Performance and Stability
Tradeoffs in Large-Scale Krylov
Subspace Methods

Erin C. Carson
Courant Institute, NYU

Applied Mathematics and Scientific Computing Seminar,
Temple University, November 16, 2016

The cost of an algorithm

* Algorithms have two costs: computation and communication

 Communication : moving data between levels of memory hierarchy
(sequential), between processors (parallel)

Sequential Parallel
CRU DRAM DRAM
“ Cache . «“
Memory , Interprocessor
wall” <+ communication
”
oA ~ cPU CPU wall
DRAM DRAM

 On today’s computers, computation is cheap, but communication is
expensive, in terms of both time and energy

e Barrier to scalability for many scientific codes

Future exascale systems

Petascale
Systems (2009)

System Peak 2 -10'° flops/s

Node Memory

Bandwidth 25 GB/s
Total Node Interconnect
Bandwidth = ElEe
Memory Latency 100 ns
Interconnect Latency 1 us

*Sources: from P. Beckman (ANL), J. Shalf (LBL), and D. Unat (LBL)

* Gaps between communication/computation cost only growing larger in
future systems

* Avoiding communication will be essential for applications at exascale!

Krylov subspace methods

* A Krylov Subspace Method is a projection process onto the Krylov subspace

K,,(A,11) = span{ry, Ary, A%1q, ..., A" 1y}

Linear systems, eigenvalue problems, singular value problems, least squares, etc.

Best for: A large & very sparse, stored implicitly, or only approximation needed

* In each iteration,
* Add a dimension to the Krylov subspace X,

:7(1(14, Tl) C :7(2(14, T'l) cC .- C :](m(A, 7‘1)

* Orthogonalize (with respect to some L,,)

Examples: Lanczos/Conjugate Gradient (CG), Arnoldi/Generalized Minimum
Residual (GMRES), Biconjugate Gradient (BICG), BICGSTAB, GKL, LSQR, etc.

Communication bottleneck

Projection process in terms of communication:

“Add a dimension to K,,,”
—> Sparse matrix-vector multiplication (SpMV) BT a

 Parallel: comm. vector entries w/ neighbors
* Sequential: read A/vectors from slow memory

ﬂorthogonalize (Wlth respect to some Lm)”

 Parallel: global reduction (MPI All-Reduce)
* Sequential: multiple reads/writes to slow memory

— Inner products X a

SpMV
Dependencies between communication-bound kernels
ze in each iteration limit performance!

orthogonali

Example: classical conjugate gradient (CG)

Given: initial approximation x; for solving Ax = b
Letpy, =711 =b — Axy
form = 1,2, ..., until convergence do

T

_ I'm"m
OIm = 7T
PmADPm

Xm+1 = Xm + AmPm SpMVs and inner products
"m+1 = "'m — AmAPm require communication in
B = L Tmi1 each iteration!

m rr’lrwlrm
Pm+1 = "Tm+1 + BmPm

end for

miniGMG multigrid benchmark (Williams et al., 2012) on NERSC’s Hopper (Cray XE6)
Variable coefficient Helmholtz operator

Timing for coarse grid solve (BICGSTAB Krylov solver)
Weak scaling: 43 points per process (0 slope ideal)

1.75
1.50
— 125 Ao AT :
§ /',’/"\~“~ NNNN ‘ ”: ————— ‘
S 1.00 6 §§§§§ L @
@ = @
»n 075 @
2 =1
0.50 . = . .
= & A~ Solver Time
0.25 “ -@ Communication Time i
OOO ‘ T T T T T T T
0 512 1024 1536 2048 2560 3072 3584 4096

Processes (6 threads each)

Solver performance and scalability limited by communication!

s-step Krylov subspace methods

* Krylov subspace methods can be reorganized to reduce
communication cost by O(s)

* “Communication cost”: latency in parallel, latency and
bandwidth in sequential

 Compute iteration updates in blocks of size s

« Communicate once every s iterations instead of every
iteration

e Called “s-step” or “communication-avoiding” Krylov subspace
methods

e Lots of related work...

