Preconditioned GMRES-based

lterative Refinement

for the Solution of Sparse, llI-Conditioned Linear Systems

Erin Carson and Nicholas J. Higham

New York University University of Manchester

August 2, 2017
Preconditioning 2017, Vancouver, BC



lterative Refinement for Ax = b

A is n X n, nonsingular

Solve Axy, = b by LU factorization
for i = 0: maxit

1, = b — Ax;

Solve Ad; = r;

Xit+1 = X; + d;



lterative Refinement for Ax = b

A is n X n, nonsingular

Solve Axy, = b by LU factorization

for i = 0: maxit
r; = b — Ax;
Solve Ad; =1; viad; =U" (L™ r)
Xiv1 = X; +d;



Notation /Setting

* Assume standard floating point arithmetic

* u denotes unit roundoff

[ PR ku
e "Gamma notation": y, = —

* Condition numbers

* |A] = |(a;;)|
* Koo(A) = A7 oo Il Alloo
_ HamHianxd ]
cond(4,x) = T

cond(4) = cond(4,e) = || |A7 4] |l
1 < cond(4, x) < cond(4) < k. (A)



Error Bounds (" Traditional" IR)

Solve Axy, = b by LU factorization
for i = 0: maxit

r; = b — Ax;

d; = UYL r)

Xi+1 = X; +d;



Error Bounds (" Traditional" IR)

Solve Axy = b by LU factorization precision u
for i = 0: maxit
r, =b— Ax; precision u*
d; =U"1(Lr) precision u

Xi+1 = X + di precision u



Error Bounds (" Traditional" IR)

Solve Axy = b by LU factorization precision u
for i = 0: maxit
r, =b— Ax; precision u*
d; =U"1(Lr) precision u
Xiy1 = X; + d; precision u

* Early analyses by Wilkinson (1963), Moler (1967)

* If kw(A)u < 1, then error contracts (at a rate depending on
Koo (A4)) until
lx — %l oo

1] oo

~U



Information in LU ~ A

* Empirically observed by Rump (1990) that if L and U are computed LU
factors of A from GEPP, then x(U71L714) = 1 + k(A)u



Information in LU ~ A

* Empirically observed by Rump (1990) that if L and U are computed LU
factors of A from GEPP, then x(U71L714) = 1 + k(A)u

* Even if k(4) » u™!



Information in LU ~ A

* Empirically observed by Rump (1990) that if L and U are computed LU
factors of A from GEPP, then x(U71L714) = 1 + k(A)u

* Even if k(4) » u~1
Examples: ill-conditioned problems (1013 < k., (4) < 103>), u = double

invhilb
1020

101°

A = invhilb (n) 101

A = 1&%
gallery('randsvd', 103 F

n,10" (n+5)) 02k

— — =1+ re(Au

Koo (UL TA)




New Analysis Summary

* New rounding error analysis of IR

* |dentifies a mechanism by which iterative refinement can work
when ko (4) > u™?!



New Analysis Summary

* New rounding error analysis of IR

* |dentifies a mechanism by which iterative refinement can work
when ko (4) > u™?!

* Requires that we can solve the equations for the updates d;
with some relative accuracy

* Accomplished by using existing LU factors as
preconditioners in GMRES method = GMRES-IR



New Analysis Summary

* New rounding error analysis of IR

* |dentifies a mechanism by which iterative refinement can work
when ko (4) > u™?!

* Requires that we can solve the equations for the updates d;
with some relative accuracy

* Accomplished by using existing LU factors as
preconditioners in GMRES method = GMRES-IR

* Even when k4 (4) = u~1, GMRES-IR produces % for which
lx — X[

121l oo

=~ U



New Analysis Summary

* New rounding error analysis of IR

|dentifies a mechanism by which iterative refinement can work
when ko (4) > u™?!

Requires that we can solve the equations for the updates d;
with some relative accuracy

* Accomplished by using existing LU factors as
preconditioners in GMRES method = GMRES-IR

Even when k. (4) = u~!, GMRES-IR produces % for which
lx — X[

121l oo

=~ U

Need to define a few quantities...



