate distribution function w(A) determined by inputs 4, b, x,
in terms of the ith Gauss-Christoffel quadrature

* CG method = matrix formulation of Gauss-Christoffel quadrature (see, e.g., [Liesen
& Strakos, 2013])

« A-norm of CG error for f(1) = 271 given as scaled quadrature error
i

_ 5 ("t X = x5
[ atao@ = 3 o (o) +

£=1

« For particular CG implementation, can the computed &@® (1) be associated with
some distribution function @(A) related to the distribution function w(A), i.e.,

i

_1 1 g~ () (AT llx — %115
1 tdo() ~ | 2 dwu):Z% o) + +F,

T' 2

where F; is small relative to error term?
* For classical CG, yes; proved by Greenbaum [1989]

* For pipelined CG and s-step CG, THOROUGH ANALYSIS NEEDED!
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Differences in entries y;, 6; in Jacobi matrices T; in HSCG vs. GVCG
(matrix bcsstk03)
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A different problem...

A: nos4 from UFSMC,

b: equal components in the eigenbasis
of Aand ||b]| =1

N =100,x(A) = 2e3
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A different problem...
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A different problem...

A: nos4 from UFSMC, [ exact HSCG | |
. ; ; ; ——HSCG
b: equal components in the eigenbasis A

of Aand ||b]| =1
N =100,x(A) = 2e3

A-norm of the error

If application only requires
llx —x;ll4 < 10719,

Need adaptive, problem-dependent approach based

on understanding of finite precision behavior!
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Finite precision errors cause loss of attainable accuracy and convergence
delay

In classical CG, attainable accuracy limited only by sum of local rounding
errors

In pipelined CG, sum of many different local rounding errors can be
(globally!) amplified
* Amplification depends on CG recurrence coefficients a and
* Not much to do except try to decrease local errors (e.g., by
stabilizing shifts)
In s-step CG, local rounding errors in each outer loop are amplified by a
factor related to the condition number of the generated s-step basis matrix

» Amplification effects are still "local" within an outer loop (block of s
iterations)

* Suggests that basis condition number plays a huge role

More difficult to precisely characterize convergence delay; further work
needed
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s-step CG Convergence,s=4
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s-step CG Convergence,s=4
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Residual replacement strategy

* Improve accuracy by replacing computed residual 7; by the true residual

b — AX; in certain iterations

* Related work for classical CG: van der Vorst and Ye (1999)
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Residual replacement strategy

* Improve accuracy by replacing computed residual 7; by the true residual

b — AX; in certain iterations

* Related work for classical CG: van der Vorst and Ye (1999)

* Choose when to replace 7; with b — AX; to meet two constraints:
1. |fill = l|b — Ax; — 7;]|| is small (relative to eN||A|||| X, +1]])

2. Convergence rate is maintained (avoid large perturbations to finite

precision CG recurrence)
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Residual replacement strategy

Improve accuracy by replacing computed residual 7; by the true residual

b — AX; in certain iterations

* Related work for classical CG: van der Vorst and Ye (1999)

Choose when to replace 7; with b — AX; to meet two constraints:
1. |fill = l|b — Ax; — 7;]|| is small (relative to eN||A|||| X, +1]])

2. Convergence rate is maintained (avoid large perturbations to finite

precision CG recurrence)

Based on derived bound on deviation of residuals, can devise a residual
replacement strategy for s-step CG

Implementation has negligible cost
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Residual replacement for s-step CG

» Use computable bound for||b — AX; — ;|| to update d;, an estimate of error
in computing 1, in each iteration

* Set threshold é =~ +/¢, replace whenever d;/||;|| reaches threshold
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Residual replacement for s-step CG

« Use computable bound for||b — AX; — 7;|| to update d;, an estimate of error

in computing 1, in each iteration

* Set threshold é =~ +/¢, replace whenever d;/||;|| reaches threshold

Pseudo-code for residual replacement with group update for s-step CG:

/if di—l < éllri_lll and di > é”ﬁ” and di > 1-1dinit
Z=Z+‘ykx;c,j + Xgp

Xi = 0

N = b— Az

dinie = di= e((1 + 2NO)IAllllzIl + lI:11)
Pi = YDk

break from inner loop and begin new outer loop

~

/
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Residual replacement for s-step CG

« Use computable bound for||b — AX; — 7;|| to update d;, an estimate of error

in computing 1, in each iteration

* Set threshold é =~ +/¢, replace whenever d;/||;|| reaches threshold

Pseudo-code for residual replacement with group update for s-step CG:

/if di—l < éllri_lll and di > é”ﬁ” and di > 1-1dinit
Z=Z+‘ykx;(,j +x5k<

Xi = 0

N = b— Az

dinie = di= e((1 + 2NO)IAllllzIl + lI:11)
Pi = YDk

break from inner loop and begin new outer loop

~

group update of approximate solution

/
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Residual replacement for s-step CG

« Use computable bound for||b — AX; — 7;|| to update d;, an estimate of error
in computing 1, in each iteration

* Set threshold é =~ +/¢, replace whenever d;/||;|| reaches threshold

Pseudo-code for residual replacement with group update for s-step CG:

/if di_q < éllri_lll and d; > é”ﬁ” and d; > 1.1d;,,;; \
_ /
z=2z+Yx Xk, j T Xsk < group update of approximate solution
Xi = 0
r,=b—Az < set residual to true residual
dinie = di= €((1 + 2N Allllz]l + ll7;1l)
Pi = YDk

break from inner loop and begin new outer loop
oo /
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Residual replacement for s-step CG

« Use computable bound for||b — AX; — 7;|| to update d;, an estimate of error
in computing 1, in each iteration

* Set threshold é =~ +/¢, replace whenever d;/||;|| reaches threshold

Pseudo-code for residual replacement with group update for s-step CG:

/if di_q < éllri_lll and d; > é”ﬁ” and d; > 1.1d;,,;; \
_ /
z=2z+Yx Xk, j T Xsk < group update of approximate solution
Xi = 0
r,=b—Az < set residual to true residual
dinie = di= €((1 + 2N Allllz]l + ll7;1l)
Pi = YDk

break from inner loop and [begin new outer loop]

/

45




A computable bound

* In each iteration, update error estimate d; (i = sk + j) by:

dl — di—l
e[ (AN NAN G |- Rie 1+ [T [1Beel- R 1) + 11D |- ]
vo) AN Zgeasl+@+2NONAN el R 1+N NG 7ol 5=
0, ow.

where N' = max(N,2s +1).
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A computable bound

* In each iteration, update error estimate d; (i = sk + j) by:

Estimated only once

dl — di—l
e[ (AN NAN |G |- Rie 1+ TG [1Beel- R 1) + 11D || ]
vo) TANZgeasl+@+2NONAN TGl R s 1+N N Gic sl 5=
0, ow.

where N' = max(N,2s +1).
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A computable bound

* In each iteration, update error estimate d; (i = sk + j) by:

0(s3) flops per s iterations; <1 reduction per s iterations

to compute (|@k|T|@k|)

dl — di—l
e[ (AN (AN ]G |- Zie 1+ 1T 1Bl % 1) + (11 || ]
vo) NANZgersl+@+2NONAN Tl [Rs 1+V NGl 7ol 5=
0, ow.

where N' = max(N,2s +1).
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A computable bound

* In each iteration, update error estimate d; (i = sk + j) by:

0(s?) flops per s iterations; no communication

dl = di—l
e[ (AN AN |G| Zie 1+ 1T 1Bl R 1) + [11ie |- ]
vt AN R s+ @A2N AN Gie |- R 11+ N WG| Feslll, =
0, ow.

where N' = max(N,2s +1).
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A computable bound

* In each iteration, update error estimate d; (i = sk + j) by:

Extra computation all lower order terms, communication only
increased by at most factor of 2

dl = di—l
e[ (AN AN |G| Zie 1+ 1T 1Bl R 1) + [11ie |- ]
vt AR sl+ 2N NANNGie |- R 11+ N WGl Feslll )=
0, ow.

where N' = max(N,2s +1).
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Residual 2-norm

s-step CG Convergence,s=4
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Residual 2-norm
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s-step CG Convergence,s=4 s-step CG Convergence, s =8
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Pipelined CG with residual replacement

Similar approach possible for pipelined CG; see (Cools et al., 2018)
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2D Poisson problem with 1e6 unknowns;
in pipelined CG with residual replacement, 39 replacements were performed.
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Pipelined CG with residual replacement

Similar approach possible for pipelined CG; see (Cools et al., 2018)
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20 nodes (two 6-core Intel Xeon X5660 Nehalem 2:80-GHz processors per node),
2D Poisson problem with 1e6 unknowns;
in pipelined CG with residual replacement, 39 replacements were performed.
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Adaptive s-step CG

* Consider the growth of the relative residual gap caused by errors in outer loop
k, which begins with global iteration number m
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Adaptive s-step CG

* Consider the growth of the relative residual gap caused by errors in outer loop
k, which begins with global iteration number m

* We can approximate an upper bound on this quantity by

| fn+s — fll jer{rtl)?.)fs}||rm+j|| fi = b—Ax;—T1;
Sell+ k(AT
LAl ]| LA|[ ]|
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Adaptive s-step CG

* Consider the growth of the relative residual gap caused by errors in outer loop
k, which begins with global iteration number m

* We can approximate an upper bound on this quantity by

Ufnss — finl (
Se\1+ k(AT
VI G

jgggﬁfs}llfmﬂll) f. = b—AR—F,
| Al |||

* If our application requires relative accuracy €*, we must have

*
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Adaptive s-step CG

* Consider the growth of the relative residual gap caused by errors in outer loop
k, which begins with global iteration number m

* We can approximate an upper bound on this quantity by

| fn+s — fll jeI{r(I)?.)fs}”rmJ’j” fi = b—Ax;—T1;
Sell+ k(AT
LAl ]| LA|[ ]|

* If our application requires relative accuracy €*, we must have
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Adaptive s-step CG

* Consider the growth of the relative residual gap caused by errors in outer loop
k, which begins with global iteration number m

* We can approximate an upper bound on this quantity by
finrs = frnll _ 2 s ”) f = b—AR—1,

'€{0,...,s}
Sel\l1+ k(AT S
A[[ {2 || ( AN

* If our application requires relative accuracy €*, we must have

*

AN 2] 8
O = ¢ - || Gk |l |||yk|||sg max_||fm+ ;||
J€{0,...,s} m

o |||l large = T} must be small; [|7;]| small = T} can grow
L g k l k

= adaptive s-step approach [C., 2018]

* s starts off small, increases at rate depending on [|#]| and &*
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Adaptive s-step CG

mesh3el (SuiteSparse)

n = 289
k(A) = 10
bi = 1/VN s—8, e*=1.0e-14
10 —
7 —5— s-step CG
% adpt. s-step CG
— CG

O Ty Ty Ty
RN N N

True residual 2-norm

20 40 60 80 100
lteration
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Adaptive s-step CG

mesh3el (SuiteSparse)

n = 289
k(A) = 10
bi = 1NN s=8,(c*=1e-6
g —5— s-step CG
@] % adpt. s-step CG
< —— (G
N
- i e
-
O
W
O
-
|_
10-15

20 40 60 80 100
Iteration
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Extensions to adaptive s-step CG

* Method of Meurant and Tichy (2018) for cheap approximation of extremal
Ritz values

* Uses Cholesky factors of Lanczos tridiagonal T;, T; = L;L}
* Use a and 8 computed during each iteration to incrementally update