History of s-step Krylov subspace methods

Khabaza (‘63),
Fortsythe (‘68),

First termed
“s-step Krylov

Bai, Hu, and Reichel:

GMRES

de Sturler:
GMRES

Joubert and

Marchuk and methods” Carey: GMRES
Kuznecov (‘68): _ de Sturler and
s-dimensional X Kim and van der Vorst:
steepest Chronopoulos: GMRES
descent Chronopoulos Arndoli, Symm.
and Gear: CG Lanczos
Chronopoulos ledo:
Van CTJO”O(;)OEIOS and and Kim: Toledo: CG
R dale: Im: Orthomin,
osendaie Walker: GMRES Nonsymm. Chronopoulos
CG Chronopoulos: Lanczos i
GMRES Leland: Erhel: and Kinkaid:
eland: MINRES, GCR, rnet. Orthodir
S Orthomin GMRES
1960s 1983 1988 1989 1991 1992 1995 2001

Brief derivation of s-step CG

Main idea: Unroll iteration loop by a factor of s; split iteration loop into outer (k) and
inner loop (j). By induction, forj € {1, ...,s + 1}

Xsk+j — Xsk+1» Tsk+jr» DPsk+j € st+1(A:psk+1) +7Cs(Arrsk+1)

Outer loop: Communication step

Expand solution space s dimensions at once

* Compute “basis” matrix Y, whose cols. span K1 (4, psr+1) + K (A4, rgps1)

* If A% is well partitioned, requires reading A/communicating vectors only once
using matrix powers kernel (Demmel et al.,'07)

Orthogonalize all at once:

* Encode inner products between basis vectors with Gram matrix G, = YL Yy
(or compute Tall-Skinny QR)

e Communication cost of one global reduction

« Compute basis Py, for K, 1(4, Psies1)
* Py is matrix of dimensionn X (s + 1)
* Let P, denote the first s columns of P
* AP, = PyBpy

» Compute basis R, for K (A4, rgr+1)
* R} is a matrix of dimensionn X s
* Let R denote the first s — 1 columns of Ry
* ARk = RyBpr

U= Po R Us = [P0, R0] By = |BEROT O
- B 0 [BR,RJO]

Ayk = Y By

13

Brief derivation of s-step CG

Inner loop: Perform s iterations of updates
Computation . ysing Y, and G, = YFY,, this requires no communication!
steps, no * Represent n-vectors by their O(s) coordinates in Y :
communication! Xgiji1 — Xsp1 = YnXp jo1r Tskrjr1 = YeTh j+10 Pskrj+1 = YrPr j+1
/ . /
ADsk+j = AUYkbr; = Yr(Brbx,)
n
0(s)
n]« % - o) B x |

T
rSk+j+1 rSk+j+1 — rk]+1ykykrk]+1 = rk]+1gkrk j+1

X
—> = x [x|

s-step CG

Given: initial approximation x; for solving Ax = b

Letp, =1, = b — Axy via Matrix

fork = 0,1, ..., until convergence Powers Kernel
Compute Yy, such that AY), = Y, By, compute G, = Yr Ys

Let X]'(,1 — 025+1; 7']2,1 = €542, pllc,l =€
forj=1,..,sdo Global reduction

IT !/
T .gkr .
e to compute Gy,
pk,ijBkPk,j

xllc,j+1 = xllc,j + “sk+jpllc,j

rlé,j+1 = Tzé,j — ask+jkaI’c,j\ Local computations
TIQ,TJT;QkTi%,ﬂl within inner loop require

, Tk j 9Tk , no communication!