The quantity 6;

* Assume computed solution to Ad; = r; satisfies

Hm—dmm_au
”dl”oo -

* 0; depends on A, 1;, n, u, and the method of solving
Adi = 71



The quantity y;

 Traditional IR analyses use the bound: ||[A(x — )|l < llAlleollx — X;ll 0o



The quantity u;

 Traditional IR analyses use the bound: ||[A(x — )|l < llAlleollx — X;ll oo
* Need a tighter bound; define

1A = 2D leo = pill Allcollx — %]l oo

e Note that k,(A)" 1 <y; <1



The quantity u;

 Traditional IR analyses use the bound: ||[A(x — )|l < llAlleollx — X;ll oo
* Need a tighter bound; define

1A = 2D leo = pill Allcollx — %]l oo

e Note that k,(A)" 1 <y; <1

HillAlloo llx = Xilloo = [IACX = X)lle0 = [Ib = AXilloo = [I7ill oo



The quantity u;

 Traditional IR analyses use the bound: ||[A(x — )|l < llAlleollx — X;ll oo
* Need a tighter bound; define

1A = 2D leo = pill Allcollx — %]l oo

e Note that k,(A)" 1 <y; <1

Hill Allollx = X;llo = [[A(x = X)) leo = Ib = AX;llo = lI7il] o
* For a stable solver, in early stages we expect

7l ~ 1 <& lx — %I — u K1
A|[]%; ] x|l




The quantity u;

 Traditional IR analyses use the bound: ||[A(x — )|l < llAlleollx — X;ll oo
Need a tighter bound; define

1A = 2D leo = pill Allcollx — %]l oo

Note that k,(A)" ' < u; <1

HillAlloo llx = Xilloo = [IACX = X)lle0 = [Ib = AXilloo = [I7ill oo

For a stable solver, in early stages we expect

17| ~ 1 <& lx — %; || — K1
A%l [l

But close to convergence,
7l = Nl Allllx = %l —> =1



Theorem (C. & Higham, 2017)

Let IR in precisions u and u? be applied to a linear system Ax = b with
nonsingular A € R™" and a given approximate solution x,. Assume that the

solver for the corrective term d; satisfies ||dl- — ai”oo/lldilloo = 6;,u. Then for
i = 0, the computed iterate X;,, satisfies

Ix — Xiv1llo < Cuikeo(Au + 0;u) |[x — Xl oo
+nu?(1+ 6w [A7H (bl + 1AIZi Do + wllZis4l




Theorem (C. & Higham, 2017)

Let IR in precisions u and u? be applied to a linear system Ax = b with
nonsingular A € R™" and a given approximate solution x,. Assume that the

solver for the corrective term d; satisfies ||dl- — ai”oo/lldilloo = 6;,u. Then for
i = 0, the computed iterate X;,, satisfies

X = Xiy1lloo < Quikoo(Au + 0;1) |lx — %illco
+nu?(1+ 0wl [ATH (bl + [Al1%: Do + wllZit4

As long as for all i,
Z,I.ll'Koo(A)u + Qiu <1,

the error will contract until a limiting normwise relative error of order
2nu?(1 + 6u)cond(4,x) +u

is achieved, where 6 is an upper bound on the 8; terms.



Theorem (C. & Higham, 2017)

Let IR in precisions u and u? be applied to a linear system Ax = b with
nonsingular A € R™" and a given approximate solution x,. Assume that the

solver for the corrective term d; satisfies ||dl- — ai”oo/lldilloo = 6;,u. Then for
i = 0, the computed iterate X;,, satisfies

Ix — Xiv1llo < Cuikeo(Au + 0;u) |[x — Xl oo
+nu?(1+ 6w [A7H (bl + 1AIZi Do + wllZis4l

As long as for all i,
Z,I.ll'Koo(A)u + Qiu <1,
the error will contract until a limiting normwise relative error of order
2nu?(1 + Ou)cond(4,x) +u —— ~uif
cond(4, x)u s 1

(essentially indep. of
0 as long as Ou < 1)

is achieved, where 6 is an upper bound on the 8; terms.