. _ -2
estimates of ”Ll”% — Amax(Ti) ~ Amax(A)v ”Li 1”2 = Amin(Ti) ~
Amin(A)

* Essentially no extra work, no extra communication
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Extensions to adaptive s-step CG

* Method of Meurant and Tichy (2018) for cheap approximation of extremal
Ritz values

* Uses Cholesky factors of Lanczos tridiagonal T;, T; = L;L}
* Use a and 8 computed during each iteration to incrementally update
_ 112
estimates of ”Ll”% = Anax(T}) = Amax(4), ”Li 1”2 = Amin(T}) =
Amin(A)

* Essentially no extra work, no extra communication

* Can be used in two ways in adaptive algorithm

1. Incrementally refine estimate of k(A4) (used in determining which s to
use)

2. Incrementally refine parameters used to construct Newton or
Chebyshev polynomials
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A = 494bus from SuiteSparse
b; = 1/J/N

s-step CG

adptv. s-step CG
adptv. s-step CG - N
adptv. s-step CG - C
classical CG

True residual 2-norm

200 400 600 800 1000 1200
Iteration

Number of global synchronizations

Improved adaptive s-step | Improved adaptive s-step

Fixed s-step | Old adaptive s-step w/Newton w/Chebyshev

classical CG

- 132 59 53 414




A = 494bus from SuiteSparse

b; = 1/J/N
s =10, e* =le-6
| | | s-step CG
adptv. s-step CG
- adptv. s-step CG - N
5 adptv. s-step CG - C
o classical CG
&N
=
=
<
S
5]
e _ _
= 10-10 L N

200 400 600 800 1000 1200
Iteration

Number of global synchronizations

Improved adaptive s-step | Improved adaptive s-step

w/Newton w/Chebyshev classical CG

Fixed s-step | Old adaptive s-step

111 111 43 43 407




When to use an HPC variant

* Solve constitutes a bottleneck within the application (Amdahl's law)
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When to use an HPC variant

* Solve constitutes a bottleneck within the application (Amdahl's law)

* Krylov solve is communication-bound (particularly latency bound due to global
synchronization)

» Extremal eigenvalues are known or easy to estimate
* Accuracy much less than machine epsilon required by the application

* s-step methods
* The matrix is well-partitioned into domains with low surface-to-volume ratio

 Simple preconditioning is sufficient/the preconditioner is amenable to
communication avoidance

* The same coefficient matrix (or at least a coefficient matrix with the same
nonzero structure) will be reused over multiple solves

* improvement even for small numbers of nodes (reduces both intra- and inter-
processor communication)
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When to use an HPC variant

* Solve constitutes a bottleneck within the application (Amdahl's law)

* Krylov solve is communication-bound (particularly latency bound due to global
synchronization)

» Extremal eigenvalues are known or easy to estimate
* Accuracy much less than machine epsilon required by the application

* s-step methods
* The matrix is well-partitioned into domains with low surface-to-volume ratio

 Simple preconditioning is sufficient/the preconditioner is amenable to
communication avoidance

* The same coefficient matrix (or at least a coefficient matrix with the same
nonzero structure) will be reused over multiple solves

 improvement even for small numbers of nodes (reduces both intra- and inter-
processor communication)
* (deep) pipelined methods

 cost of applying preconditioner + SpMV is less than or the same as a global
synchronization

* improvement only for large numbers of nodes
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Looking Forward

» Better understanding of finite precision behavior

Improved usability
» More adaptivity, autotuning; less left to the user

Hybrid methods?
* stationary iterative method + Krylov subspace method

Fault tolerance?
 MTTF=0 on an exascale machine
* A problem to be handled at the algorithm level, or...?

Making use of specialized hardware
* accelerators, GPUs, etc.
* multiple precisions?
* new performance model, new programming model, bigger tuning space
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Thank you!

carson@karlin.mff.cuni.cz
www.karlin.mff.cuni.cz/ ™ carson