Pkj+1 = Tk j+1 T Bsk+jPi j

Ask+j =

Bsk+j =

end for
_ 14 _ 14 _ 14
Xsk+s+1 = YkXp s+1 T Xsk+1r Vsk+s+1 = YTk s+1r Psk+s+1 = YkPrs+1
end for

Complexity comparison

Example of parallel (per processor) complexity for s iterations of CG vs. s-step
CG for a 2D 9-point stencil:

(Assuming each of p processors owns n/p rows of the matrix and s < \/n/p)

Flops Words Moved Messages
SpMV | Orth. SpMV Orth. SpMV | Orth.
Classical Sn Sn
G ? ? s{n/p slog, p S slog, p
sn s’n
s-step CG > B syn/p |sflogzp | 1 log, p
p

All values in the table meant in the Big-O sense (i.e., lower order terms
and constants not included)

Tradeoffs

* Parameter s is limited by machine
parameters and matrix sparsity
structure

* We can auto-tune to find the best s
based on these properties

* That is, find s that gives the
least time per iteration

time per iteration

* But s is also limited by numerical
properties

Residual 2-norm

s-step CG Convergence,s=4 s-step CG Convergence, s =8

10" | 10"
Loss of accuracy
5 slower E due to roundoff
107 + convergence due g 10" ¢
to roundoff =
.
10 z -0
107 ¢ é 10 ¢
. -H\\I\
Lo) N
15 “1 13 R
10 N ' 10 b N M e y
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
lteration lteration

s-step CG Convergence, s = 16

— CG true
- - - CG updated 0
s-step CG (monomial) true 10
- - = s-step CG (monomial) updated -
E 10° At s = 16, monomial
= basis is rank deficient!
S o Method breaks down!
i
Model Problem: 2D Poisson (5-pt stencil), o \ _
n =512%, N = 10% k(4) =~ 10* [b
b = A(1yn - ones(n, 1)) o 500 1000 1500 2000 2500 3000

lteration

Behavior in finite precision

* s-step variants are mathematically equivalent to classical methods

* But can behave much differently in finite precision!

 Roundoff errors have two discernable effects:

1. Decrease in attainable accuracy — Tradeoff: increasing blocking
factor s past a certain point: true residual b — Ax; stagnates

2. Delay of convergence — Tradeoff: increasing blocking factor s past a
certain point: no speedup expected

Runtime = (time/iteration) x (# iterations)

Optimizing for speed and accuracy

* Selecting the best s to use (minimize runtime subject to accuracy constraint)
is a hard problem

e Can tune to minimize time per iteration (based on hardware, matrix
structure)

* But numerical properties (stability, convergence rate) are important too!

* The “best” s for minimizing time per iteration might not be the best
s for minimizing overall runtime, and might give an inaccurate
solution

* Goal: Based on finite precision analysis, develop ways to automate
parameter choice to improve reliability and usability of s-step Krylov
subspace methods

* Improving s-step basis conditioning
e Residual replacement
e Variable s-step methods

Choosing a polynomial basis

* Recall: in each outer loop of s-step CG, we compute bases for some Krylov
subspaces, K,,(4,v) = span{v, Av, ..., A" v}

* Simple loop unrolling leads to the choice of monomials {v, Av, ..., ASv}

* Monomial basis condition number can grow exponentially with s -
expected (near) linear dependence of basis vectors for modest s values

* Recognized early on that this negatively affects convergence (Leland,
1989), (Chronopoulous & Swanson, 1995)

* Improve basis condition number to improve convergence: Use different
polynomials to compute a basis for the same subspace.

* Two choices based on spectral information that usually lead to well-
conditioned bases:

* Newton polynomials
* Chebyshev polynomials

Better conditioned bases

 The Newton basis:
{vl (A o el)v) (A o 02)(A o Hl)vr ey (A o HS) e (A o Hl)v}
where {04, ..., 0} are approximate eigenvalues of A, ordered according to Leja ordering

— In practice: recover Ritz (Petrov) values from the first few iterations, iteratively refine
eigenvalue estimates to improve basis

— Used by many to improve s-step variants: e.g., Bai, Hu, and Reichel (1991), Erhel
(1995), Hoemmen (2010)

* Chebyshev basis: given ellipse enclosing spectrum of A with foci at d + ¢, we can
generate the scaled and shifted Chebyshev polynomials as:

~ d—z d
5(2) = (Tf (—)) / (Tf (‘))
where {T;1. are the Chebyshev polynomials of the first kind
J Jj=0

— In practice: estimate d and ¢ parameters from Ritz values recovered from the first
few iterations

— Used by many to improve s-step variants: e.g., de Sturler (1991), Joubert and Carey
(1992), de Sturler and van der Vorst (1995)

Residual 2-norm

s-step CG Convergence,s=4

10"

107

10—10_
) [Ava

070 R -
0 500 1000 1500 2000 2500 3000

lteration
— CG true
=== CG updated

s-step CG (monomial) true
s-step CG (monomial) updated
s-step CG (Newton) true

s-step CG (Newton) updated
s-step CG (Chebyshev) true
s-step CG (Chebyshev) updated

Model Problem: 2D Poisson (5-pt stencil),
n =512%, N = 10%, k(4) ~ 10*

b = A(1y/n - ones(n, 1))

Residual 2-norm

Residual 2-norm

s-step CG Convergence, s =8

I:I .
10 Better basis
choice allows
10" higher s values
10—10 |
-H\\‘I\
y B
15 ™,
0% e A
0 500 1000 1500 2000 2500 3000
lteration
s-step CG Convergence, s = 16
10°
But can still see loss of
10" accuracy/convergence
delay
1D—1EI i
Y
15 Y
0 o -
0 500 1000 1500 2000 2500 3000

lteration

Maximum attainable accuracy of CG

* In classical CG, iterates are updated by

Xm+1 = Xm + AP + €m+1 and 'm+1 = Tm — amApm T Mm+1

* Accumulation of rounding errors cause the true residual, b — AX,,,, 1, and the
updated residual, 7,,,, 1, to deviate

* The size of the true residual:

b — AX il < ([Pl + 1D — A% g — Fipsadl
* As[[fpsall = 0, l|b — AXpy 1|l dependson ||b — A% pyiq — Frpsall

* Many results on attainable accuracy, e.g.: Greenbaum (1989, 1994, 1997), Sleijpen,
van der Vorst and Fokkema (1994), Sleijpen, van der Vorst and Modersitzki (2001),
Bjorck, Elfving and Strakos (1998) and Gutknecht and Strakos (2000).

e Can perform a similar analysis to upper bound the maximum attainable accuracy in
finite precision s-step CG

Sources of roundoff error in s-step CG

Computing the s-step Krylov basis:

Error in computing

AYy = Yy By + g
Updating coordinate vectors in the inner loop:
X iv1 = Xpj + Q. j + Sk j+a
flé,j+1 = f'lé,j — B éI\)!’c] T Nk, j+1
with Gy ; = fl(@sk+ Py, ;)

Recovering CG vectors for use in next outer loop:

s-step basis

Error in updating
coefficient vectors

A _ T Al A .
Xsk+j+1 — ykxk,j+1 + Xsk+1 T Psk+j+1 Errorin

N - 7 Al
Tsk+j+1 — ykrk,j+1 + Vst js1

basis change

Maximum attainable accuracy of s-step CG

* We can write the deviation of the true and updated residuals in terms of
these errors:

Osk+j+1 = D—=AXsk+j+1—Tsk+j+1
— 51

k-1

J
—APsirjr1 — Wskaje1 — Z[Agkfk,iﬂ"'gkﬂk,iﬂ — Dy]
i—1

S
ADspisi1tWspise1t Z[Agef&iﬂ‘l'gew,iﬂ aAY, @},i]
im1

* Using standard rounding error results, this allows us to obtain an upper

bound on H55k+j+1H'

Attainable accuracy of CG versus s-step CG

For CG:
m
NSmetll < M6l +€) (1 + NIANNZ; -1 1| + 1744l

=1
For s-step CG:
sk+j
||55k+j+1|| < |18111 + ecTy, Z (1 + MIAMZ 1[I + N7l
i=1

where c is a low-degree polynomial in s, and

Fe=max Ty, where T, = |07 - 1G]l

Residual replacement strategy

* Improve accuracy by replacing updated residual 7,,,,1 by the true residual

b — AX,,.1 in certain iterations

» Related work for classical CG: van der Vorst and Ye (1999)

e Choose when to replace 7,1 with b — AX,,,;1 to meet two constraints:
1. ||b — AX,;pp1 — Tone1ll is small (relative to eN||A|| || X +11])