Theorem (C. & Higham, 2017)

Let IR in precisions u and u? be applied to a linear system Ax = b with
nonsingular A € R™" and a given approximate solution x,. Assume that the

solver for the corrective term d; satisfies ||dl- — ai”oo/lldilloo = 6;,u. Then for
i = 0, the computed iterate X;,, satisfies

Ix — Xiv1llo < Cuikeo(Au + 0;u) |[x — Xl oo
+nu?(1+ 6w [A7H (bl + 1AIZi Do + wllZis4l

—> UK, (A)u < 1 (condition on iteration)
( C 6;u < 1 (condition on solver, data)

As long as for all i,

Z,ulicoo(A)u + 0;u < 1,

the error will contract until a limiting normwise relative error of order

2nu®(1l + 6w)cond(4,x) +u —— ~uif

cond(4, x)u s 1
(essentially indep. of
0 as long as Ou < 1)

is achieved, where 6 is an upper bound on the 8; terms.



Standard (LU-based) iterative refinement

e If ko(A) >u"1, B;u < 1 can not be guaranteed no matter how
precision is used in the substitutions



Standard (LU-based) iterative refinement

e If ko(A) >u"1, B;u < 1 can not be guaranteed no matter how
precision is used in the substitutions

* Assume that the solve d; = U™L™1 #; is carried out exactly:
A+AA=LU, |AA| < y,|L||0|
di — U_lz:_l 7”\'1' — (A + AA)_l 7”\'1'

|d: —dill, 114" a4dill.,
ldille — lldille

B = < valllATHIL][ D],



Standard (LU-based) iterative refinement

e If ko(A) >u"1, B;u < 1 can not be guaranteed no matter how
precision is used in the substitutions

* Assume that the solve d; = U7'L™1 #, is carried out exactly:
A+AA=LU, |AA| < y,|L||0|
di — U_lz:_l 7”\'1' — (A + AA)_l 7”\'1'

ldi —dil| 114224l
Biu = =~

& <y, \1AY|L||U
ld;l.. - an\ll 1Z]] II!OO

|

at least as large as cond(4),
usually similar size to k (A)




GMRES-based iterative refinement

* To compute the updates d;, apply GMRES to
ﬁ_li_lAdi — ﬁ_lz_lri
N J

N J
e N
A 7

10



GMRES-based iterative refinement

* To compute the updates d;, apply GMRES to

ﬁ_li_lAdi = ﬁ_lz_lri
J/ N J

N
~

<

A ;
Standard IR:
(s

for i = 0: maxit

olve Ax, = b by LU factorization

T = b — Axi
Solve Adl =717 via di — U_l(L_lri)
Xiv1 = X; td;

\ !

10




GMRES-based iterative refinement

* To compute the updates d;, apply GMRES to

U_lL_lAdi = U_lL_lT'i
N ~ / N J

Y
A 7

GMRES-IR:
‘s

for i = 0: maxit

olve Ax, = b by LU factorization

1 = b — Axl-
Solve Adl =71; via GMRES on Adl = fi
Xit1 = X; td;

. /

10




Extending GMRES backward stability results

« Backward error results for GMRES of Paige, Rozloznik, Strakos
(2006) can be extended to the left-preconditioned case

11



Extending GMRES backward stability results

« Backward error results for GMRES of Paige, Rozloznik, Strakos
(2006) can be extended to the left-preconditioned case

* As long as within GMRES, A (not explicitly formed) is applied to

a vector with sufficient accuracy,
see (C. & Higham, 2017)

A

d: — d.
Idi=dilly, o oy

11



Extending GMRES backward stability results

« Backward error results for GMRES of Paige, Rozloznik, Strakos
(2006) can be extended to the left-preconditioned case

* As long as within GMRES, A (not explicitly formed) is applied to

a vector with sufficient accuracy,
see (C. & Higham, 2017)

A

d: — d.
Idi=dilly, o oy

- N 2
Koo (A) < (1 +vallAHIEND]] )" < Koo (A)

11



Extending GMRES backward stability results

« Backward error results for GMRES of Paige, Rozloznik, Strakos
(2006) can be extended to the left-preconditioned case

* As long as within GMRES, A (not explicitly formed) is applied to

a vector with sufficient accuracy,
see (C. & Higham, 2017)

A

d: — d.
L e

- N 2
Koo (A) < (1 +vallAHIEND]] )" < Koo (A)

\ (usually ke (A) = 1+ Ko (A)u)

11



Extending GMRES backward stability results

« Backward error results for GMRES of Paige, Rozloznik, Strakos
(2006) can be extended to the left-preconditioned case

* As long as within GMRES, A (not explicitly formed) is applied to

a vector with sufficient accuracy,
see (C. & Higham, 2017)

A

d: — d.
L e

- N 2
Koo (A) < (1 +vallAHIEND]] )" < Koo (A)

\ (usually ke (A) = 1+ Ko (A)u)

= Even if ko (4) >u™t, Qu<1

11



Numerical experiments

u = 2753 (double), u? = 27113 (quad)

UFSMC matrix: oscil dcop 06, n =430

cond(4) =2-10%8, k4, (4) =1-1021, k(4) =45
b = randn(n, 1)

—&— Standard IR
—+1- GMRES-IR

€

10°
107!

10101
1015 oo R .
1020 : - 10729 : - 10720 . ; f
0 5 10 _ 15 0 5 10 15 0 5 10 15
refinement step i refinement step 4 refinement step 4
(0) _ NA(x=%) oo

e = ”X - leloo/llx”oo

o = ||d; — di]|_/ldilloo

L lAll ool =%l oo

Standard IR steps | GMRES-IR steps GMRES its.

— 2 7 (3,4)

12



Numerical experiments

u = 2753 (double), u? = 27113 (quad)
UFSMC matrix: oscil dcop 43, n =430
cond(4) =1-10%8, k4 (4) =8-10%°, k(4) =21

—&— Standard IR

—E— GMRES-IR
b = randn(n, 1)
0 400 p=mmmmmmmm ] 10°6-0-6-0-6-0-6-0-6-0-6-0600-
105 107 - 10°FeE
10710 1079 + 107
10-15- """""""""""""""""""" = .10-15 - 10‘15
10720 | . | 10"”&56 o00660686c0 . 1020 | |
0 5 10 15 0 5 10 15 0 5 10 15
refinement step i refinement step i refinement step 4
ei = l1x = Rilloo/I1xllo u(®) = LA x) e Oru = ||d; — di]| /Nl d;llo
t | All oo ll2x—%; 00 0

Standard IR steps | GMRES-IR steps GMRES its.

— 3 10 (2,4,4)

13



Numerical experiments

u = 2753 (double), u? = 27113 (quad)
UFSMC matrix: mhda416, n = 416
cond(4) = 1-10%9, kx(4) =2-10%5, k(4) =7-10°

—&— Standard IR

—EI— GMRES-IR
b = randn(n, 1)

100 -------------------------------------- 100 ---------------------------------------

-5 -5(

107 10™Bg

10710 10710

“““““““““““““““““ 10‘15 10‘15
= : 10720 . . 1020 | | :
0 5 10 - 15 0 5 10 15 0 5 10 15

refinement step i refinement step refinement step ¢
(o) [JA(x—%) oo

e = ”X - leloo/llx”oo

Oiu = ||d; — di||_/lld;llo

L lAll ool =%l oo

Standard IR steps | GMRES-IR steps GMRES its.

5 2 3(1,2)

14



Two-Stage IR

* Sometimes standard (LU-based) IR converges despite ko (4) > u™?

* Cheaper than GMRES-IR per refinement step
e But hard to predict

15



Two-Stage IR

* Sometimes standard (LU-based) IR converges despite ko (4) > u™?

* Cheaper than GMRES-IR per refinement step
e But hard to predict

e Two-Stage IR
* Solve Axy, = b by LU factorization
* Attempt standard IR

* If convergence is slow, or divergence, switch to GMRES-IR
(making use of existing LU factorization)

15



Two-Stage IR

* Sometimes standard (LU-based) IR converges despite ko (4) > u™?

* Cheaper than GMRES-IR per refinement step
e But hard to predict

e Two-Stage IR
* Solve Axy, = b by LU factorization
* Attempt standard IR

* If convergence is slow, or divergence, switch to GMRES-IR
(making use of existing LU factorization)

 Decision to switch can be based on, e.g., stopping criteria for
forward error of Demmel et al. (2006)

 Future work...