2. Convergence rate is maintained (avoid large perturbations to finite

precision CG recurrence)

* Based on derived bound on deviation of residuals, can devise a residual
replacement strategy for s-step CG

* Implementation has negligible cost - residual replacement strategy allows
both speed and accuracy!

Residual replacement for s-step CG

* Use computable bound for ||b — AXsptj1 — r5k+j+1|| to update dgy 4 41, an
estimate of error in computing 7gx 4 741, in each iteration

* Set threshold € =~ /¢, replace whenever dsk+j+1/||rsk+j+1|| reaches threshold

Pseudo-code for residual replacement with group update for s-step CG:

ﬁf Ak < &||rsi+s]| and dsgyjer > &||rskrjea|| and dogsjyr > 1-1dinit\

z=z+ Y, x, i1 +x : :
Y W group update of approximate solution

Xsk+j+1 = 0
Tsk+j+1 = b— Az < set residual to true residual
dinit = dsi4j41= € ((1 + 2N |[Al[llz]| + ||7”sk+j+1||)

Dsk+j+1 = YkPr,j+1
break from inner loop and [begin new outer loop]

A computable bound

* In each iteration, update error estimate dgy . ; by:

A Ao

4 N\

Ase+j+1 = skt j

+€[(4+N')(||A|| |||rgk||9?;c1+1|” + mk '|73k|'|9?1'<,j+1)"‘ | |@k flé,j+1|||]

b A2 MG Gl

0, ow.

- J

where N' = max(N,2s + 1).

Residual 2-norm

s-step CG Convergence,s=4

3000

10"

10°

10—10_

) [Ava

070 R :
0 500 1000 1500 2000 2500

lteration

—— CG true

- - - CG updated

- == s-step CG (Chebyshev) updated

s-step CG (monomial) true
s-step CG (monomial) updated
s-step CG (Newton) true
s-step CG (Newton) updated
s-step CG (Chebyshev) true

Model Problem: 2D Poisson (5-pt stencil),
n =512%, N = 10%, k(4) ~ 10*

b = A(1y/n - ones(n, 1))

Residual 2-norm

Residual 2-norm

s-step CG Convergence, s =8

10"
107"
1[]—10 |
-H\‘I\
c llll\\\;.l \I\-\
10 A
0 200 1000 1500 2000 2500 3000
lteration
s-step CG Convergence, s = 16
10"
107"
1D-1EI i
5
15 "-,\
0 o -

0 200 1000 1500 2000 2500 3000

lteration

Residual 2-norm

s-step CG Convergence,s=4 s-step CG Convergence, s =8

o | Maximum
replacement steps

10

E (extra reductions)
10”

G for any test: 8

m@

% 10

® 10 |

o

10 e,
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000

lteration lteration

s-step CG Convergence, s = 16

— CG+RR true

- — - CG+RR updated 0

— s-step CG+RR (monomial) true 10 Residual Repl "

- — — s-step CG+RR (monomial) updated e5|' ual Replacemen

—— s-step CG+RR (Newton) true = 10° can Improve accuracy

- — - s-step CG+RR (Newton) updated & orders of magnitude

— s-step CG+RR(Chebyshev) true © for negligible cost

- — = s-step CG+RR(Chebyshev) updated % 1071]

o

Model Problem: 2D Poisson (5-pt stencil), ol

n =512%, N = 10% k(4A) = 10* 7 oot
b = A(1vn - ones(n, 1)) 0 500 1000 1500 2000 2500 3000

lteration

Residual 2-norm

consph8, FEM/Spheres (from UFSMC)
n=283-10* N =6.0-10% k(4) = 9.7 - 103, ||A|| = 9.7