15



Extensions

* Pivoting
e common to use pivoting strategy to minimize fill
* static pivoting, threshold pivoting

16



Extensions

* Pivoting
e common to use pivoting strategy to minimize fill
* static pivoting, threshold pivoting

* Incomplete LU factorizations

* As long as Koo(ﬁ)u <1, 6;u <1, so expect refinement process to
converge

16



Extensions

* Pivoting
e common to use pivoting strategy to minimize fill
* static pivoting, threshold pivoting

 Incomplete LU factorizations

* As long as Koo(/T)u <1, 6;u <1, so expect refinement process to
converge

* Other solvers
* Left-preconditioned, unrestarted GMRES used here for theoretical
purposes

* In practice, many potential modifications may improve
performance while still resulting in IR convergence

e Restarted GMRES
* Right, split preconditioned GMRES, FGMRES

* Other Krylov subspace methods (not necessarily backward
stable)

16



Extensions Il: lterative refinement in 3 precisions

* Emerging architectures feature built-in support for multiprecision
computation, rising interest in low-precision storage and computation
(performance and energy savings!)

17



Extensions Il: lterative refinement in 3 precisions

* Emerging architectures feature built-in support for multiprecision
computation, rising interest in low-precision storage and computation
(performance and energy savings!)

Half precision (FP16) defined as storage format in 2008 IEEE standard
Intel lvy bridge, 2012: supports half precision for storage

NVIDIA Tesla P100, 2016: native hardware ISA support for 16-bit FP
arithmetic

TSUBAMES3.0 supercomputer, 2017: projected 12.2 double-precision
petaflops, 64.3 half-precision petaflops

Intel Xeon Phi (Knights Mill), 2017: will support 16-bit FP

Google Tensorflow processor (TPU): quantizes 32-bit FP computations
into 8-bit arithmetic

17



Extensions Il: lterative refinement in 3 precisions

* Emerging architectures feature built-in support for multiprecision
computation, rising interest in low-precision storage and computation
(performance and energy savings!)

Half precision (FP16) defined as storage format in 2008 IEEE standard
Intel lvy bridge, 2012: supports half precision for storage

NVIDIA Tesla P100, 2016: native hardware ISA support for 16-bit FP
arithmetic

TSUBAMES3.0 supercomputer, 2017: projected 12.2 double-precision
petaflops, 64.3 half-precision petaflops

Intel Xeon Phi (Knights Mill), 2017: will support 16-bit FP

Google Tensorflow processor (TPU): quantizes 32-bit FP computations
into 8-bit arithmetic

» Can we use lower precision in the most expensive part of solving Ax = b
using IR (the LU factorization) and still obtain accurate solutions?

17



Extensions Il: lterative refinement in 3 precisions

* Emerging architectures feature built-in support for multiprecision
computation, rising interest in low-precision storage and computation
(performance and energy savings!)

Half precision (FP16) defined as storage format in 2008 IEEE standard
Intel lvy bridge, 2012: supports half precision for storage

NVIDIA Tesla P100, 2016: native hardware ISA support for 16-bit FP
arithmetic

TSUBAMES3.0 supercomputer, 2017: projected 12.2 double-precision
petaflops, 64.3 half-precision petaflops

Intel Xeon Phi (Knights Mill), 2017: will support 16-bit FP

Google Tensorflow processor (TPU): quantizes 32-bit FP computations
into 8-bit arithmetic

» Can we use lower precision in the most expensive part of solving Ax = b
using IR (the LU factorization) and still obtain accurate solutions?

* Three precisions:

ur = factorization precision, u = working precision, u, = residual precision

Up 2 U 2 Uy 17



Extensions Il: lterative refinement in 3 precisions

 Existing analyses:
* Wilkinson (1963): fixed-point arithmetic.
* Moler (1967): floating-point arithmetic.
 Higham (1997, 2002): more general analysis for arbitrary solver.
* Langou et al. (2006): lower precision LU.

* All the above support at most two precisions and require k. (4A)u < 1.

18



Extensions Il: lterative refinement in 3 precisions

 Existing analyses:

* Wilkinson (1963): fixed-point arithmetic.
* Moler (1967): floating-point arithmetic.

 Higham (1997, 2002): more general analysis for arbitrary solver.
* Langou et al. (2006): lower precision LU.

* All the above support at most two precisions and require k. (4A)u < 1.

New analysis generalizes and extends existing types of IR: (uf,u, u,)

Traditional
Wilkinson
(1948)

SSD
DDQ
HHS

HHD
HHQ
SSQ

70s/80s

Skeel (1980)
Jankowski and
Wozniakowski

(1977)

SSS
DDD

HHH

2000s
Dongarra,
Langou et

al. (2006)

SDD
HSS

DQQ

HDD
HQQ
SQQ

New

HSD
HSQ
HDQ
SDQ

18




Extensions Il: lterative refinement in 3 precisions

* Three precisions:
* uy: factorization precision
* u: working precision
* u,: residual computation precision

Theorem (C. & Higham, 2017)

For IR in precisions uy = u = u,, if
d)i = Zuf min(cond(A), Koo (A)/,tl) + uin

is sufficiently less than 1, then the forward error is reduced on the ith
iteration by a factor =~ ¢; until an iterate X is produced for which

< 4nu,.cond(4, x) + u.

* Analogous standard bounds would have u; = 1, uf8; = ko, (A)u "



Extensions Il: lterative refinement in 3 precisions

Standard (LU-based) IR in three precisions:

Backward error

U U U | Ko(A) | norm | comp Forward error
H S S 104 S S cond(4,x) - 1078
H S D 10* S S S
H D D 104 D D |cond(4,x)-10"16
H D Q 10* D D D
S S S 108 S S cond(4, x) - 1078
S S D 108 S S S
S D D 108 D D |cond(4,x)-10"16
S D Q 108 D D D

20



Extensions |l: Iterative refinement in 3 precisions

Standard (LU-based) IR in three precisions:

Backward error

us U U | Ke(4) norm | comp Forward error
H S S 104 S S cond(4,x) - 1078
H S D 10* S S S

H D D 104 D D |cond(4,x)-10"16
H D Q 10* D D D

S S S 108 S S cond(4, x) - 1078
S S D 108 S S S

S D D 108 D D |cond(4,x)-10"16
S D Q 108 D D D

20



Extensions |l: Iterative refinement in 3 precisions

Standard (LU-based) IR in three precisions:

Backward error

us U U | Ke(4) norm | comp Forward error
H S S 104 S S cond(4,x) - 1078
H S D 10* S S S

H D D 104 D D |cond(4,x)-10"16
H D Q 10* D D D

S S S 108 S S cond(4, x) - 1078
S S D 108 S S S

S D D 108 D D |cond(4,x)-10"16
S D Q 108 D D D

benefit of three precisions vs. us = u,u = u,: no cond(A,x) term in forward error

20



Extensions Il: lterative refinement in 3 precisions

Standard (LU-based) IR in three precisions:

Backward error

U U U | Ko(A) | norm | comp Forward error
H S S 104 S S cond(4,x) - 1078
H S D 10* S S S
H D D 104 D D |cond(4,x)-10"16
H D Q 10* D D D
S S S 108 S S cond(4, x) - 1078
S S D 108 S S S
S D D 108 D D |cond(4,x)-10"16
S D Q 108 D D D

20



Extensions Il: lterative refinement in 3 precisions

Standard (LU-based) IR in three precisions:

Backward error

U U U | Ko(A) | norm | comp Forward error
H S S 104 S S cond(4,x) - 1078
H S D 10* S S S
H D D 104 D D |cond(4,x)-10"16
H D Q 10* D D D
S S S 108 S S cond(4, x) - 1078
S S D 108 S S S
S D D 108 D D |cond(4,x)-10"16
S D Q 108 D D D

If o (A) < 10%, can use lower precision factorization with no loss of accuracy!
P y

20



Extensions Il: lterative refinement in 3 precisions

Benefits of GMRES-IR:

Backward error

Us u U | Keo(A4) norm comp Forward error
LU-IR H S D 10* S S S
GMRES-IR  H S D 108 S S S
LU-IR S D Q 108 D D D
GMRES-IR S D Q 1016 D D D
LU-IR H D Q 10* D D D
GMRES-IR  H D Q 1012 D D D

21



Extensions Il: lterative refinement in 3 precisions

Benefits of GMRES-IR:

Backward error
Us u U | Keo(A4) norm comp Forward error
LU-IR H S D 10* S S S
GMRES-IR  H S D 108 S S S
LU-IR S D Q 108 D D D
GMRES-IR S D Q 1016 D D D
LU-IR H D Q 10* D D D
GMRES-IR  H D Q 1012 D D D

With GMRES-IR, lower precision factorization will work for higher k. (A)

21



Extensions Il: lterative refinement in 3 precisions

Benefits of GMRES-IR:

Backward error
Us u U | Keo(A4) norm comp Forward error
LU-IR H S D 10* S S S
GMRES-IR  H S D 108 S S S
LU-IR S D Q 108 D D D
GMRES-IR (S D Q 1016 D D D
LU-IR H D Q 10* D D D
GMRES-IR @ D Q 1012 D D D

21



Extensions Il: lterative refinement in 3 precisions

Benefits of GMRES-IR:

Backward error
Us u U | Keo(A4) norm comp Forward error
LU-IR H S D 10* S S S
GMRES-IR  H S D 108 S S S
LU-IR S D Q 108 D D D
GMRES-IR (S D Q 1016 D D D
LU-IR H D Q 10* D D D
GMRES-IR @ D Q 1012 D D D

If koo(A) < 1012, can use lower precision factorization with no loss of accuracy!

21



Numerical experiments

us = 271 (half), u = 272* (single), u, = 27°3 (double)
A = gallery('randsvd', 100, kappa, 2)
b = randn (100, 1)

< ferr
& “r-nbe
cbe
10-2@\\\\._\\ v i
\\\\:‘x\_
&
106 -
—————————————————————— :—.;{——“——“———
RS
10710 '
0 1 2 3

refinement step

Koo(4) = 2 - 102
Keo(A) = 14
GMRES its: 11 (5,6)

21



Numerical experiments

us = 271 (half), u = 272* (single), u, = 27°3 (double)
A = gallery('randsvd', 100, kappa, 2)
b = randn (100, 1)

102 | - - 10%
< ferr
Sube
108 SN o
_____________________ o Y —
O O
10710 ' 1010 . .
0 1 2 3 0 1 2 3
refinement step refinement step
Keo(4) = 21072 Keo(A) = 2-10°
Keo(A) = 14 Keo(A) = 8-10°
GMRES its: 11 (5,6) GMRES its: 40 (7,24,9)

21



Numerical experiments

us = 271 (half), u = 272* (single), u, = 27°3 (double)
A = gallery('randsvd', 100, kappa, 2)
b = randn (100, 1)

102 | - - 10%
< ferr
L O nbe ><
108 SN o
_____________________ o Y —
O O
10710 ' 1010 . .
0 1 2 3 0 1 2 3
refinement step refinement step
Keo(4) = 21072 Keo(A) = 2-10°
Keo(A) = 14 Keo(A) = 8-10°
GMRES its: 11 (5,6) GMRES its: 40 (7,24,9)

21



GMRES convergence rate

* |f LU factorization is computed in lower precision, can diminish
effectiveness as a preconditioner

* Theory only guarantees that GMRES will converge to an accurate solution

within n iterations
* If close to n iterations, no expected performance benefit

22



GMRES convergence rate

* |f LU factorization is computed in lower precision, can diminish
effectiveness as a preconditioner

* Theory only guarantees that GMRES will converge to an accurate solution

within n iterations
* If close to n iterations, no expected performance benefit

* If A is nonnormal, spectrum of 4 is irrelevant to GMRES convergence rate
(Greenbaum, Ptak, Strakos, 1996)

22



GMRES convergence rate

* |f LU factorization is computed in lower precision, can diminish
effectiveness as a preconditioner

* Theory only guarantees that GMRES will converge to an accurate solution
within n iterations

* If close to n iterations, no expected performance benefit

* If A is nonnormal, spectrum of 4 is irrelevant to GMRES convergence rate
(Greenbaum, Ptak, Strakos, 1996)

e If A is normal, spectrum of A determines GMRES convergence rate (Liesen
& Tichy, 2004)

 But small ks (A) may not mean fast GMRES convergence
* e.g., if A has a cluster of eigenvalues close to the origin

22



GMRES convergence rate

* |f LU factorization is computed in lower precision, can diminish
effectiveness as a preconditioner