Before

CG true

CG upd

s-step CG M, true
s-step CG M, upd
s-step CG N, true
s-step CG N, upd

s-step CG C, true

s-step CG C, upd

-10

10

-15 NEN

10 B \“\ AN

0 500 1000 1500 2000 2500 3000

S

10 - NS
N
[N

0 500 1000 1500 2000 2500 3000

Iteration

Variable s-step CG derivation

Consider the growth of the relative residual gap caused by errors in outer loop k

We can approximate an upper bound on this quantity by

16 — Okl s+l
Ssk+s+1 sk+1 < CK(A)Fk&‘ sk+1
LA]| LA]|

where c is a low-degree polynomial in s

If our application requires relative accuracy €, we must have

bl
I, = |7 S
k ||yk |||||yk||| C€||?Sk+1”

In other words, as the method converges (i.e., as ||7x+1 || decreases), we can
tolerate more ill-conditioned s-step bases without affecting attainable accuracy

This naturally leads to a variable s-step approach, where s starts off small and
increases as the method converges

* Analogy to relaxation strategy in “inexact Krylov subspace methods”

Variable s-step CG method

* Input (or tune off-line to find) best s based on speed per iteration; set
this as S;,qx

* Run variable s-step CG

* In each outer loop, stop constructing basis U, after sp < S,y
SpMVs such that

e*||bll

gllfcurr”

K(y”k) <

* Perform s, inner iteration updates

mesh3el (UFSMC)
n = 289
k(4) =~ 10
b; =1/n s = 8 (monomial basis) ¢&*=10"1
10°
s-step CG
var. s-step CG

- 5 -—-CG

s 10

<

od

o

[

&

g

102 ' ' '
20 40 60 80
lteration
CG s-step CG variable s-step CG
outer loops accuracy # outer loops accuracy # outer loops accuracy
33 4 x 10716 9 1x 10713 7 1x 10716

mesh3el (UFSMC)
n = 289
k(4) =~ 10
b; =1/n s = 8 (monomial basis) &*=10"°
10°%
s-step CG
var. s-step CG

s &l —— - CG

s 10

<

o

1

.13 10-1[} L

3]

L

£

100 ' ' '
20 40 60 80
Iteration
CG s-step CG variable s-step CG
outer loops accuracy # outer loops accuracy # outer loops accuracy
33 4 x 10716 9 1x 10713 9 1x 10713

mesh3el (UFSMC)
n = 289
k(4) ~ 10
b; =1/n s = 10 (monomial basis) &*=10"1
10°
E 3 = = N
-5 L |

i 10

&

od

m©

.13 10-1[} L

W

o

<

et -15

= 10 s-step CG

var. s-step CG
———CG
1020 ' ' '
20 40 60 80
Iteration
CG s-step CG variable s-step CG
outer loops accuracy # outer loops accuracy # outer loops accuracy
33 4 x 10716 — — 9 1x 10716

mesh3el (UFSM
n = 289

k(4) ~ 10
b;=1/Jn

C)

s = 10 (monomial basis)

e*=10"°

10°

= 5|
i 10
G
o
I
g 10-1[} L
0
L
e
sl -15
= 10 ' s-step CG
var. s-step CG
- —-CG
100 ' ' '
20 40 60 80
Iteration
CG s-step CG variable s-step CG
outer loops accuracy # outer loops accuracy # outer loops accuracy
33 4 x 10716 — — 7 1x 10713

ex5 (UFSMC)

n=27
k(A) =~ 7 x 107
by =1/yn

True residual 2-norm

s = 10 (monomial basis)

g =10"1

10°

s-step CG
var. s-step CG

T B R e L L T B L L T L T T L T T O T O v e i

10710 ' ' ' '
0 100 150 200 250
Iteration
CG s-step CG variable s-step CG
outer loops accuracy # outer loops accuracy # outer loops accuracy
157 9x107° — — 60 5x107°

Paige’s results for classical Lanczos

* Using bounds on local rounding errors in Lanczos, Paige showed that

1. The computed Ritz values always lie between the extreme
eigenvalues of A to within a small multiple of machine
precision.