* Theory only guarantees that GMRES will converge to an accurate solution
within n iterations
* If close to n iterations, no expected performance benefit

* If A is nonnormal, spectrum of 4 is irrelevant to GMRES convergence rate
(Greenbaum, Ptak, Strakos, 1996)

e If A is normal, spectrum of A determines GMRES convergence rate (Liesen
& Tichy, 2004)
 But small ks (A) may not mean fast GMRES convergence
* e.g., if A has a cluster of eigenvalues close to the origin

= Can only make guarantees on fast GMRES convergence in some cases, e.g.,
normality and no eigenvalue cluster near origin

* Potential fixes for slow GMRES convergence: apply additional
preconditioner, deflation, other Krylov subspace methods

22



Thank you!

erinc@cims.nyu.edu
http://math.nyu.edu/“erinc/

Resources:

* E. Carson and N. J. Higham. A new analysis of iterative
refinement and its application to accurate solution of ill-
conditioned sparse linear systems. MIMS EPrint 2017.12.

* E. Carson and N. J. Higham. Accelerating the solution of linear

systems by iterative refinement in three precisions. MIMS
EPrint 2017.24.

« MATLAB code for iterative refinement in 3 precisions:
https://github.com/eccarson/ir3/



http://eprints.ma.man.ac.uk/2537/01/covered/MIMS_ep2017_12.pdf
http://eprints.ma.man.ac.uk/2562/01/paper.pdf
https://github.com/eccarson/ir3/

IEEE Standard 754-1985 and 2008 Revision

Type

half
single
double
quadruple

Size
16 bits

32 bits
64 bits

128 bits

Range | u=27"
10*° 27"~ 49 x 107

10+38 22" ~60x10"°
105398 2798 1.1 x 1071°

1044982 2-113 1 9 6 x 1035

m Arithmetic ops (+, —, %, /. /) performed as /r first
calculated to infinite precision, then rounded.

m Default: round to nearest, round to even in case of tie.

m Half precision is a storage format only.




Summary of the sizes of the quantities in assumptions (2.3)—(2.5) for solution of the correction
equation with LU factorization (section 7) and GMRES-IR (section 8). Note that f(n) = O(n?).

Us ”E;"oo Us maX(Cl,C')) u"”Gi"m

o 2101 —
IR w/LU fact. | 3nug[||A=|Z(17]lle 3nu;% 3nug | Z11 0o

GMRES-IR | uf(n)(1 + v koo (A))? O(u) O(ul|Al)




Different scenarios for iterative refinement in IEEE arithmetic. The columns represent different
choices for us, u, and ur, where in the notation of Algorithm 1.1 the data is stored at precision
u, the solves in steps 1 and 4 are carried out in precision uy = us, and residuals are computed at
precision ur. The last column indicates whether any eristing backward or forward error analysis is
applicable to this situation when LU factorization is used as the solver.

Precision
Usage Half Single Double Existing analysis?
Traditional data, solve residual Vv
Traditional data, solve, residual Vv
2000s solve data, residual Vv
New solve | data, residual Vv
New solve data residual X
New solve data, residual Vv




Summary of existing rounding error analyses for iterative refinement in floating point arithmetic
indicating (a) whether the analyses apply to LU factorization only or to an arbitrary solver, (b)
whether the backward or forward error analyses are componentwise ( “comp”) or normwise ( “norm”),
and (c) the assumptions on the precisions uy, us, u, ur in Algorithm 1.1 (uy = u and us = uy

unless otherwise stated).

Forward  Backward
Year Solver error error Precisions

Moler [26] 1967 LU norm - u > ur
Stewart [33] 1973 LU norm - u > ur
Jankowski et al. [21] 1977  arb. norm norm U= Ur
Skeel [31] 1980 LU comp comp u > ur
Higham [16) 1991  arb. comp comp U= u,
Higham [17], [18] 1997  arb. comp comp u > ur
Tisseur [34] 2001  arb. norm norm u > up
Langou et al. 23] 2006 LU norm norm up > u=ur
Carson and Higham [9] 2017  arb. comp - u > ur
This work 2017 arb. comp comp, norm Uy > us 2> U 2> Ur