2. At least one small interval containing an eigenvalue of A is
found by the nth iteration.

3. The algorithm behaves numerically like Lanczos with full
reorthogonalization until a very close eigenvalue
approximation is found.

4. The loss of orthogonality among basis vectors follows a
rigorous pattern and implies that some Ritz values have
converged.

Do the same statements hold for s-step Lanczos?

Lanczos analysis

AVm = Vme + ,8Am+1ﬁm+1e12;1 + 5Vm
a\il BAZ
V=104, 0, Oml, 6V, =[60qy,...,60,], Tn=|" p

Bm &m

fori € {1, ...,m},
167, < &0
Biv1|0{ Dir1 | < 2600
|9iT+19i+1 —1 | < &/2
B2, + a&f + B? — 11ADi1I3] < 4i(3¢ + £1)0?

Classic Lanczos rounding
error result of Paige (1976):

where o = [|All;, 6o = |||Alllz, & =0(en), & = 0(eNb)
go = O(enly), & = 0(eNOT})

I, < max [|US] -
kS ma WY, - 1Y

For s-step Lanczos:

The amplification term

* Roundoff errors in s-step variant follow same pattern as classical variant, but
amplified by factor of [}, or [}

* Theoretically confirms empirical observations on importance of basis
conditioning (dating back to late ‘80s)

e Using the definition ~
T = max 1Y 11 - 1Yl

gives simple, but loose bounds

« What we really need: |||Y]||Y'|]| < Tl|Yy’|| to hold for the computed basis Y
and coordinate vector y' in every bound.

* Alternate definition of I' gives tighter bounds; requires light bookkeeping

* Example: for bounds on ,Bi+1|ﬁfﬁi+1 | and |ﬁf+1ﬁi+1 — 1|, we can use the

definition

O AL

P AN N BN |
XEWy, jy U, jsVk, j»Vk, j—1 ”ykx ”

Results for s-step Lanczos

e Back to our question: Do Paige’s results, e.g.,
loss of orthogonality — eigenvalue convergence
hold for s-step Lanczos?

e The answer is YES ...if
. @) is numerically full rank for 0 < £ < k and

« g = 2e(n+11s+15) I < 1—12

cie, TF < (24e(n + 11s + 15))_jL

* Otherwise, e.g., can lose orthogonality due to computation
with rank-deficient basis

Problem: Diagonal matrix with n = 100 with evenly spaced eigenvalues between
Amin = 0.1 and A,,,,, = 100; random starting vector

classical Lanczos

100.

10-1[} I

10720
0 20 40 60 80 100
Iteration

(M)T A
max 2™ D1

l
D (m)
— i fany,

Problem: Diagonal matrix with n = 100 with evenly spaced eigenvalues between
Amin = 0.1 and A,,,,, = 100; random starting vector

classical Lanczos

100.

10-1[} I

10720 . . .
0 20 40 60
Iteration

Measure of Ritz

80

100

max |z
l

value convergence

min fn 417

(M)T A
i Um1l

(m)

m,i

c Measure of loss
of orthogonality

Problem: Diagonal matrix with n = 100 with evenly spaced eigenvalues between
Amin = 0.1 and A,,,,, = 100; random starting vector

[, <7 x102

classical Lanczos s-step Lanczos, monomial basis, s = 2
1010 ' ' - : 101 .

100- | 100f&hhhﬁmﬁx&““&xxxxx
10-1[)- - 10-1[)- \W\

10720 ' ' ' ' 10720 ' ' ' '
0 20 40 60 80 100 0 20 40 60 80 100
Iteration Iteration
(M)T ~ c Measure of loss
mlax 12, Vmal of orthogonality

Measure of Ritz
value convergence

A (m)
Min 17750,

Problem: Diagonal matrix with n = 100 with evenly spaced eigenvalues between
Amin = 0.1 and A,,,,, = 100; random starting vector

I, <3x103

classical Lanczos s-step Lanczos, monomial basis, s = 4
1010 ' ' - : 101 .

0%} - 100f&xﬁhﬂa&“&»~mﬂxxm
10710} - 107107 \\\\\mJ\JAVM@

10720 ' ' ' ' 10720 ' ' ' '
0 20 40 60 80 100 0 20 40 60 80 100
Iteration Iteration
(M)T ~ c Measure of loss
mlax 12, Vmal of orthogonality

Measure of Ritz
value convergence

A (m)
Min 17750,

Problem: Diagonal matrix with n = 100 with evenly spaced eigenvalues between
Amin = 0.1 and A,,,,, = 100; random starting vector

I, <2x10°

classical Lanczos s-step Lanczos, monomial basis, s = 8
1010 ' ; - - 101 :

10° - 1007 T

107101 . 107101
10720 ' ' ' | 10720 ' ' ' |
0 20 40 60 80 100 0 20 40 60 80 100
Iteration Iteration
(M)T ~ c Measure of loss
m{“X 12, Vmal of orthogonality

Measure of Ritz
value convergence

B (m)
Min fon s 170

Problem: Diagonal matrix with n = 100 with evenly spaced eigenvalues between
Amin = 0.1 and A,,,,, = 100; random starting vector

I, <2x103

classical Lanczos s-step Lanczos, Chebyshev basis, s = 8
1010 , , , , 1070 , . . :

10° - 10° \
10717 1 107107 \W

10720 ' ' ' | 10720 ' ' ' |
0 20 40 60 80 100 0 20 40 60 80 100
Iteration Iteration
(M)T ~ c Measure of loss
m{“X 12, Vmal of orthogonality

Measure of Ritz
value convergence

B (m)
Min fon s 170

Preconditioning for s-step variants

* Preconditioners improve spectrum of system to improve convergence rate
 E.g.,instead of Ax = b, solve M~ 1Ax = M~ b, where M1 =~ 471
e Essential in practice

* In s-step variants, general preconditioning is a challenge

* Except for very simple cases, ability to exploit temporal locality across
iterations is diminished by preconditioning

* If possible to avoid communication at all, usually necessitates
significant modifications to the algorithm

* Tradeoff: speed up convergence, but increase time per iteration due to
communication!
* For each specific app, must evaluate tradeoff between preconditioner
qguality and sparsity of the system

Recent efforts in s-step preconditioners

* Much recent/ongoing work in developing communication-avoiding
preconditioned methods

* Many approaches shown to be compatible

Diagonal

Sparse Approx. Inverse (SAl) — same sparsity as A; recent work for CA-
BICGSTAB by Mehri (2014)

Polynomial preconditioning (Saad, 1985)

HSS preconditioning (Hoemmen, 2010); for banded matrices (Knight, C.,
Demmel, 2014) - same general technique for any system that can be
written as sparse + low-rank

CA-ILU(0), CA-ILU(k) — Moufawad, Grigori (2013), Cayrols, Grigori (2015)

Deflation for CA-CG (C., Knight, Demmel, 2014), based on Deflated CG
of (Saad et al., 2000); for CA-GMRES (Yamazaki et al., 2014)

Domain decomposition — avoid introducing additional communication
by “underlapping” subdomains (Yamazaki, Rajamanickam, Boman,
Hoemmen, Heroux, Tomov, 2014)

summary

* New communication-avoiding approaches to algorithm design are

necessary
* But modifications may affect numerical properties

* s-step Krylov subspace methods can asymptotically reduce
communication cost; potential applications in many scientific domains
* But complicated tradeoffs depending on matrix structure,
numerical properties, and machine parameters

* Solving exascale-level problems efficiently will require a holistic

approach
* Best method, best parameters, best preconditioners, etc. all very
problem- and machine-dependent
* Requires a better understanding of how algorithmic changes affect
finite precision behavior

Thank youl!

contact: erinc@cims.nyu.edu
http://www.cims.nyu.edu/~erinc/

